diff --git a/docs/make.jl b/docs/make.jl index 60b7af4..f7b4cf1 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -9,6 +9,13 @@ makedocs(sitename="LatticeGPU", modules=[LatticeGPU], doctest=true, "LatticeGPU.jl" => "index.md", "Space-time" => "space.md", "Groups and algebras" => "groups.md", - "Fields" => "fields.md" + "Fields" => "fields.md", + "Yang-Mills" => "ym.md", + "Gradient flow" => "flow.md", + "Schrödinger Functional" => "sf.md", + "Spinors" => "spinors.md", + "Dirac" => "dirac.md", + "Solvers" => "solvers.md", + "Input Output" => "io.md" ], repo = "https://igit.ific.uv.es/alramos/latticegpu.jl") diff --git a/docs/src/dirac.md b/docs/src/dirac.md new file mode 100644 index 0000000..2f7fade --- /dev/null +++ b/docs/src/dirac.md @@ -0,0 +1,107 @@ + +# Dirac operator + +The module `Dirac` has the necessary structures and functions +to simulate non-dynamical 4-dimensional Wilson fermions. + +There are two main data structures in this module, the structure [`DiracParam`](@ref) + +```@docs +DiracParam +``` + +and the workspace [`DiracWorkspace`](@ref) + +```@docs +DiracWorkspace +``` + +The workspace stores four fermion fields, namely `.sr`, `.sp`, `.sAp` and `.st`, used +for different purposes. If the representation is either `SU2fund` of `SU3fund`, an extra +field with values in `U2alg`/`U3alg` is created to store the clover, used for the improvement. + +## Functions + +The functions [`Dw!`](@ref), [`g5Dw!`](@ref) and [`DwdagDw!`](@ref) are all related to the +Wilson-Dirac operator. + +The action of the Dirac operator `Dw!` is the following: + +```math +D_w\psi (\vec{x} = x_1,x_2,x_3,x_4) = (4 + m_0 + i \mu \gamma_5)\psi(\vec{x}) - +``` +```math + - \frac{1}{2}\sum_{\mu = 1}^4 \theta (\mu) (1-\gamma_\mu) U_\mu(\vec{x}) \psi(\vec{x} + \hat{\mu}) + \theta^* (\mu) (1 + \gamma_\mu) U^{-1}_\mu(\vec{x} - \hat{\mu}) \psi(\vec{x} - \hat{\mu}) +``` + +where $$m_0$$ and $$\theta$$ are respectively the values `.m0` and `.th` of [`DiracParam`](@ref). +Note that $$|\theta(\mu)|=1$$ is not built into the code, so it should be imposed explicitly. + +Additionally, if |`dpar.csw`| > 1.0E-10, the clover term is assumed to be stored in `ymws.csw`, which +can be done via the [`Csw!`](@ref) function. In this case we have the Sheikholeslami-Wohlert (SW) term +in `Dw!`: + +```math + \delta D_w^{sw} = \frac{i}{2}c_{sw} \sum_{\pi = 1}^6 F^{cl}_\pi \sigma_\pi \psi(\vec{x}) +``` +where the $$\sigma$$ matrices are those described in the `Spinors` module and the index $$\pi$$ runs +as specified in `lp.plidx`. + +If the boudary conditions, defined in `lp`, are either `BC_SF_ORBI,D` or `BC_SF_AFWB`, the +improvement term + +```math + \delta D_w^{SF} = (c_t -1) (\delta_{x_4,a} \psi(\vec{x}) + \delta_{x_4,T-a} \psi(\vec{x})) +``` +is added. Since the time-slice $$t=T$$ is not stored, this accounts for modifying the second +and last time-slice. + +Note that the Dirac operator for SF boundary conditions assumes that the value of the field +in the first time-slice is zero. To enforce this, we have the function + +```@docs +SF_bndfix! +``` + +The function [`Csw!`](@ref) is used to store the clover in `dws.csw`. It is computed +according to the expression + +```math +F_{\mu,\nu} = \frac{1}{8} (Q_{\mu \nu} - Q_{\nu \mu}) +``` + +where +```math +Q_{\mu\nu} = U_\mu(\vec{x})U_{\nu}(x+\mu)U_{\mu}^{-1}(\vec{x}+\nu)U_{\nu}(\vec{x}) + +U_{\nu}^{-1}(\vec{x}-\nu) U_\mu (\vec{x}-\nu) U_{\nu}(\vec{x} +\mu - \nu) U^{-1}_{\mu}(\vec{x}) + +``` +```math ++ U^{-1}_{\mu}(x-\mu)U_\nu^{-1}(\vec{x} - \mu - \nu)U_\mu(\vec{x} - \mu - \nu)U_\nu^{-1}(x-\nu) + +``` +```math ++U_{\nu}(\vec{x})U_{\mu}^{-1}(\vec{x} + \nu - \mu)U^{-1}_{\nu}(\vec{x} - \mu)U_\mu(\vec{x}-\mu) + +``` + +The correspondence between the tensor field and the GPU-Array is the following: +```math +F[b,1,r] \to F_{41}(b,r) ,\quad F[b,2,r] \to F_{42}(b,r) ,\quad F[b,3,r] \to F_{43}(b,r) +``` +```math +F[b,4,r] \to F_{31}(b,r) ,\quad F[b,5,r] \to F_{32}(b,r) ,\quad F[b,6,r] \to F_{21}(b,r) +``` +where $$(b,r)$$ labels the lattice points as explained in the module `Space` + +The function [`pfrandomize!`](@ref), userful for stochastic sources, is also present. It +randomizes a fermion field, either in all the space or in a specific time-slice. + +The generic interface of these functions reads + +```@docs +Dw! +g5Dw! +DwdagDw! +Csw! +pfrandomize! +mtwmdpar +``` diff --git a/docs/src/fields.md b/docs/src/fields.md index b68e110..eae5eab 100644 --- a/docs/src/fields.md +++ b/docs/src/fields.md @@ -1,25 +1,29 @@ # Lattice fields -The module `Fields` include simple routines to define a few typical +The module `Fields` includes simple routines to define a few typical fields. Fields are simple `CuArray` types with special memory layout. A field always has an associated elemental type (i.e. for gauge fields `SU3`, for scalar fields `Float64`). We have: -- scalar fields: One elemental type in each spacetime point. -- vector field: One elemental type at each spacetime point and +- Scalar fields: One elemental type in each spacetime point. +- Vector field: One elemental type at each spacetime point and direction. - `N` scalar fields: `N` elemental types at each spacetime point. +- Tensor fields: One elemental type at each spacetime point and + plane. They are to be thought of as symmetric tensors. + +Fields can have **natural indexing**, where the memory layout follows +the point-in-block and block indices (see +[`SpaceParm`](@ref)). Fields can also have **lexicographic indexing**, +where points are labelled by a D-dimensional index (see [`scalar_field_point`](@ref)). -For all these fields the spacetime point are ordered in memory -according to the point-in-block and block indices (see -[`SpaceParm`](@ref)). An execption is the [`scalar_field_point`](@ref) -fields. ## Initialization ```@docs scalar_field vector_field +tensor_field nscalar_field scalar_field_point ``` diff --git a/docs/src/flow.md b/docs/src/flow.md new file mode 100644 index 0000000..519afe7 --- /dev/null +++ b/docs/src/flow.md @@ -0,0 +1,47 @@ +# Gradient flow + +The gradient flow equations can be integrated in two different ways: +1. Using a fixed step-size integrator. In this approach one fixes the + step size $\epsilon$ and the links are evolved from + $V_\mu(t)$ to $V_\mu(t +\epsilon)$ using some integration + scheme. +1. Using an adaptive step-size integrator. In this approach one fixes + the tolerance $h$ and the links are evolved for a time $t_{\rm + end}$ (i.e. from $V_\mu(t)$ to $V_\mu(t +t_{\rm end})$) + with the condition that the maximum error while advancing is not + larger than $h$. + +In general adaptive step size integrators are much more efficient, but +one loses the possibility to measure flow quantities at the +intermediate times $\epsilon, 2\epsilon, 3\epsilon,...$. Adaptive +step size integrators are ideal for finite size scaling studies, while +a mix of both integrators is the most efficient approach in scale +setting applications. + +## Integration schemes + +```@docs +FlowIntr +wfl_euler +zfl_euler +wfl_rk2 +zfl_rk2 +wfl_rk3 +zfl_rk3 +``` + +## Integrating the flow equations + +```@docs +flw +flw_adapt +``` + +## Observables + +```@docs +Eoft_plaq +Eoft_clover +Qtop +``` + diff --git a/docs/src/groups.md b/docs/src/groups.md index 8426a1a..7fa0c1a 100644 --- a/docs/src/groups.md +++ b/docs/src/groups.md @@ -1,7 +1,7 @@ # Groups and Algebras -The module `Groups` contain generic data types to deal with group and +The module `Groups` contains generic data types to deal with group and algebra elements. Group elements $$g\in SU(N)$$ are represented in some compact notation. For the case $$N=2$$ we use two complex numbers (Caley-Dickson representation, i.e. $$g=(z_1,z_2)$$ with @@ -79,7 +79,7 @@ elements. The objective is to get an idea on how group operations We can generate some random group elements. ```@repl exs # Generate random groups elements, -# check they are actually from the grup +# check they are actually from the group g = rand(SU2{Float64}) println("Are we in a group?: ", isgroup(g)) g = rand(SU3{Float64}) @@ -153,6 +153,10 @@ projalg ## Generic `Algebra` methods ```@docs +dot +norm +norm2 +normalize exp expm alg2mat diff --git a/docs/src/io.md b/docs/src/io.md new file mode 100644 index 0000000..581e543 --- /dev/null +++ b/docs/src/io.md @@ -0,0 +1,14 @@ + +# Input/Output + +## Configurations + +Routines to read/write and import gauge configurations. +```@docs +read_cnfg +save_cnfg +import_bsfqcd +import_lex64 +import_cern64 +``` + diff --git a/docs/src/sf.md b/docs/src/sf.md new file mode 100644 index 0000000..9b9daad --- /dev/null +++ b/docs/src/sf.md @@ -0,0 +1,9 @@ +# Schödinger Functional + +Specific SF observables and routines + +```@docs +setbndfield +sfcoupling +``` + diff --git a/docs/src/solvers.md b/docs/src/solvers.md new file mode 100644 index 0000000..5ea1b90 --- /dev/null +++ b/docs/src/solvers.md @@ -0,0 +1,88 @@ + +# Solvers + +The module `Solvers` contains the functions to invert the Dirac +operator as well as functions to obtain specific propagators. + + +## CG.jl + +The function [`CG!`](@ref) implements the Conjugate gradient +algorith for the operator A + +```@docs +CG! +``` + +where the tolerance is normalized with respect to $$|$$``si``$$|^2$$. +The operator A must have the same input structure as all the Dirac +operators. If the maximum number of iterations `maxiter` is reached, +the function will throw an error. The estimation for $$A^{-1}x$$ is +stored in ``si``, and the number of iterations is returned. + + +Note that all the fermion field in ``dws`` are used +inside the function and will be modified. In particular, the final residue +is given by $$|$$``dws.sr``$$|^2$$. + + + +## Propagators.jl + +In this file, we define some useful functions to obtain certain +propagators. + +```@docs +propagator! +``` + +Note that the indexing in Julia starts at 1, so the first tiime slice is t=1. + +Internally, this function solves the equation + +```math + D_w^\dagger D_w \psi = \gamma_5 D_w \gamma_5 \eta +``` + +where $$\eta$$ is either a point-source with the specified color and spin +or a random source in a time-slice and stores the value in ``pro``. +To solve this equation, the [`CG!`](@ref) function is used. + + +For the case of SF boundary conditions, we have the boundary-to-bulk +propagator, implemented by the function [`bndpropagator!`](@ref) + +```@docs +bndpropagator! +``` + +This propagator is defined by the equation: + +```math +D_W S(x) = \frac{c_t}{\sqrt{V}} \delta_{x_0,1} U_0^\dagger(0,\vec{x}) P_+ +``` + +The analog for the other boundary is implemented in the function [`Tbndpropagator!