Merge branch 'master' of igit.ific.uv.es:alramos/latticegpu.jl

This commit is contained in:
Nicolas Lang 2025-02-25 16:58:16 +01:00
commit 3c59b9251a
41 changed files with 3467 additions and 902 deletions

View file

@ -20,6 +20,19 @@ using ..MD
import Base.show
"""
struct GaugeParm{T,G,N}
Structure containing the parameters of a pure gauge simulation. These are:
- beta: Type `T`. The bare coupling of the simulation.
- c0: Type `T`. LatticeGPU supports the simulation of gauge actions made of 1x1 Wilson Loops and 2x1 Wilson loops. The parameter c0 defines the coefficient on the simulation of the 1x1 loops. Some common choices are:
- c0=1: Wilson plaquette action.
- c0=5/3: Tree-level improved Lüscher-Weisz action.
- c0=3.648: Iwasaki gauge action.
- cG: Tuple (`T`, `T`). Boundary improvement parameters.
- ng: `Int64`. Rank of the gauge group.
- Ubnd: Boundary field for SF boundary conditions.
"""
struct GaugeParm{T,G,N}
beta::T
c0::T
@ -63,6 +76,21 @@ function Base.show(io::IO, gp::GaugeParm{T, G, N}) where {T,G,N}
return nothing
end
"""
struct YMworkspace{T}
Structure containing memory workspace that is reused by different routines in order to avoid allocating/deallocating time.
The parameter `T` represents the precision of the simulation (i.e. single/double). The structure contains the following components
- GRP: Group being simulated.
- ALG: Corresponding Algebra.
- PRC: Precision (i.e. `T`).
- frc1: Algebra field with natural indexing.
- frc2: Algebra field with natural indexing.
- mom: Algebra field with natural indexing.
- U1: Group field with natural indexing.
- cm: Complex field with lexicographic indexing.
- rm: Real field with lexicographic indexing.
"""
struct YMworkspace{T}
GRP
ALG
@ -110,7 +138,11 @@ function Base.show(io::IO, ymws::YMworkspace)
return nothing
end
"""
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}[, ipl])
Returns the twist factor. If a plane index is passed, returns the twist factor as a Complex{T}. If this is not provided, returns a tuple, containing the factor of each plane.
"""
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D}
function plnf(ipl)
@ -133,10 +165,10 @@ include("YMfields.jl")
export randomize!, zero!, norm2
include("YMact.jl")
export krnl_plaq!, force0_wilson!
export krnl_plaq!, force_gauge, force_wilson
include("YMhmc.jl")
export gauge_action, hamiltonian, plaquette, HMC!, OMF4!
export gauge_action, hamiltonian, plaquette, HMC!, MD!
include("YMflow.jl")
export FlowIntr, flw, flw_adapt
@ -147,6 +179,6 @@ include("YMsf.jl")
export sfcoupling, bndfield, setbndfield
include("YMio.jl")
export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg
export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg, read_gp
end

File diff suppressed because it is too large Load diff

View file

@ -9,8 +9,14 @@
### created: Thu Jul 15 15:16:47 2021
###
function randomize!(f, lp::SpaceParm, ymws::YMworkspace; curng=CUDA.default_rng())
"""
function randomize!(f, lp::SpaceParm, ymws::YMworkspace; curng=CUDA.default_rng())
Given an algebra field with natural indexing, this routine sets the components to random Gaussian distributed values. If SF boundary conditions are used, the force at the boundaries is set to zero.
"""
function randomize!(f, lp::SpaceParm, ymws::YMworkspace; curng=CUDA.default_rng())
if ymws.ALG == SU2alg
@timeit "Randomize SU(2) algebra field" begin
m = Random.randn(curng, ymws.PRC, lp.bsz,lp.ndim,3,lp.rsz)
@ -49,31 +55,44 @@ function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_PERIODI
return nothing
end
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D}
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
for id in 1:lp.ndim
frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r],
m[b,id,4,r], m[b,id,5,r], m[b,id,6,r],
m[b,id,7,r], m[b,id,8,r])
end
end
return nothing
end
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
it = point_time((b,r), lp)
if ((B==BC_SF_AFWB)||(B==BC_SF_ORBI))
if it == 1
for id in 1:lp.ndim-1
frc[b,id,r] = zero(T)
end
frc[b,N,r] = SU3alg(m[b,N,1,r], m[b,N,2,r], m[b,N,3,r],
m[b,N,4,r], m[b,N,5,r], m[b,N,6,r],
m[b,N,7,r], m[b,N,8,r])
else
for id in 1:lp.ndim
frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r],
m[b,id,4,r], m[b,id,5,r], m[b,id,6,r],
m[b,id,7,r], m[b,id,8,r])
end
if it == 1
for id in 1:lp.ndim-1
frc[b,id,r] = zero(T)
end
frc[b,N,r] = SU3alg(m[b,N,1,r], m[b,N,2,r], m[b,N,3,r],
m[b,N,4,r], m[b,N,5,r], m[b,N,6,r],
m[b,N,7,r], m[b,N,8,r])
else
for id in 1:lp.ndim
frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r],
m[b,id,4,r], m[b,id,5,r], m[b,id,6,r],
m[b,id,7,r], m[b,id,8,r])
end
end
end
return nothing
end