`](@ref) + +```@docs +Tbndpropagator! +``` + +defined by the equation: + +```math +D_W R(x) = \frac{c_t}{\sqrt{V}} \delta_{x_0,T-1} U_0(T-1,\vec{x}) P_- +``` + +Where $$P_\pm = (1 \pm \gamma_0)/2$$. The boundary-to-boundary +propagator + +```math +\frac{-c_t}{\sqrt{V}} \sum_{\vec{x}} U_0 ^\dagger (T-1,\vec{x}) P_+ S(T-1,\vec{x}) +``` + +is computed by the function [`bndtobnd`](@ref) + +```@docs +bndtobnd +``` diff --git a/docs/src/space.md b/docs/src/space.md index 4db86c7..de3a478 100644 --- a/docs/src/space.md +++ b/docs/src/space.md @@ -3,7 +3,10 @@ D-dimensional lattice points are labeled by two ordered integer numbers: the point-in-block index ($$b$$ in the figure below) and the -block index ($$r$$ in the figure below). The routines [`up`](@ref) and +block index ($$r$$ in the figure below). This is called **natural +indexing**, in contrast with the **lexicographic indexing** where points on +the lattice are represented by a D-dimensional `CartesianIndex`. +The routines [`up`](@ref) and [`dw`](@ref) allow you to displace to the neighboring points of the lattice. ![D dimensional lattice points are labeled by its diff --git a/docs/src/spinors.md b/docs/src/spinors.md new file mode 100644 index 0000000..55443e2 --- /dev/null +++ b/docs/src/spinors.md @@ -0,0 +1,85 @@ +# Spinors + +The module Spinors defines the necessary functions for the structure `Spinor{NS,G}`, +which is a NS-tuple with values in G. + +The functions `norm`, `norm2`, `dot`, `*`, `/`, `/`, `+`, `-`, `imm` and `mimm`, +if defined for G, are extended to Spinor{NS,G} for general NS. + +For the 4D case, where NS = 4, there are some specific functions to implement different +operations with the gamma matrices. The convention for these matrices is + + +```math +\gamma _4 = \left( + \begin{array}{cccc} + 0 & 0 & -1 & 0\\ + 0 & 0 & 0 & -1\\ + -1 & 0 & 0 & 0\\ + 0 & -1 & 0 & 0\\ + \end{array} + \right) + \quad + \gamma_1 = \left( + \begin{array}{cccc} + 0 & 0 & 0 & -i\\ + 0 & 0 & -i & 0\\ + 0 & i & 0 & 0\\ + i & 0 & 0 & 0\\ + \end{array} + \right) +``` +```math + \gamma _2 = \left( + \begin{array}{cccc} + 0 & 0 & 0 & -1\\ + 0 & 0 & 1 & 0\\ + 0 & 1 & 0 & 0\\ + -1 & 0 & 0 & 0\\ + \end{array} + \right) + \quad + \gamma_3 = \left( + \begin{array}{cccc} + 0 & 0 & -i & 0\\ + 0 & 0 & 0 & i\\ + i & 0 & 0 & 0\\ + 0 & -i & 0 & 0\\ + \end{array} + \right) +``` + + +The function [`dmul`](@ref) implements the multiplication over the $$\gamma$$ matrices + +```@docs +dmul +``` + +The function [`pmul`](@ref) implements the $$ (1 \pm \gamma_N) $$ proyectors. The functions +[`gpmul`](@ref) and [`gdagpmul`](@ref) do the same and then multiply each element by `g`and +g^-1 repectively. + +```@docs +pmul +gpmul +gdagpmul +``` + +## Some examples + +Here we just display some examples for these functions. We display it with `ComplexF64` +instead of `SU3fund` or `SU2fund` for simplicity. + + +```@setup exs +import Pkg # hide +Pkg.activate("/home/alberto/code/julia/LatticeGPU/") # hide +using LatticeGPU # hide +``` +```@repl exs +spin = Spinor{4,Complex{Float64}}((1.0,im*0.5,2.3,0.0)) +println(dmul(Gamma{4},spin)) +println(pmul(Pgamma{2,-1},spin)) + +``` diff --git a/docs/src/ym.md b/docs/src/ym.md new file mode 100644 index 0000000..5886f32 --- /dev/null +++ b/docs/src/ym.md @@ -0,0 +1,59 @@ + +# Simulating Yang-Mills on the lattice + +```@docs +GaugeParm +YMworkspace +ztwist +``` + +## Gauge actions and forces + +Routines to compute the gauge action. +```@docs +gauge_action +``` + +Routines to compute the force derived from gauge actions. + +```@docs +force_gauge +``` + +### Force field refresh + +Algebra fields with **natural indexing** can be randomized. +```@docs +randomize! +``` + + +## Basic observables + +Some basic observable. +```@docs +plaquette +``` + +## HMC simulations + +### Integrating the EOM + +```@docs +IntrScheme +leapfrog +omf2 +omf4 +MD! +``` + +### HMC algorithm + +```@docs +hamiltonian +HMC! +``` + + + + diff --git a/src/Dirac/Dirac.jl b/src/Dirac/Dirac.jl index 2d78098..c11dc74 100644 --- a/src/Dirac/Dirac.jl +++ b/src/Dirac/Dirac.jl @@ -19,20 +19,31 @@ using ..Fields using ..YM using ..Spinors +""" + struct DiracParam{T,R} +Stores the parameters of the Dirac operator. It can be generated via the constructor `function DiracParam{T}(::Type{R},m0,csw,th,tm,ct)`. The first argument can be ommited and is taken to be `SU3fund`. +The parameters are: + +- `m0::T` : Mass of the fermion +- `csw::T` : Improvement coefficient for the Csw term +- `th{Ntuple{4,Complex{T}}}` : Phase for the fermions included in the boundary conditions, reabsorbed in the Dirac operator. +- `tm` : Twisted mass parameter +- `ct` : Boundary improvement term, only used for Schrödinger Funtional boundary conditions. +""" struct DiracParam{T,R} m0::T csw::T th::NTuple{4,Complex{T}} + tm::T ct::T - - function DiracParam{T}(::Type{R},m0,csw,th,ct) where {T,R} - return new{T,R}(m0,csw,th,ct) + function DiracParam{T}(::Type{R},m0,csw,th,tm,ct) where {T,R} + return new{T,R}(m0,csw,th,tm,ct) end - function DiracParam{T}(m0,csw,th,ct) where {T} - return new{T,SU3fund}(m0,csw,th,ct) + function DiracParam{T}(m0,csw,th,tm,ct) where {T} + return new{T,SU3fund}(m0,csw,th,tm,ct) end end function Base.show(io::IO, dpar::DiracParam{T,R}) where {T,R} @@ -40,11 +51,24 @@ function Base.show(io::IO, dpar::DiracParam{T,R}) where {T,R} println(io, "Wilson fermions in the: ", R, " representation") println(io, " - Bare mass: ", dpar.m0," // Kappa = ",0.5/(dpar.m0+4)) println(io, " - Csw : ", dpar.csw) - println(io, " - c_t: ", dpar.ct) println(io, " - Theta: ", dpar.th) + println(io, " - Twisted mass: ", dpar.tm) + println(io, " - c_t: ", dpar.ct) return nothing end + +""" + struct DiracWorkspace{T} + +Workspace needed to work with fermion fields. It contains four scalar fermion fields and, for the SU2fund and SU3fund, a U(N) field to store the clover term. + +It can be created with the constructor `DiracWorkspace(::Type{G}, ::Type{T}, lp::SpaceParm{4,6,B,D})`. For example: + +dws = DiracWorkspace(SU2fund,Float64,lp); +dws = DiracWorkspace(SU3fund,Float64,lp); + +""" struct DiracWorkspace{T} sr sp @@ -81,573 +105,30 @@ struct DiracWorkspace{T} end -export DiracWorkspace, DiracParam - """ - function Csw!(dws, U, gp, lp::SpaceParm) - -Computes the clover and stores it in dws.csw. + function mtwmdpar(dpar::DiracParam) +Returns `dpar` with oposite value of the twisted mass. """ -function Csw!(dws, U, gp, lp::SpaceParm{4,6,B,D}) where {B,D} - - @timeit "Csw computation" begin - - for i in 1:Int(lp.npls) - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_csw!(dws.csw, U, gp.Ubnd, i, lp) - end - end - end - - return nothing -end - -function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D}) where {T,M,B,D} - - @inbounds begin - b = Int64(CUDA.threadIdx().x) - r = Int64(CUDA.blockIdx().x) - I = point_coord((b,r), lp) - it = I[4] - - id1, id2 = lp.plidx[ipl] - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) - - bu1, ru1 = up((b, r), id1, lp) - bu2, ru2 = up((b, r), id2, lp) - bd1, rd1 = dw((b, r), id1, lp) - bd2, rd2 = dw((b, r), id2, lp) - bdd, rdd = dw((bd1, rd1), id2, lp) - bud, rud = dw((bu1, ru1), id2, lp) - bdu, rdu = up((bd1, rd1), id2, lp) - - if SFBC && (it == lp.iL[end]) - gt1 = Ubnd[id2] - gt2 = Ubnd[id2] - else - gt1 = U[bu1,id2,ru1] - gt2 = U[bud,id2,rud] - end - - M1 = U[b,id1,r]*gt1/(U[b,id2,r]*U[bu2,id1,ru2]) - M2 = (U[bd2,id2,rd2]\(U[bd2,id1,rd2]*gt2))/U[b,id1,r] - M3 = (U[bdd,id2,rdd]*U[bd1,id1,rd1])\(U[bdd,id1,rdd]*U[bd2,id2,rd2]) - M4 = (U[b,id2,r]/(U[bd1,id2,rd1]*U[bdu,id1,rdu]))*U[bd1,id1,rd1] - - - if !(SFBC && (it == 1)) - csw[b,ipl,r] = 0.125*(antsym(M1)+antsym(M2)+antsym(M3)+antsym(M4)) - end - - end - - return nothing -end - -function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D} - - if abs(dpar.csw) > 1.0E-10 - @timeit "Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.th, dpar.csw, lp) - end - end - else - @timeit "Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.th, lp) - end - end - end - - return nothing -end - -function krnl_Dwimpr!(so, U, si, Fcsw, m0, th, csw, lp::SpaceParm{4,6,B,D}) where {B,D} - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) - +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) - - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - end - - return nothing -end - -function krnl_Dw!(so, U, si, m0, th, lp::SpaceParm{4,6,B,D}) where {B,D} - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] - - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - end - - return nothing -end - -function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - if abs(dpar.csw) > 1.0E-10 - @timeit "Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.th, dpar.csw, dpar.ct, lp) - end - end - else - @timeit "Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.th, dpar.ct, lp) - end - end - end - - return nothing -end - -function krnl_Dwimpr!(so, U, si, Fcsw, m0, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - # The field si is assumed to be zero at t = 0 - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - if (point_time((b,r),lp) != 1) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) - +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) - - - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) - so[b,r] += (ct-1.0)*si[b,r] - end - end - end - - return nothing -end - -function krnl_Dw!(so, U, si, m0, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - # The field si is assumed to be zero at t = 0 - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - if (point_time((b,r),lp) != 1) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) - so[b,r] += (ct-1.0)*si[b,r] - end - end - end - - return nothing -end - -function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D} - - if abs(dpar.csw) > 1.0E-10 - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.th, dpar.csw, lp) - end - end - else - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.th, lp) - end - end - end - - return nothing -end - -function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, th, csw, lp::SpaceParm{4,6,B,D}) where {B,D} - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) - +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) - - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - so[b,r] = dmul(Gamma{5}, so[b,r]) - end - - return nothing -end - -function krnl_g5Dw!(so, U, si, m0, th, lp::SpaceParm{4,6,B,D}) where {B,D} - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] - - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - so[b,r] = dmul(Gamma{5}, so[b,r]) - end - - return nothing -end - -function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - if abs(dpar.csw) > 1.0E-10 - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.th, dpar.csw, dpar.ct, lp) - end - end - else - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.th, dpar.ct, lp) - end - end - end - - return nothing -end - -function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - # The field si is assumed to be zero at t = 0 - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - if (point_time((b,r),lp) != 1) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) - +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) - - - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) - so[b,r] += (ct-1.0)*si[b,r] - end - end - end - - so[b,r] = dmul(Gamma{5}, so[b,r]) - - return nothing -end - -function krnl_g5Dw!(so, U, si, m0, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - # The field si is assumed to be zero at t = 0 - - b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) - - if (point_time((b,r),lp) != 1) - - bu1, ru1 = up((b,r), 1, lp) - bd1, rd1 = dw((b,r), 1, lp) - bu2, ru2 = up((b,r), 2, lp) - bd2, rd2 = dw((b,r), 2, lp) - bu3, ru3 = up((b,r), 3, lp) - bd3, rd3 = dw((b,r), 3, lp) - bu4, ru4 = up((b,r), 4, lp) - bd4, rd4 = dw((b,r), 4, lp) - - @inbounds begin - - so[b,r] = (4+m0)*si[b,r] - so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + - th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + - th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + - th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) - - if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) - so[b,r] += (ct-1.0)*si[b,r] - end - end - end - - so[b,r] = dmul(Gamma{5}, so[b,r]) - - return nothing -end - -function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - - if abs(dpar.csw) > 1.0E-10 - @timeit "DwdagDw" begin - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.th, dpar.csw, dpar.ct, lp) - end - end - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, dpar.th, dpar.csw, dpar.ct, lp) - end - end - end - else - @timeit "DwdagDw" begin - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.th, dpar.ct, lp) - end - end - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, dpar.th, dpar.ct, lp) - end - end - end - end - - return nothing -end - -function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D} - - if abs(dpar.csw) > 1.0E-10 - @timeit "DwdagDw" begin - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.th, dpar.csw, lp) - end - end - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, dpar.th, dpar.csw, lp) - end - end - end - else - @timeit "DwdagDw" begin - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.th, lp) - end - end - - @timeit "g5Dw" begin - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, dpar.th, lp) - end - end - end - end - - return nothing +function mtwmdpar(dpar::DiracParam{P,R}) where {P,R} + return DiracParam{P}(R,dpar.m0,dpar.csw,dpar.th,-dpar.tm,dpar.ct) end -function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp) - end - - return nothing -end +export DiracWorkspace, DiracParam, mtwmdpar -function krnl_sfbndfix!(sp,lp::SpaceParm) - b=Int64(CUDA.threadIdx().x) - r=Int64(CUDA.blockIdx().x) - - if (point_time((b,r),lp) == 1) - sp[b,r] = 0.0*sp[b,r] - end - return nothing -end - - -""" - function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund / SU2fund {T}}}, lp::SpaceParm, t::Int64 = 0) - -Randomizes the SU2fund / SU3fund fermion field. If the argument t is present, it only randomizes that time-slice. -""" -function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::SpaceParm, t::Int64 = 0) where {T} - - @timeit "Randomize pseudofermion field" begin - p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4) # complex generation not suported for Julia 1.5.4 - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t) - end - end - - return nothing -end - -function krnl_assign_pf_su3!(f::AbstractArray, p , lp::SpaceParm, t::Int64) - - @inbounds begin - b = Int64(CUDA.threadIdx().x) - r = Int64(CUDA.blockIdx().x) - - if t == 0 - f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2], - x[b,2,r,1] + im* x[b,2,r,2], - x[b,3,r,1] + im* x[b,3,r,2]),p)) - elseif point_time((b,r),lp) == t - f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2], - x[b,2,r,1] + im* x[b,2,r,2], - x[b,3,r,1] + im* x[b,3,r,2]),p)) - end - - end - - return nothing -end - -function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}},lp::SpaceParm, t::Int64=0) where {T} - - @timeit "Randomize pseudofermion field" begin - p = ntuple(i->CUDA.randn(T, lp.bsz, 2, lp.rsz,2),4) # complex generation not suported for Julia 1.5.4 - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t) - end - end - - return nothing -end - -function krnl_assign_pf_su2!(f::AbstractArray, p , lp::SpaceParm, t::Int64) - - @inbounds begin - b = Int64(CUDA.threadIdx().x) - r = Int64(CUDA.blockIdx().x) - - if t == 0 - f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2], - x[b,2,r,1] + im* x[b,2,r,2]),p)) - elseif point_time((b,r),lp) == t - f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2], - x[b,2,r,1] + im* x[b,2,r,2]),p)) - end - - end - - return nothing -end - -export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize! +include("Diracfields.jl") +export SF_bndfix!, Csw!, pfrandomize! +include("Diracoper.jl") +export Dw!, g5Dw!, DwdagDw! include("DiracIO.jl") export read_prop, save_prop, read_dpar +include("Diracflow.jl") +export Nablanabla!, Dslash_sq!, flw, backflow + end diff --git a/src/Dirac/DiracIO.jl b/src/Dirac/DiracIO.jl index 0c5da46..1342f70 100644 --- a/src/Dirac/DiracIO.jl +++ b/src/Dirac/DiracIO.jl @@ -41,7 +41,7 @@ function read_prop(fname::String) footh = Vector{Float64}(undef, 4) lp = SpaceParm{ndim}(iL, (4,4,4,4), ibc, ntw) - dpar = DiracParam{Float64}(SU3fund,foopars[1],foopars[2],ntuple(i -> footh[i], 4),foopars[3]) + dpar = DiracParam{Float64}(SU3fund,foopars[1],foopars[2],ntuple(i -> footh[i], 4),foopars[3],foopars[4]) dtr = (2,3,4,1) @@ -100,7 +100,7 @@ function save_prop(fname::String, psi, lp::SpaceParm{4,M,B,D}, dpar::DiracParam; BDIO_write!(fb, [convert(Int32, B)]) BDIO_write!(fb, [convert(Int32, lp.iL[i]) for i in 1:4]) BDIO_write!(fb, [convert(Int32, lp.ntw[i]) for i in 1:M]) - BDIO_write!(fb, [dpar.m0, dpar.csw, dpar.ct]) + BDIO_write!(fb, [dpar.m0, dpar.csw, dpar.tm, dpar.ct]) BDIO_write!(fb, [dpar.th[i] for i in 1:4]) end BDIO_write_hash!(fb) @@ -175,9 +175,9 @@ function read_dpar(fname::String) footh = Vector{Float64}(undef, 4) lp = SpaceParm{ndim}(iL, (4,4,4,4), ibc, ntw) - dpar = DiracParam{Float64}(SU3fund,foopars[1],foopars[2],ntuple(i -> footh[i], 4),foopars[3]) + dpar = DiracParam{Float64}(SU3fund,foopars[1],foopars[2],ntuple(i -> footh[i], 4),foopars[3],foopars[4]) BDIO_close!(fb) return dpar, lp -end \ No newline at end of file +end diff --git a/src/Dirac/Diracfields.jl b/src/Dirac/Diracfields.jl new file mode 100644 index 0000000..5559ca3 --- /dev/null +++ b/src/Dirac/Diracfields.jl @@ -0,0 +1,211 @@ + + + +""" + function Csw!(dws, U, gp, lp::SpaceParm) + +Computes the clover and stores it in dws.csw. + +""" +function Csw!(dws, U, gp, lp::SpaceParm{4,6,B,D}) where {B,D} + + @timeit "Csw computation" begin + + for i in 1:Int(lp.npls) + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_csw!(dws.csw, U, gp.Ubnd, i, lp) + end + end + end + + return nothing +end + +function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D}) where {T,M,B,D} + + @inbounds begin + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[4] + + id1, id2 = lp.plidx[ipl] + SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) + OBC = (B == BC_OPEN) && ((it == 1) || (it == lp.iL[end])) + + bu1, ru1 = up((b, r), id1, lp) + bu2, ru2 = up((b, r), id2, lp) + bd1, rd1 = dw((b, r), id1, lp) + bd2, rd2 = dw((b, r), id2, lp) + bdd, rdd = dw((bd1, rd1), id2, lp) + bud, rud = dw((bu1, ru1), id2, lp) + bdu, rdu = up((bd1, rd1), id2, lp) + + if SFBC && (it == lp.iL[end]) + gt1 = Ubnd[id2] + gt2 = Ubnd[id2] + else + gt1 = U[bu1,id2,ru1] + gt2 = U[bud,id2,rud] + end + + M1 = U[b,id1,r]*gt1/(U[b,id2,r]*U[bu2,id1,ru2]) + M2 = (U[bd2,id2,rd2]\(U[bd2,id1,rd2]*gt2))/U[b,id1,r] + M3 = (U[bdd,id2,rdd]*U[bd1,id1,rd1])\(U[bdd,id1,rdd]*U[bd2,id2,rd2]) + M4 = (U[b,id2,r]/(U[bd1,id2,rd1]*U[bdu,id1,rdu]))*U[bd1,id1,rd1] + + + if !(SFBC && (it == 1)) && !OBC + csw[b,ipl,r] = 0.125*(antsym(M1)+antsym(M2)+antsym(M3)+antsym(M4)) + end + + end + + return nothing +end + + + +""" + SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) + +Sets all the values of `sp` in the first time slice to zero. +""" +function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + @timeit "SF boundary fix" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp) + end + end + return nothing +end + +function krnl_sfbndfix!(sp,lp::SpaceParm) + b=Int64(CUDA.threadIdx().x) + r=Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) == 1) + sp[b,r] = 0.0*sp[b,r] + end + return nothing +end + +""" + SF_bndfix!(sp, lp::SpaceParm{4,6,BC_OPEN,D}) + +Sets all the values of `sp` in the first and last time slice to zero. +""" +function SF_bndfix!(sp, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + @timeit "SF boundary fix" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_opbndfix!(sp, lp) + end + end + return nothing +end + +function krnl_opbndfix!(sp,lp::SpaceParm) + b=Int64(CUDA.threadIdx().x) + r=Int64(CUDA.blockIdx().x) + + if ((point_time((b,r),lp) == 1) || (point_time((b,r),lp) == lp.iL[end])) + sp[b,r] = 0.0*sp[b,r] + end + return nothing +end + + +""" + function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund / SU2fund {T}}}, lp::SpaceParm, t::Int64 = 0) + +Randomizes the SU2fund / SU3fund fermion field. If the argument t is present, it only randomizes that time-slice. +""" +function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::SpaceParm{4,6,BC_PERIODIC,D}, t::Int64 = 0) where {T,D} + + @timeit "Randomize pseudofermion field" begin + p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4 + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t) + end + end + + return nothing +end + +function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}, t::Int64 = 0) where {T,D} + + @timeit "Randomize pseudofermion field" begin + p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4 + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t) + end + end + SF_bndfix!(f,lp) + + return nothing +end + +function krnl_assign_pf_su3!