View file

@ -10,6 +10,11 @@
###
"""
struct FlowIntr{N,T}
Structure containing info about a particular flow integrator
"""
struct FlowIntr{N,T}
r::T
e0::NTuple{N,T}
@ -26,11 +31,46 @@ struct FlowIntr{N,T}
end
# pre-defined integrators
"""
wfl_euler(::Type{T}, eps::T, tol::T)
Euler scheme integrator for the Wilson Flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
"""
wfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
"""
zfl_euler(::Type{T}, eps::T, tol::T)
Euler scheme integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
"""
zfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
"""
wfl_rk2(::Type{T}, eps::T, tol::T)
Second order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
"""
wfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
"""
zfl_rk2(::Type{T}, eps::T, tol::T)
Second order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
"""
zfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
"""
wfl_rk3(::Type{T}, eps::T, tol::T)
Third order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
"""
wfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
"""
Zfl_rk3(::Type{T}, eps::T, tol::T)
Third order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
"""
zfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
function Base.show(io::IO, int::FlowIntr{N,T}) where {N,T}
@ -94,7 +134,8 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
r = Int64(CUDA.blockIdx().x)
it = point_time((b, r), lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
OBC = (B == BC_OPEN)
@inbounds for id in 1:N
bu, ru = up((b,r), id, lp)
@ -112,16 +153,29 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
end
else
end
if OBC
if (it > 1) && (it < lp.iL[end])
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
elseif ((it == lp.iL[end]) || (it == 1)) && (id < N)
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
end
else
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
end
end
end
return nothing
end
"""
function flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Integrates the flow equations with the integration scheme defined by `int` performing `ns` steps with fixed step size. The configuration `U` is overwritten.
"""
function flw(U, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
@timeit "Integrating flow equations" begin
for i in 1:ns
@ -152,21 +206,28 @@ flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMwor
# Adaptive step size integrators
##
"""
function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Integrates the flow equations with the integration scheme defined by `int` using the adaptive step size integrator up to `tend` with the tolerance defined in `int`. The configuration `U` is overwritten.
"""
function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
eps = int.eps_ini
eps = epsini
dt = tend
nstp = 0
eps_all = Vector{T}(undef,0)
while true
ns = convert(Int64, floor(dt/eps))
if ns > 10
flw(U, int, 9, eps, gp, lp, ymws)
ymws.U1 .= U
flw(U, int, 2, eps/2, gp, lp, ymws)
flw(ymws.U1, int, 1, eps, gp, lp, ymws)
flw(U, int, 1, eps, gp, lp, ymws)
flw(ymws.U1, int, 2, eps/2, gp, lp, ymws)
dt = dt - 10*eps
nstp = nstp + 10
push!(eps_all,ntuple(i->eps,10)...)
# adjust step size
ymws.U1 .= ymws.U1 ./ U
@ -177,6 +238,9 @@ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp
flw(U, int, ns, eps, gp, lp, ymws)
dt = dt - ns*eps
push!(eps_all,ntuple(i->eps,ns)...)
push!(eps_all,dt)
flw(U, int, 1, dt, gp, lp, ymws)
dt = zero(tend)
@ -188,7 +252,7 @@ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp
end
end
return nstp, eps
return nstp, eps_all
end
flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} = flw_adapt(U, int, tend, int.eps_ini, gp, lp, ymws)
@ -201,7 +265,7 @@ flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::Y
"""
function Eoft_plaq([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc`
Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc` is given
the contribution for each Euclidean time slice and plane are returned.
"""