(f::AbstractArray, p , lp::SpaceParm, t::Int64) + + @inbounds begin + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + + if t == 0 + f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2], + x[b,2,r,1] + im* x[b,2,r,2], + x[b,3,r,1] + im* x[b,3,r,2]),p)) + elseif point_time((b,r),lp) == t + f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2], + x[b,2,r,1] + im* x[b,2,r,2], + x[b,3,r,1] + im* x[b,3,r,2]),p)) + end + + end + + return nothing +end + +function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}}, lp::SpaceParm{4,6,BC_PERIODIC,D}, t::Int64 = 0) where {T,D} + + @timeit "Randomize pseudofermion field" begin + p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4 + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t) + end + end + + return nothing +end + +function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}}, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}, t::Int64 = 0) where {T,D} + + @timeit "Randomize pseudofermion field" begin + p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4 + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t) + end + end + SF_bndfix!(f,lp) + + return nothing +end + +function krnl_assign_pf_su2!(f::AbstractArray, p , lp::SpaceParm, t::Int64) + + @inbounds begin + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + + if t == 0 + f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2], + x[b,2,r,1] + im* x[b,2,r,2]),p)) + elseif point_time((b,r),lp) == t + f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2], + x[b,2,r,1] + im* x[b,2,r,2]),p)) + end + + end + + return nothing +end diff --git a/src/Dirac/Diracflow.jl b/src/Dirac/Diracflow.jl new file mode 100644 index 0000000..8065840 --- /dev/null +++ b/src/Dirac/Diracflow.jl @@ -0,0 +1,456 @@ + +import ..YM.flw, ..YM.force_gauge, ..YM.flw_adapt + + +function flw(U, psi, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} + @timeit "Integrating flow equations" begin + for i in 1:ns + force_gauge(ymws, U, int.c0, 1, gp, lp) + + if int.add_zth + add_zth_term(ymws::YMworkspace, U, lp) + end + + Nablanabla!(dws.sAp, U, psi, dpar, dws, lp) + psi .= psi + 2*int.r*eps*dws.sAp + + ymws.mom .= ymws.frc1 + U .= expm.(U, ymws.mom, 2*eps*int.r) + + for k in 1:NI + force_gauge(ymws, U, int.c0, 1, gp, lp) + + if int.add_zth + add_zth_term(ymws::YMworkspace, U, lp) + end + + Nablanabla!(dws.sp, U, psi, dpar, dws, lp) + dws.sAp .= int.e0[k].*dws.sAp .+ int.e1[k].*dws.sp + psi .= psi + 2*eps*dws.sAp + + ymws.mom .= int.e0[k].*ymws.mom .+ int.e1[k].*ymws.frc1 + U .= expm.(U, ymws.mom, 2*eps) + end + end + end + + return nothing +end +flw(U, psi, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} = flw(U, psi, int::FlowIntr{NI,T}, ns::Int64, int.eps, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + +""" + function backflow(psi, U, Dt, nsave::Int64, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + +Performs one step back in flow time for the fermion field, according to 1302.5246. The fermion field must me that of the time-slice Dt and is flowed back to the first time-slice +nsave is the total number of gauge fields saved in the process + +""" +function backflow(psi, U, Dt, maxnsave::Int64, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + + int = wfl_rk3(Float64,0.01,1.0) # Default integrator, it has to be order 3 rk but in can be zfl + + @timeit "Backflow integration" begin + @timeit "GPU to CPU" U0 = Array(U) + + nt,eps_all = flw_adapt(U, int, Dt, gp, lp, ymws) + + nsave = min(maxnsave,nt) + + nsave != 0 ? dsave = Int64(floor(nt/nsave)) : dsave = nt + Usave = Vector{typeof(U0)}(undef,nsave) + + @timeit "CPU to GPU" copyto!(U,U0) + for i in 1:(dsave*nsave) + flw(U, int, 1, eps_all[i], gp, lp, ymws) + (i%dsave)==0 ? Usave[Int64(i/dsave)] = Array(U) : nothing + end + + for j in (nt%nsave):-1:1 + @timeit "CPU to GPU" copyto!(U,Usave[end]) + for k in 1:j-1 + flw(U, int, 1, eps_all[nsave*dsave + k], gp, lp, ymws) + end + bflw_step!(psi, U, eps_all[nsave*dsave + j], int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + end + + for i in (nsave-1):-1:1 + for j in dsave:-1:1 + @timeit "CPU to GPU" copyto!(U,Usave[i]) + for k in 1:j-1 + flw(U, int, 1, eps_all[i*dsave + k], gp, lp, ymws) + end + bflw_step!(psi, U, eps_all[i*dsave + j], int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + end + end + + @timeit "CPU to GPU" copyto!(U,U0) + + for j in dsave:-1:1 + @timeit "CPU to GPU" copyto!(U,U0) + for k in 1:j-1 + flw(U, int, 1, eps_all[k], gp, lp, ymws) + end + bflw_step!(psi, U, eps_all[j], int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + end + + @timeit "CPU to GPU" copyto!(U,U0) + end + + return nothing +end + +""" +function bflw_step!(U, psi, eps, int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + +Performs ONE backstep in psi, from t to t-\eps. U is supposed to be the one in t-\eps and is left unchanged. So far, int has to be rk4 +""" +function bflw_step!(psi, U, eps, int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) + + @timeit "Backflow step" begin + + V = copy(U) + V .= U + + force_gauge(ymws, U, int.c0, 1, gp, lp) + + if int.add_zth + add_zth_term(ymws::YMworkspace, U, lp) + end + + ymws.mom .= ymws.frc1 + U .= expm.(U, ymws.mom, 2*eps*int.r) + + force_gauge(ymws, U, int.c0, 1, gp, lp) + + if int.add_zth + add_zth_term(ymws::YMworkspace, U, lp) + end + + ymws.mom .= int.e0[1].*ymws.mom .+ int.e1[1].*ymws.frc1 + U .= expm.(U, ymws.mom, 2*eps) + + Nablanabla!(dws.sp, U, 0.75*2*eps*psi, dpar, dws, lp) + + U .= V + + force_gauge(ymws, U, int.c0, 1, gp, lp) + + if int.add_zth + add_zth_term(ymws::YMworkspace, U, lp) + end + + U .= expm.(U, ymws.frc1, 2*eps*int.r) + + Nablanabla!(dws.sAp, U, 2*eps*dws.sp, dpar, dws, lp) + dws.sAp .= psi + (8/9)*dws.sAp + + U .= V + + Nablanabla!(psi, U, 2*eps*(dws.sAp - (8/9)*dws.sp), dpar, dws, lp) + psi .= (1/4)*psi + dws.sp + dws.sAp + + end + + return nothing +end + + +function flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} + + eps = epsini + dt = tend + nstp = 0 + eps_all = Vector{T}(undef,0) + while true + ns = convert(Int64, floor(dt/eps)) + if ns > 10 + flw(U, psi, int, 9, eps, gp, dpar, lp, ymws, dws) + ymws.U1 .= U + flw(U, psi, int, 1, eps, gp, dpar, lp, ymws, dws) + flw(ymws.U1, int, 2, eps/2, gp, lp, ymws) + + dt = dt - 10*eps + nstp = nstp + 10 + push!(eps_all,ntuple(i->eps,10)...) + + # adjust step size + ymws.U1 .= ymws.U1 ./ U + maxd = CUDA.mapreduce(dev_one, max, ymws.U1, init=zero(tend)) + eps = min(int.max_eps, 2*eps, int.sft_fac*eps*(int.tol/maxd)^(one(tend)/3)) + + else + flw(U, psi, int, ns, eps, gp, dpar, lp, ymws, dws) + dt = dt - ns*eps + + push!(eps_all,ntuple(i->eps,ns)...) + push!(eps_all,dt) + + flw(U, psi, int, 1, dt, gp, dpar, lp, ymws, dws) + dt = zero(tend) + + nstp = nstp + ns + 1 + end + + if dt == zero(tend) + break + end + end + + return nstp, eps_all +end +flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} = flw_adapt(U, psi, int, tend, int.eps_ini, gp, dpar, lp, ymws, dws) + + +""" + + function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) + +Computes /`/` \\nabla^* \\nabla /`/` `si` and stores it in `si`. + +""" +function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + @timeit "Laplacian" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp) + end + end + return nothing +end +function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}) where {D} + SF_bndfix!(si,lp) + @timeit "Laplacian" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp) + end + end + SF_bndfix!(so,lp) + return nothing +end + + +function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + @inbounds begin + + if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end])) + + so[b,r] = -4*si[b,r] + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) + + th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) + + th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) + + th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) ) + end + end + + return nothing +end + +function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + @inbounds begin + + so[b,r] = -4*si[b,r] + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) + + th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) + + th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) + + th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) ) + end + + return nothing +end + +function krnl_Nablanabla(so, U, si, th, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + @inbounds begin + + if (point_time((b,r),lp) != 1) + + so[b,r] = -4*si[b,r] + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) + + th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) + + th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) + + th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) ) + end + end + + return nothing +end + + + +export Nablanabla!, flw, backflow, flw_adapt, bflw_step! + + +""" + function Dslash_sq!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) + +Computes /`/` //slashed{D}^2 si /`/` ans stores it in `si`. + +""" +function Dslash_sq!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D} + + @timeit "DwdagDw" begin + + @timeit "g5Dslsh" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh!(dws.st, U, si, dpar.th, lp) + end + end + + if abs(dpar.csw) > 1.0E-10 + @timeit "Dw_improvement" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh_impr!(dws.st, dws.csw, dpar.csw, si, lp) + end + end + end + + + @timeit "g5Dslsh" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh!(so, U, dws.st, dpar.th, lp) + end + end + + if abs(dpar.csw) > 1.0E-10 + @timeit "Dw_improvement" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh_impr!(so, dws.csw, dpar.csw, dws.st, lp) + end + end + end + + + end + + return nothing +end + + +function krnl_g5Dslsh!(so, U, si, th, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) != 1) + + @inbounds begin + + so[b,r] = 4*si[b,r] + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + so[b,r] = dmul(Gamma{5}, so[b,r]) + end + end + return nothing +end + + +function krnl_g5Dslsh!(so, U, si, th, lp::SpaceParm{4,6,B,D}) where {D,B} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + @inbounds begin + + so[b,r] = 4*si[b,r] + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + so[b,r] = dmul(Gamma{5}, so[b,r]) + end + + return nothing +end + +function krnl_g5Dslsh_impr!(so, Fcsw, csw, si, lp::SpaceParm{4,6,B,D}) where {B,D} + + @inbounds begin + + b = Int64(CUDA.threadIdx().x); + r = Int64(CUDA.blockIdx().x) + + so[b,r] += 0.5*csw*im*dmul(Gamma{5},( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + -Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) - Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) - Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))) + end + + return nothing +end + + + +function krnl_g5Dslsh_impr!(so, Fcsw, csw, si, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + @inbounds begin + + b = Int64(CUDA.threadIdx().x); + r = Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) != 1) + + so[b,r] += 0.5*csw*im*dmul(Gamma{5},( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + -Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) - Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) - Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))) + end + + return nothing + end +end diff --git a/src/Dirac/Diracoper.jl b/src/Dirac/Diracoper.jl new file mode 100644 index 0000000..d1d83d4 --- /dev/null +++ b/src/Dirac/Diracoper.jl @@ -0,0 +1,667 @@ + + + + +## OPEN + +""" + function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) + +Computes the Dirac operator (with the Wilson term) `\`\``D_w``\`\` with gauge field U and parameters `dpar` of the field `si` and stores it in `so`. +If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator. + +""" +function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + SF_bndfix!(si,lp) + if abs(dpar.csw) > 1.0E-10 + @timeit "Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + else + @timeit "Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp) + end + end + end + SF_bndfix!(so,lp) + + return nothing +end + +function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + # The field si is assumed to be zero at t = 0,T + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end])) + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) + + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1)) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + return nothing +end + +function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + # The field si is assumed to be zero at t = 0,T + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end])) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1)) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + return nothing +end + + +""" + function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) + +Computes \`\` \\gamma_5 \`\` times the Dirac operator (with the Wilson term) with gauge field U and parameters `dpar` of the field `si` and stores it in `so`. +If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator. +""" +function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + SF_bndfix!(si,lp) + if abs(dpar.csw) > 1.0E-10 + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + else + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp) + end + end + end + SF_bndfix!(so,lp) + + return nothing +end + +function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + # The field si is assumed to be zero at t = 0,T + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end])) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) + + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1)) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r] + + return nothing +end + +function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + # The field si is assumed to be zero at t = 0,T + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end])) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1)) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r] + + return nothing +end + +""" + function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) + +Applies the operator \`\` \\gamma_5 D_w \`\` twice to `si` and stores the result in `so`. This is equivalent to appling the operator \`\` D_w^\\dagger D_w \`\` +The Dirac operator is the same as in the functions `Dw!` and `g5Dw!` +""" +function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D} + + SF_bndfix!(si,lp) + if abs(dpar.csw) > 1.0E-10 + @timeit "DwdagDw" begin + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + SF_bndfix!(dws.st,lp) + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + SF_bndfix!(so,lp) + end + else + @timeit "DwdagDw" begin + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp) + end + end + SF_bndfix!(dws.st,lp) + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp) + end + end + SF_bndfix!(so,lp) + end + end + + return nothing +end + +## PERDIODIC + +function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + if abs(dpar.csw) > 1.0E-10 + @timeit "Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp) + end + end + else + @timeit "Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp) + end + end + end + + return nothing +end + +function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r]+ im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + end + + return nothing +end + +function krnl_Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + end + + return nothing +end + +function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + if abs(dpar.csw) > 1.0E-10 + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp) + end + end + else + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp) + end + end + end + + return nothing +end + +function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r] + end + + return nothing +end + +function krnl_g5Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r] + end + + return nothing +end + +function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D} + + if abs(dpar.csw) > 1.0E-10 + @timeit "DwdagDw" begin + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp) + end + end + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, lp) + end + end + end + else + @timeit "DwdagDw" begin + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, lp) + end + end + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, lp) + end + end + end end + + return nothing +end + +## SF + +function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + SF_bndfix!(si,lp) + if abs(dpar.csw) > 1.0E-10 + @timeit "Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + else + @timeit "Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp) + end + end + end + SF_bndfix!(so,lp) + + return nothing +end + +function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + # The field si is assumed to be zero at t = 0 + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) != 1) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) + + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + return nothing +end + +function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + # The field si is assumed to be zero at t = 0 + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) != 1) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + return nothing +end + + +function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + SF_bndfix!(si,lp) + if abs(dpar.csw) > 1.0E-10 + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + else + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp) + end + end + end + SF_bndfix!(so,lp) + + return nothing +end + +function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + # The field si is assumed to be zero at t = 0 + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) != 1) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r]) + +Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])) + + + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r] + + return nothing +end + +function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + # The field si is assumed to be zero at t = 0 + + b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x) + + if (point_time((b,r),lp) != 1) + + bu1, ru1 = up((b,r), 1, lp) + bd1, rd1 = dw((b,r), 1, lp) + bu2, ru2 = up((b,r), 2, lp) + bd2, rd2 = dw((b,r), 2, lp) + bu3, ru3 = up((b,r), 3, lp) + bd3, rd3 = dw((b,r), 3, lp) + bu4, ru4 = up((b,r), 4, lp) + bd4, rd4 = dw((b,r), 4, lp) + + @inbounds begin + + so[b,r] = (4+m0)*si[b,r] + so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) + + th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) + + th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) + + th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) ) + + if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4]) + so[b,r] += (ct-1.0)*si[b,r] + end + end + end + + so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r] + + return nothing +end + +function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D} + + SF_bndfix!(si,lp) + if abs(dpar.csw) > 1.0E-10 + @timeit "DwdagDw" begin + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + SF_bndfix!(dws.st,lp) + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp) + end + end + SF_bndfix!(so,lp) + end + else + @timeit "DwdagDw" begin + + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp) + end + end + SF_bndfix!(dws.st,lp) + @timeit "g5Dw" begin + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp) + end + end + SF_bndfix!(so,lp) + end + end + + return nothing +end diff --git a/src/Fields/Fields.jl b/src/Fields/Fields.jl index 2d9e307..d7b1c22 100644 --- a/src/Fields/Fields.jl +++ b/src/Fields/Fields.jl @@ -31,7 +31,7 @@ scalar_field(::Type{T}, lp::SpaceParm) where {T} = CuArray{T, 2}(undef, lp.b """ nscalar_field(::Type{T}, n::Integer, lp::SpaceParm) -Returns `n` scalar fields of elemental type `T` +Returns `n` scalar fields of elemental type `T`. """ nscalar_field(::Type{T}, n, lp::SpaceParm) where {T} = CuArray{T, 3}(undef, lp.bsz, n, lp.rsz) @@ -46,7 +46,7 @@ scalar_field_point(::Type{T}, lp::SpaceParm{N,M,D}) where {T,N,M,D} = CuArray{T, """ tensor_field(::Type{T}, lp::SpaceParm) -Returns a tensor field of elemental type `T`. +Returns a (symmetric) tensor field of elemental type `T`. """ tensor_field(::Type{T}, lp::SpaceParm) where {T} = CuArray{T, 3}(undef, lp.bsz, lp.npls, lp.rsz) diff --git a/src/Groups/AlgebraU2.jl b/src/Groups/AlgebraU2.jl index 4e88638..48a6ec9 100644 --- a/src/Groups/AlgebraU2.jl +++ b/src/Groups/AlgebraU2.jl @@ -1,12 +1,23 @@ +""" + struct U2alg{T} <: Algebra + +Elements of the `U(2)` Algebra. The type `T <: AbstractFloat` can be used to define single or double precision elements. +""" struct U2alg{T} <: Algebra u11::T u22::T u12::Complex{T} end + +""" + antsym(a::SU2{T}) where T <: AbstractFloat + +Returns the antisymmetrization of the SU2 element `a`, that is `\`\` `a - a^{\\dagger}` `\`. This method returns al element of `U2alg{T}`. +""" function antsym(a::SU2{T}) where T <: AbstractFloat return U2alg{T}(2.0*imag(a.t1),-2.0*imag(a.t1),2.0*a.t2) end diff --git a/src/Groups/AlgebraU3.jl b/src/Groups/AlgebraU3.jl index fa03579..ba0bbd4 100644 --- a/src/Groups/AlgebraU3.jl +++ b/src/Groups/AlgebraU3.jl @@ -1,6 +1,10 @@ +""" + struct U3alg{T} <: Algebra +Elements of the `U(3)` Algebra. The type `T <: AbstractFloat` can be used to define single or double precision elements. +""" struct U3alg{T} <: Algebra u11::T u22::T @@ -10,6 +14,11 @@ struct U3alg{T} <: Algebra u23::Complex{T} end +""" + antsym(a::SU3{T}) where T <: AbstractFloat + +Returns the antisymmetrization of the SU3 element `a`, that is `\`\` `a - a^{\\dagger}` `\`. This method returns al element of `U3alg{T}`. +""" function antsym(a::SU3{T}) where T <: AbstractFloat t1 = 2.0*imag(a.u11) t2 = 2.0*imag(a.u22) diff --git a/src/Groups/FundamentalSU3.jl b/src/Groups/FundamentalSU3.jl index d429d5d..d4d203b 100644 --- a/src/Groups/FundamentalSU3.jl +++ b/src/Groups/FundamentalSU3.jl @@ -38,7 +38,7 @@ norm2(a::SU3fund{T}) where T <: AbstractFloat = (abs2(a.t1) + abs2 Returns the scalar product of two fundamental elements. The convention is for the product to the linear in the second argument, and anti-linear in the first argument. """ -dot(g1::SU3fund{T},g2::SU3fund{T}) where T <: AbstractFloat = conj(g1.t1)*g2.t1+g1.t2*conj(g2.t2)+g1.t3*conj(g2.t3) +dot(g1::SU3fund{T},g2::SU3fund{T}) where T <: AbstractFloat = conj(g1.t1)*g2.t1+conj(g1.t2)*g2.t2+conj(g1.t3)*g2.t3 """ *(g::SU3{T},b::SU3fund{T}) diff --git a/src/Groups/GroupSU2.jl b/src/Groups/GroupSU2.jl index 6faf622..f1b0282 100644 --- a/src/Groups/GroupSU2.jl +++ b/src/Groups/GroupSU2.jl @@ -36,7 +36,7 @@ norm2(a::SU2{T}) where T <: AbstractFloat = abs2(a.t1) + abs2(a.t2) """ tr(g::T) where T <: Group -Returns the trace of the groups element `g`. +Returns the trace of the group element `g`. """ tr(g::SU2{T}) where T <: AbstractFloat = complex(2*real(g.t1), 0.0) diff --git a/src/LatticeGPU.jl b/src/LatticeGPU.jl index 6eccf5c..46f5ac6 100644 --- a/src/LatticeGPU.jl +++ b/src/LatticeGPU.jl @@ -40,25 +40,27 @@ include("YM/YM.jl") using .YM export ztwist export YMworkspace, GaugeParm, force0_wilson!, field, field_pln, randomize!, zero!, norm2 +export force_gauge, MD! export gauge_action, hamiltonian, plaquette, HMC!, OMF4! export Eoft_clover, Eoft_plaq, Qtop export FlowIntr, wfl_euler, zfl_euler, wfl_rk2, zfl_rk2, wfl_rk3, zfl_rk3 export flw, flw_adapt export sfcoupling, bndfield, setbndfield -export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg +export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg, read_gp include("Spinors/Spinors.jl") using .Spinors -export Spinor, Pgamma +export Spinor, Pgamma, Gamma export imm, mimm export pmul, gpmul, gdagpmul, dmul include("Dirac/Dirac.jl") using .Dirac export DiracWorkspace, DiracParam -export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize! +export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize!, mtwmdpar export read_prop, save_prop, read_dpar +export Nablanabla!, flw, backflow include("Solvers/Solvers.jl") using .Solvers diff --git a/src/MD/MD.jl b/src/MD/MD.jl index 1b62775..f7560f2 100644 --- a/src/MD/MD.jl +++ b/src/MD/MD.jl @@ -24,6 +24,11 @@ const r1omf2 = 0.1931833275037836 const r2omf2 = 0.5 const r3omf2 = 1 - 2*r1omf2 +""" + struct IntrScheme{N, T} + +Integrator for the molecular dynamics. +""" struct IntrScheme{N, T} r::NTuple{N, T} eps::T @@ -31,8 +36,23 @@ struct IntrScheme{N, T} end +""" + omf2(::Type{T}, eps, ns) + +Second order Omelyan integrator with `eps` stepsize and `ns` steps. +""" omf2(::Type{T}, eps, ns) where T = IntrScheme{3,T}((r1omf2,r2omf2,r3omf2), eps, ns) +""" + omf4(::Type{T}, eps, ns) + +Fourth order Omelyan integrator with `eps` stepsize and `ns` steps. +""" omf4(::Type{T}, eps, ns) where T = IntrScheme{6,T}((r1omf4,r2omf4,r3omf4,r4omf4,r5omf4,r6omf4), eps, ns) +""" + leapfrog(::Type{T}, eps, ns) + +Leapfrog integrator with `eps` stepsize and `ns` steps. +""" leapfrog(::Type{T}, eps, ns) where T = IntrScheme{2,T}((0.5,1.0), eps, ns) diff --git a/src/Solvers/CG.jl b/src/Solvers/CG.jl index 8e86c7b..ffec5d4 100644 --- a/src/Solvers/CG.jl +++ b/src/Solvers/CG.jl @@ -9,11 +9,6 @@ ### created: Tue Nov 30 11:10:57 2021 ### -""" - function CG! - -Solves the linear equation `Ax = si` -""" function krnl_dot!(sum,fone,ftwo) b=Int64(CUDA.threadIdx().x) r=Int64(CUDA.blockIdx().x) @@ -23,7 +18,7 @@ function krnl_dot!(sum,fone,ftwo) return nothing end -function field_dot(fone::AbstractArray,ftwo::AbstractArray,sumf,lp) where {T} +function field_dot(fone::AbstractArray,ftwo::AbstractArray,sumf,lp) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_dot!(sumf,fone,ftwo) @@ -32,6 +27,12 @@ function field_dot(fone::AbstractArray,ftwo::AbstractArray,sumf,lp) where {T} return sum(sumf) end + +""" + function CG!(si, U, A, dpar::DiracParam, lp::SpaceParm, dws::DiracWorkspace{T}, maxiter::Int64 = 10, tol=1.0) + +Solves the linear equation `Ax = si` +""" function CG!(si, U, A, dpar::DiracParam, lp::SpaceParm, dws::DiracWorkspace{T}, maxiter::Int64 = 10, tol=1.0) where {T} dws.sr .= si @@ -74,4 +75,4 @@ function CG!(si, U, A, dpar::DiracParam, lp::SpaceParm, dws::DiracWorkspace{T}, end return niter -end \ No newline at end of file +end diff --git a/src/Solvers/Propagators.jl b/src/Solvers/Propagators.jl index dc42f5b..ad07d3a 100644 --- a/src/Solvers/Propagators.jl +++ b/src/Solvers/Propagators.jl @@ -5,7 +5,7 @@ function propagator!(pro,U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm, maxiter::Int64, tol::Float64, y::NTuple{4,Int64}, c::Int64, s::Int64) Saves the fermionic progapator in pro for a source at point `y` with color `c` and spin `s`. If the last three arguments are replaced by `time::Int64`, the source is replaced -by a random source in spin and color at t = `time`. +by a random source in spin and color at t = `time`. Returns the number of iterations. """ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm, maxiter::Int64, tol::Float64, y::NTuple{4,Int64}, c::Int64, s::Int64) where {T} @@ -16,19 +16,23 @@ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Space src[b,r] = dmul(Gamma{5},src[b,r]) return nothing end - - fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) - - CUDA.@allowscalar dws.sp[point_index(CartesianIndex{lp.ndim}(y),lp)...] = Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)) - - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) + + @timeit "Propagator computation" begin + + fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + + CUDA.@allowscalar dws.sp[point_index(CartesianIndex{lp.ndim}(y),lp)...] = Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)) + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) + end + + g5Dw!(pro,U,dws.sp,mtwmdpar(dpar),dws,lp) + + niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) end - - g5Dw!(pro,U,dws.sp,dpar,dws,lp) - - CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) - return nothing + + return niter end function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm, maxiter::Int64, tol::Float64, time::Int64) where {T} @@ -39,29 +43,30 @@ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Space src[b,r] = dmul(Gamma{5},src[b,r]) return nothing end - - pfrandomize!(dws.sp,lp,time) - - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) - end - - g5Dw!(pro,U,dws.sp,dpar,dws,lp) - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) + @timeit "Propagator computation" begin + fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + + pfrandomize!(dws.sp,lp,time) + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) + end + + g5Dw!(pro,U,dws.sp,mtwmdpar(dpar),dws,lp) + + niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) end - - CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) - return nothing + + return niter end """ function bndpropagator!(pro,U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) -Saves the propagator in from the t=0 boundary to the bulk for the SF boundary conditions for a source with color 'c' and spin 's'. The factor c_t is included while the factor 1/sqrt(V) is not. -For the propagator from T to the bulk, use the function Tbndpropagator(U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) +Saves the propagator from the t=0 boundary to the bulk for the SF boundary conditions for a source with color 'c' and spin 's' in 'pro'. The factor c_t is included while the factor 1/sqrt(V) is not. +For the propagator from T to the bulk, use the function Tbndpropagator(U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64). Returns the number of iterations. """ function bndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) where {T,D} @@ -78,35 +83,39 @@ function bndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Sp r=Int64(CUDA.blockIdx().x) if (point_time((b,r),lp) == 2) - bd4, rd4 = dw((b,r), 4, lp) - src[b,r] = gdagpmul(Pgamma{4,1},U[bd4,4,rd4],Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)))/2 + bd4, rd4 = dw((b,r), 4, lp) + src[b,r] = gdagpmul(Pgamma{4,1},U[bd4,4,rd4],Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)))/2 end return nothing end - fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) - - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_bndsrc!(dws.sp, U, lp, c, s) + @timeit "Propagator computation" begin + SF_bndfix!(pro,lp) + fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_bndsrc!(dws.sp, U, lp, c, s) + end + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) + end + + g5Dw!(pro,U,dpar.ct*dws.sp,mtwmdpar(dpar),dws,lp) + + niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) end - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) - end - - g5Dw!(pro,U,dpar.ct*dws.sp,dpar,dws,lp) - - CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) - return pro + return niter end """ - function Tbndpropagator(U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) + function Tbndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) Returns the propagator from the t=T boundary to the bulk for the SF boundary conditions for a source with color 'c' and spin 's'. The factor c_t is included while the factor 1/sqrt(V) is not. -For the propagator from t=0 to the bulk, use the function bndpropagator(U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) +For the propagator from t=0 to the bulk, use the function bndpropagator(U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64). Returns the number of iterations. """ function Tbndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::SpaceParm{4,6,1,D}, maxiter::Int64, tol::Float64, c::Int64, s::Int64) where {T,D} @@ -123,26 +132,29 @@ function Tbndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::S r=Int64(CUDA.blockIdx().x) if (point_time((b,r),lp) == lp.iL[end]) - src[b,r] = gpmul(Pgamma{4,-1},U[b,4,r],Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)))/2 + src[b,r] = gpmul(Pgamma{4,-1},U[b,4,r],Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)))/2 end return nothing end - - fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) - - CUDA.@sync begin - CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_bndsrc!