function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace) where {T,G,NN,N,M,B,D}
@ -209,7 +273,8 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws:
@timeit "E(t) plaquette measurement" begin
ztw = ztwist(gp, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
OBC = (B == BC_OPEN)
tp = ntuple(i->i, N-1)
V3 = prod(lp.iL[1:end-1])
@ -230,6 +295,10 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws:
if !SFBC
Eslc[1,ipl] = Etmp[1] + Etmp[end]
end
if OBC ## Check normalization of timelike boundary plaquettes
Eslc[end,ipl] = Etmp[end-1]
Eslc[1,ipl] = Etmp[1]
end
else
for it in 1:lp.iL[end]
Eslc[it,ipl] = 2*Etmp[it]
@ -254,7 +323,7 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{
I = point_coord((b,r), lp)
id1, id2 = lp.plidx[ipl]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == lp.iL[end])
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == N)
TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp)
@ -272,15 +341,13 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{
plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2]))
end
end
return nothing
end
"""
Qtop([Qslc,] U, lp, ymws)
Qtop([Qslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Measure the topological charge `Q` of the configuration `U`. If the argument `Qslc` is present
the contribution for each Euclidean time slice are returned.
Measure the topological charge `Q` of the configuration `U` using the clover definition of the field strength tensor. If the argument `Qslc` is present the contributions for each Euclidean time slice are returned. Only works in 4D.
"""
function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D}
@ -296,21 +363,18 @@ function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp)
end
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp)
end
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp)
end
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp)
end
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp)
end
Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2)
end
@ -322,7 +386,7 @@ Qtop(U, gp::GaugeParm, lp::SpaceParm{4,M,D}, ymws::YMworkspace{T}) where {T,M,D}
"""
function Eoft_clover([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Measure the action density `E(t)` using the clover discretization. If the argument `Eslc`
Measure the action density `E(t)` using the clover discretization. If the argument `Eslc` is given
the contribution for each Euclidean time slice and plane are returned.
"""
function Eoft_clover(Eslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace{T}) where {T,M,B,D}
@ -391,7 +455,7 @@ function krnl_add_et!(rm, frc1, lp::SpaceParm{4,M,B,D}) where {M,B,D}
I = point_coord((b,r), lp)
rm[I] = dot(X1,X1)
end
return nothing
end
@ -420,6 +484,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
#First plane
id1, id2 = lp.plidx[ipl1]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = ((B == BC_OPEN) && (id1 == 4))
TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp)
@ -439,6 +504,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
elseif OBC && (it == lp.iL[end])
frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r])
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
else
if TWP
frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r])
@ -456,6 +526,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
# Second plane
id1, id2 = lp.plidx[ipl2]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = ((B == BC_OPEN) && (id1 == 4))
TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp)
@ -475,6 +546,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
frc2[bu1,2,ru1] = zero(TA)
frc2[bd,3,rd] = zero(TA)
frc2[bu2,4,ru2] = projalg(l2*l1)
elseif OBC && (it == lp.iL[end])
frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r])
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
else
if TWP
frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r])
@ -489,7 +565,5 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
end
end
end
return nothing
end

View file

@ -13,7 +13,7 @@
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
Returns the value of the gauge plaquette action for the configuration U. The parameters `\beta` and `c0` are taken from the `gp` structure.
Returns the value of the gauge action for the configuration U. The parameters ``\\beta`` and `c0` are taken from the `gp` structure.
"""
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where T <: AbstractFloat
@ -37,6 +37,11 @@ function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) whe
return S
end
"""
function plaquette(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
Computes the average plaquette for the configuration `U`.
"""
function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
ztw = ztwist(gp, lp)
@ -48,7 +53,12 @@ function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace)
return CUDA.mapreduce(real, +, ymws.cm)/(prod(lp.iL)*lp.npls)
end
"""
function hamiltonian(mom, U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
Returns the Energy ``H = \\frac{p^2}{2}+S[U]``, where the momenta field is given by `mom` and the configuration by `U`.
"""
function hamiltonian(mom, U, lp, gp, ymws)
@timeit "Computing Hamiltonian" begin
K = CUDA.mapreduce(norm2, +, mom)/2
@ -58,6 +68,12 @@ function hamiltonian(mom, U, lp, gp, ymws)
return K+V
end
"""
HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace; noacc=false, rng=Random.default_rng(), curng=CUDA.default_rng())
Performs a HMC step (molecular dynamics integration and accept/reject step). The configuration `U` is updated and function returns the energy violation and if the configuration was accepted in a tuple.
"""
function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false, rng=Random.default_rng(), curng=CUDA.default_rng()) where T
@timeit "HMC trayectory" begin
@ -92,6 +108,11 @@ function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspac
end
HMC!(U, eps, ns, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false, rng=Random.default_rng(), curng=CUDA.default_rng()) where T = HMC!(U, omf4(T, eps, ns), lp, gp, ymws; noacc=noacc, rng, curng)
"""
function MD!(mom, U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
Performs the integration of a molecular dynamics trajectory starting from the momentum field `mom` and the configuration `U` according to the integrator described by `int`.
"""
function MD!(mom, U, int::IntrScheme{NI, T}, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where {NI, T <: AbstractFloat}
@timeit "MD evolution" begin

View file

@ -75,7 +75,7 @@ function read_cnfg(fname::String)
end
if ibc == BC_SF_AFWB || ibc == BC_SF_ORBI
BDIO_read(fb, V)
BDIO_read(fb, vec(V))
Ubnd = ntuple(i->assign(i, V, 1), 3)
BDIO_close!(fb)
@ -297,3 +297,50 @@ function import_cern64(fname, ibc, lp::SpaceParm; log=true)
return CuArray(Ucpu)
end
"""
read_gp(fname::String)
Reads Gauge parameters from file `fname` using the native (BDIO) format. Returns GaugeParm and SpaceParm.
"""
function read_gp(fname::String)
UID_HDR = 14
fb = BDIO_open(fname, "r")
while BDIO_get_uinfo(fb) != UID_HDR
BDIO_seek!(fb)
end
ihdr = Vector{Int32}(undef, 2)
BDIO_read(fb, ihdr)
if (ihdr[1] != convert(Int32, 1653996111)) && (ihdr[2] != convert(Int32, 2))
error("Wrong file format [header]")
end
run = BDIO.BDIO_read_str(fb)
while BDIO_get_uinfo(fb) != 1
BDIO_seek!(fb)
end
ifoo = Vector{Int32}(undef, 4)
BDIO_read(fb, ifoo)
ndim = convert(Int64, ifoo[1])
npls = convert(Int64, round(ndim*(ndim-1)/2))
ibc = convert(Int64, ifoo[2])
nf = ifoo[4]
ifoo = Vector{Int32}(undef, ndim+convert(Int32, npls))
BDIO_read(fb, ifoo)
iL = ntuple(i -> convert(Int64, ifoo[i]),ndim)
ntw = ntuple(i -> convert(Int64, ifoo[i+ndim]), npls)
dfoo = Vector{Float64}(undef, 4)
BDIO_read(fb, dfoo)
lp = SpaceParm{ndim}(iL, (4,4,4,4), ibc, ntw)
gp = GaugeParm{Float64}(SU3{Float64}, dfoo[1], dfoo[2])
return gp, lp
end

View file

@ -10,9 +10,9 @@
###
"""
sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
sfcoupling(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
Measures the Schrodinger Functional coupling `ds/d\eta` and `d^2S/d\eta d\nu`.
Measures the Schrodinger Functional coupling ``{\\rm d}S/{\\rm d}\\eta`` and ``{\\rm d}^2S/{\\rm d}\\eta d\nu``.
"""
function sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
@ -89,7 +89,11 @@ end
return exp(X)
end
"""
function setbndfield(U, phi, lp::SpaceParm)
Sets abelian boundary fields with phases `phi[1]` and `phi[2]` to the configuration `U` at time salice ``x_0=0``.
"""
function setbndfield(U, phi, lp::SpaceParm{N,M,B,D}) where {N,M,B,D}
CUDA.@sync begin