(dws.sp, U, lp, c, s) - end - CUDA.@sync begin + @timeit "Propagator computation" begin + fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_bndsrc!(dws.sp, U, lp, c, s) + end + + CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) + end + + + g5Dw!(pro,U,dpar.ct*dws.sp,mtwmdpar(dpar),dws,lp) + + niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) end - - g5Dw!(pro,U,dpar.ct*dws.sp,dpar,dws,lp) - - CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) - return pro + return niter end diff --git a/src/Space/Space.jl b/src/Space/Space.jl index 5726454..757fbaf 100644 --- a/src/Space/Space.jl +++ b/src/Space/Space.jl @@ -26,19 +26,19 @@ This structure contains information about the lattice being simulated. The param - `N`: The number of dimensions - `M`: The number of planes (i.e. \`\` N(N-1)/2 \`\`) - `B`: The boundary conditions in Euclidean time. Acceptable values are - - `BC_PERIODIC`: Periodic boundary conditions - - `BC_SF_AFWB`: Schrödinger Funtional Aoki-Frezzoptti-Weisz Choice B. - - `BC_SF_ORBI`: Schrödinger Funtional orbifold constructions. + - `BC_PERIODIC`: Periodic boundary conditions. + - `BC_SF_AFWB`: Schrödinger Functional Aoki-Frezzotti-Weisz Choice B. + - `BC_SF_ORBI`: Schrödinger Functional orbifold constructions. - `BC_OPEN`: Open boundary conditions. -The structure conatins the following components: +The structure contains the following components: - `iL`: Tuple containing the lattice length in each dimension. -- `plidx`: The directions of each plane -- `blk`: The block size in each each dimension -- `rbk`: The number of blocks in each dimension -- `bsz`: The number of points in each block -- `rsz`: The number of blocks in the lattice -- `ntw`: The twist tensor in each plane +- `plidx`: The directions of each plane. +- `blk`: The block size in each each dimension. +- `rbk`: The number of blocks in each dimension. +- `bsz`: The number of points in each block. +- `rsz`: The number of blocks in the lattice. +- `ntw`: The twist tensor in each plane. """ struct SpaceParm{N,M,B,D} ndim::Int64 diff --git a/src/Spinors/Spinors.jl b/src/Spinors/Spinors.jl index 6b8a46b..2058db8 100644 --- a/src/Spinors/Spinors.jl +++ b/src/Spinors/Spinors.jl @@ -14,6 +14,7 @@ module Spinors using ..Groups import ..Groups.imm, ..Groups.mimm, ..Groups.norm, ..Groups.norm2, ..Groups.dot + struct Spinor{NS,G} s::NTuple{NS,G} end @@ -169,7 +170,7 @@ end """ - gpmul(pgamma{N,S}, g::G, a::Spinor) G <: Group + gpmul(Pgamma{N,S}, g::G, a::Spinor) G <: Group Returns ``g(1+s\\gamma_N)a`` """ @@ -226,7 +227,7 @@ end end """ - gdagpmul(pgamma{N,S}, g::G, a::Spinor) G <: Group + gdagpmul(Pgamma{N,S}, g::G, a::Spinor) G <: Group Returns ``g^+ (1+s\\gamma_N)a`` """ @@ -284,33 +285,31 @@ end # dummy structs for dispatch: -# Basis of \\Gamma_n +# Basis of \\gamma_n struct Gamma{N} end """ - dmul(n::Int64, a::Spinor) + dmul(Gamma{n}, a::Spinor) -Returns ``\\Gamma_n a`` +Returns ``\\gamma_n a``. Indexing for Dirac basis ``\\gamma_n``: -indexing for Dirac basis ``\\Gamma_n``: - - 1 gamma1 - 2 gamma2 - 3 gamma3 - 4 gamma0 - 5 gamma5 - 6 gamma1 gamma5 - 7 gamma2 gamma5 - 8 gamma3 gamma5 - 9 gamma0 gamma5 -10 sigma01 -11 sigma02 -12 sigma03 -13 sigma21 -14 sigma32 -15 sigma31 -16 identity + 1 ``\\gamma_1``; + 2 ``\\gamma_2``; + 3 ``\\gamma_3``; + 4 ``\\gamma_0``; + 5 ``\\gamma_5``; + 6 ``\\gamma_1 \\gamma_5``; + 7 ``\\gamma_2 \\gamma_5``; + 8 ``\\gamma_3 \\gamma_5``; + 9 ``\\gamma_0 \\gamma_5``; +10 ``\\sigma_{01}``; +11 ``\\sigma_{02}``; +12 ``\\sigma_{03}``; +13 ``\\sigma_{21}``; +14 ``\\sigma_{32}``; +15 ``\\sigma_{31}``; +16 identity; """ @inline dmul(::Type{Gamma{1}}, a::Spinor{NS,G}) where {NS,G} = Spinor{NS,G}((mimm(a.s[4]), mimm(a.s[3]), imm(a.s[2]), imm(a.s[1]))) diff --git a/src/YM/YM.jl b/src/YM/YM.jl index 490a434..32ddb71 100644 --- a/src/YM/YM.jl +++ b/src/YM/YM.jl @@ -20,6 +20,19 @@ using ..MD import Base.show +""" + struct GaugeParm{T,G,N} + +Structure containing the parameters of a pure gauge simulation. These are: +- beta: Type `T`. The bare coupling of the simulation. +- c0: Type `T`. LatticeGPU supports the simulation of gauge actions made of 1x1 Wilson Loops and 2x1 Wilson loops. The parameter c0 defines the coefficient on the simulation of the 1x1 loops. Some common choices are: + - c0=1: Wilson plaquette action. + - c0=5/3: Tree-level improved Lüscher-Weisz action. + - c0=3.648: Iwasaki gauge action. +- cG: Tuple (`T`, `T`). Boundary improvement parameters. +- ng: `Int64`. Rank of the gauge group. +- Ubnd: Boundary field for SF boundary conditions. +""" struct GaugeParm{T,G,N} beta::T c0::T @@ -63,6 +76,21 @@ function Base.show(io::IO, gp::GaugeParm{T, G, N}) where {T,G,N} return nothing end +""" + struct YMworkspace{T} + +Structure containing memory workspace that is reused by different routines in order to avoid allocating/deallocating time. +The parameter `T` represents the precision of the simulation (i.e. single/double). The structure contains the following components +- GRP: Group being simulated. +- ALG: Corresponding Algebra. +- PRC: Precision (i.e. `T`). +- frc1: Algebra field with natural indexing. +- frc2: Algebra field with natural indexing. +- mom: Algebra field with natural indexing. +- U1: Group field with natural indexing. +- cm: Complex field with lexicographic indexing. +- rm: Real field with lexicographic indexing. +""" struct YMworkspace{T} GRP ALG @@ -110,7 +138,11 @@ function Base.show(io::IO, ymws::YMworkspace) return nothing end +""" + function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}[, ipl]) +Returns the twist factor. If a plane index is passed, returns the twist factor as a Complex{T}. If this is not provided, returns a tuple, containing the factor of each plane. +""" function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D} function plnf(ipl) @@ -133,10 +165,10 @@ include("YMfields.jl") export randomize!, zero!, norm2 include("YMact.jl") -export krnl_plaq!, force0_wilson! +export krnl_plaq!, force_gauge, force_wilson include("YMhmc.jl") -export gauge_action, hamiltonian, plaquette, HMC!, OMF4! +export gauge_action, hamiltonian, plaquette, HMC!, MD! include("YMflow.jl") export FlowIntr, flw, flw_adapt @@ -147,6 +179,6 @@ include("YMsf.jl") export sfcoupling, bndfield, setbndfield include("YMio.jl") -export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg +export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg, read_gp end diff --git a/src/YM/YMact.jl b/src/YM/YMact.jl index c9bec0f..4c03097 100644 --- a/src/YM/YMact.jl +++ b/src/YM/YMact.jl @@ -9,7 +9,322 @@ ### created: Mon Jul 12 18:31:19 2021 ### -function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,B,D}) where {T,NB,N,M,B,D} + +## +## OPEN +## +function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,NB,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + ipl = 0 + S = zero(eltype(plx)) + @inbounds begin + for id1 in N:-1:1 + bu1, ru1 = up((b, r), id1, lp) + TOBC = (id1==N) + + for id2 = 1:id1-1 + bu2, ru2 = up((b, r), id2, lp) + ipl = ipl + 1 + + TWP = (I[id1]==1) && (I[id2]==1) + TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) + TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) + + # H2 staple + (b1, r1) = up((b,r), id1, lp) + (b2, r2) = up((b1,r1), id1, lp) + gb = U[b2,id2,r2] + + (b2, r2) = up((b1,r1), id2, lp) + h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] + + # H3 staple + (b1, r1) = up((b,r), id2, lp) + (b2, r2) = up((b1,r1), id2, lp) + + (b3, r3) = up((b1,r1), id1, lp) + + gc = U[b3,id2,r3] + + h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc + # END staples + + ga = U[bu1,id2,ru1] + + g2 = U[b,id2,r]\U[b,id1,r] + + if ( (it == lp.iL[end]) || (it == 1) ) && !TOBC + S += 0.5*cG*(c0*tr(g2*ga/U[bu2,id1,ru2]) + c1*tr(g2*ga/h3) + c1*tr(g2*h2/U[bu2,id1,ru2])) + elseif (it == lp.iL[end]-1) && TOBC + S += c0*tr(g2*ga/U[bu2,id1,ru2]) + c1*tr(g2*ga/h3) + elseif (it == lp.iL[end]) && TOBC + nothing + else + if TWP + S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2]) + else + S += c0*tr(g2*ga/U[bu2,id1,ru2]) + end + if TWH2 + S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2]) + else + S += c1*tr(g2*h2/U[bu2,id1,ru2]) + end + if TWH3 + S += (ztw[ipl]*c1)*tr(g2*ga/h3) + else + S += c1*tr(g2*ga/h3) + end + end + + end + end + + plx[I] = S + end + + return nothing +end + +function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D} + + @inbounds begin + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + S = zero(eltype(plx)) + ipl = 0 + for id1 in N:-1:1 + bu1, ru1 = up((b, r), id1, lp) + TOBC = (id1==N) + + for id2 = 1:id1-1 + bu2, ru2 = up((b, r), id2, lp) + ipl = ipl + 1 + TWP = (I[id1]==1) && (I[id2]==1) + + gt1 = U[bu1,id2,ru1] + + if ( (it == lp.iL[end]) || (it == 1)) && !TOBC + S += 0.5*cG*(tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))) + elseif (it == lp.iL[end]) && TOBC + nothing + else + if TWP + S += ztw[ipl]*tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2])) + else + S += tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2])) + end + end + end + end + + plx[I] = S + end + + return nothing +end + +function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + @inbounds begin + id1, id2 = lp.plidx[ipl] + bu1, ru1 = up((b, r), id1, lp) + bu2, ru2 = up((b, r), id2, lp) + TWP = (I[id1]==1)&&(I[id2]==1) + + TOBC = (id1 == N) + + gt1 = U[bu1,id2,ru1] + + g1 = gt1/U[bu2,id1,ru2] + g2 = U[b,id2,r]\U[b,id1,r] + + if !TOBC && ( (it == 1) || (it == lp.iL[end]) ) + X = 0.5*cG*projalg(U[b,id1,r]*g1/U[b,id2,r]) + + frc1[b ,id1, r ] -= X + frc1[b ,id2, r ] += X + frc2[bu1,id2,ru1] -= 0.5*cG*projalg(g1*g2) + frc2[bu2,id1,ru2] += 0.5*cG*projalg(g2*g1) + elseif TOBC && (it == lp.iL[end]) + nothing + else + if TWP + X = projalg(ztw,U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(ztw,g1*g2) + frc2[bu2,id1,ru2] += projalg(ztw,g2*g1) + else + X = projalg(U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(g1*g2) + frc2[bu2,id1,ru2] += projalg(g2*g1) + end + frc1[b ,id1, r ] -= X + frc1[b ,id2, r ] += X + end + end + + return nothing +end + +function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + @inbounds begin + id1, id2 = lp.plidx[ipl] + bu1, ru1 = up((b, r), id1, lp) + bu2, ru2 = up((b, r), id2, lp) + + TOBC = (id1 == N) + TWP = (I[id1]==1) && (I[id2]==1) + TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) ) + TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) + TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) + TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) ) + + # H1 staple + (b1, r1) = dw((b,r), id2, lp) + (b2, r2) = up((b1,r1), id1, lp) + gc = U[b2,id2,r2] + h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc + + # H2 staple + (b1, r1) = up((b,r), id1, lp) + (b2, r2) = up((b1,r1), id1, lp) + gb = U[b2,id2,r2] + + (b2, r2) = up((b1,r1), id2, lp) + h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] + + # H3 staple + (b1, r1) = up((b,r), id2, lp) + (b2, r2) = up((b1,r1), id2, lp) + (b3, r3) = up((b1,r1), id1, lp) + gc = U[b3,id2,r3] + h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc + + # H4 staple + (b1, r1) = dw((b,r), id1, lp) + (b2, r2) = up((b1,r1), id2, lp) + h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2] + # END staples + + ga = U[bu1,id2,ru1] + + g1 = ga/U[bu2,id1,ru2] + g2 = U[b,id2,r]\U[b,id1,r] + + if !TOBC && ( (it == 1) || (it == lp.iL[end]) ) + X = 0.5*cG*(c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) ) + + frc1[b,id1,r] -= X + 0.5*cG*c1*projalg(U[b,id1,r]*g1/h4) + frc1[b,id2,r] += X + 0.5*cG*c1*projalg(h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= 0.5*cG*c0*projalg(g1*g2) + frc2[bu2,id1,ru2] += 0.5*cG*c0*projalg(g2*g1) + frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg((U[b,id2,r]\h1)*g1) + frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg(g2*h2/U[bu2,id1,ru2]) + frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((ga/h3)*g2) + frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg(h4\U[b,id1,r]*g1) + elseif TOBC && (it == lp.iL[end]) + nothing + elseif TOBC && (it == 1) + X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + + frc1[b,id1,r] -= X + frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c0*projalg(g1*g2) + frc2[bu2,id1,ru2] += c0*projalg(g2*g1) + frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1) + frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2]) + frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) + elseif TOBC && (it == (lp.iL[end]-1) ) + X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + + frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4) + frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c0*projalg(g1*g2) + frc2[bu2,id1,ru2] += c0*projalg(g2*g1) + frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1) + frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) + frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1) + else + if TWP + X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2) + frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1) + else + X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c0*projalg(g1*g2) + frc2[bu2,id1,ru2] += c0*projalg(g2*g1) + end + if TWH1 + frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1) + else + frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1) + end + if TWH2 + X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2]) + else + X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2]) + end + if TWH3 + X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3)) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2) + else + X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) + end + if TWH4 + frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1) + else + frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4) + frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1) + end + frc1[b,id1,r] -= X + frc1[b,id2,r] += X + + end + + end + + return nothing +end + + +## +## SF +## +function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_SF_ORBI,D}) where {T,NB,N,M,D} b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) @@ -21,8 +336,8 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt @inbounds begin for id1 in N:-1:1 bu1, ru1 = up((b, r), id1, lp) - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1==N) - + SFBC = (id1==N) + for id2 = 1:id1-1 bu2, ru2 = up((b, r), id2, lp) ipl = ipl + 1 @@ -30,7 +345,7 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt TWP = (I[id1]==1) && (I[id2]==1) TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) - + # H2 staple (b1, r1) = up((b,r), id1, lp) (b2, r2) = up((b1,r1), id1, lp) @@ -39,14 +354,14 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt else gb = U[b2,id2,r2] end - + (b2, r2) = up((b1,r1), id2, lp) h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] - + # H3 staple (b1, r1) = up((b,r), id2, lp) (b2, r2) = up((b1,r1), id2, lp) - + (b3, r3) = up((b1,r1), id1, lp) if SFBC && (it == lp.iL[end]) gc = Ubnd[id2] @@ -55,15 +370,101 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt end h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc # END staples - + if SFBC && (it == lp.iL[end]) ga = Ubnd[id2] else ga = U[bu1,id2,ru1] end - + g2 = U[b,id2,r]\U[b,id1,r] - + + if (it == lp.iL[end]) && SFBC + S += cG*(c0*tr(g2*ga/U[bu2,id1,ru2])) + (c1)*tr(g2*ga/h3) + (c1/2)*tr((g2*ga/U[bu2,id1,ru2])*g2*ga/U[bu2,id1,ru2]) + elseif (it == 1) && SFBC + S += cG*(c0*tr(g2*ga/U[bu2,id1,ru2])) + (c1)*tr(g2*ga/h3) + c1*tr(g2*h2/U[bu2,id1,ru2]) + (c1/2)*tr((g2*ga/U[bu2,id1,ru2])*g2*ga/U[bu2,id1,ru2]) + else + if TWP + S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2]) + else + S += c0*tr(g2*ga/U[bu2,id1,ru2]) + end + if TWH2 + S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2]) + else + S += c1*tr(g2*h2/U[bu2,id1,ru2]) + end + if TWH3 + S += (ztw[ipl]*c1)*tr(g2*ga/h3) + else + S += c1*tr(g2*ga/h3) + end + end + + end + end + + plx[I] = S + end + + return nothing +end + +function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_SF_AFWB,D}) where {T,NB,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + ipl = 0 + S = zero(eltype(plx)) + @inbounds begin + for id1 in N:-1:1 + bu1, ru1 = up((b, r), id1, lp) + SFBC = (id1==N) + + for id2 = 1:id1-1 + bu2, ru2 = up((b, r), id2, lp) + ipl = ipl + 1 + + TWP = (I[id1]==1) && (I[id2]==1) + TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) + TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) + + # H2 staple + (b1, r1) = up((b,r), id1, lp) + (b2, r2) = up((b1,r1), id1, lp) + if SFBC && (it == lp.iL[end]-1) + gb = Ubnd[id2] + else + gb = U[b2,id2,r2] + end + + (b2, r2) = up((b1,r1), id2, lp) + h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] + + # H3 staple + (b1, r1) = up((b,r), id2, lp) + (b2, r2) = up((b1,r1), id2, lp) + + (b3, r3) = up((b1,r1), id1, lp) + if SFBC && (it == lp.iL[end]) + gc = Ubnd[id2] + else + gc = U[b3,id2,r3] + end + h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc + # END staples + + if SFBC && (it == lp.iL[end]) + ga = Ubnd[id2] + else + ga = U[bu1,id2,ru1] + end + + g2 = U[b,id2,r]\U[b,id1,r] + if (it == lp.iL[end]) && SFBC S += cG*(c0*tr(g2*ga/U[bu2,id1,ru2]) + (3*c1/2)*tr(g2*ga/h3)) elseif (it == 1) && SFBC @@ -85,17 +486,17 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt S += c1*tr(g2*ga/h3) end end - + end end - + plx[I] = S end - + return nothing end -function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} +function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D} @inbounds begin @@ -103,21 +504,20 @@ function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B r = Int64(CUDA.blockIdx().x) I = point_coord((b,r), lp) it = I[N] - IBND = ( ( (B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && - ( (it == 1) || (it == lp.iL[end])) ) - + IBND = ( (it == 1) || (it == lp.iL[end])) + S = zero(eltype(plx)) ipl = 0 for id1 in N:-1:1 bu1, ru1 = up((b, r), id1, lp) - SFBND = IBND && (id1 == N) + SFBND = IBND && (id1 == N) for id2 = 1:id1-1 bu2, ru2 = up((b, r), id2, lp) ipl = ipl + 1 TWP = (I[id1]==1) && (I[id2]==1) - - if SFBND && (it == lp.iL[end]) + + if SFBND && (it == lp.iL[end]) gt1 = Ubnd[id2] else gt1 = U[bu1,id2,ru1] @@ -134,46 +534,46 @@ function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B end end end - + plx[I] = S end - + return nothing end -function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} +function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D} b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) I = point_coord((b,r), lp) it = I[N] - + @inbounds begin id1, id2 = lp.plidx[ipl] bu1, ru1 = up((b, r), id1, lp) bu2, ru2 = up((b, r), id2, lp) TWP = (I[id1]==1)&&(I[id2]==1) - - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == N) - + + SFBC = (id1 == N) + if SFBC && (it == lp.iL[end]) gt1 = Ubnd[id2] else gt1 = U[bu1,id2,ru1] end - + g1 = gt1/U[bu2,id1,ru2] g2 = U[b,id2,r]\U[b,id1,r] - + if SFBC && (it == 1) X = cG*projalg(U[b,id1,r]*g1/U[b,id2,r]) - + frc1[b ,id1, r ] -= X frc2[bu1,id2,ru1] -= cG*projalg(g1*g2) frc2[bu2,id1,ru2] += cG*projalg(g2*g1) elseif SFBC && (it == lp.iL[end]) X = cG*projalg(U[b,id1,r]*g1/U[b,id2,r]) - + frc1[b ,id1, r ] -= X frc1[b ,id2, r ] += X frc2[bu2,id1,ru2] += cG*projalg(g2*g1) @@ -191,29 +591,29 @@ function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, frc1[b ,id2, r ] += X end end - + return nothing end -function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} +function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_SF_ORBI,D}) where {T,N,M,D} b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) I = point_coord((b,r), lp) it = I[N] - + @inbounds begin id1, id2 = lp.plidx[ipl] bu1, ru1 = up((b, r), id1, lp) bu2, ru2 = up((b, r), id2, lp) - - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == N) + + SFBC = (id1 == N) TWP = (I[id1]==1) && (I[id2]==1) TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) ) TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) ) - + # H1 staple (b1, r1) = dw((b,r), id2, lp) (b2, r2) = up((b1,r1), id1, lp) @@ -223,7 +623,7 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, gc = U[b2,id2,r2] end h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc - + # H2 staple (b1, r1) = up((b,r), id1, lp) (b2, r2) = up((b1,r1), id1, lp) @@ -232,10 +632,10 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, else gb = U[b2,id2,r2] end - + (b2, r2) = up((b1,r1), id2, lp) h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] - + # H3 staple (b1, r1) = up((b,r), id2, lp) (b2, r2) = up((b1,r1), id2, lp) @@ -246,42 +646,42 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, gc = U[b3,id2,r3] end h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc - + # H4 staple (b1, r1) = dw((b,r), id1, lp) (b2, r2) = up((b1,r1), id2, lp) h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2] # END staples - + if SFBC && (it == lp.iL[end]) ga = Ubnd[id2] else ga = U[bu1,id2,ru1] end - + g1 = ga/U[bu2,id1,ru2] g2 = U[b,id2,r]\U[b,id1,r] - + if SFBC && (it == 1) X = (cG*c0)*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + - (3*c1*cG/2)*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) - + (c1)*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + c1*(projalg(U[b,id1,r]*g1*g2*g1/U[b,id2,r])) + frc1[b,id1,r] -= X - - frc2[bu1,id2,ru1] -= (cG*c0)*projalg(g1*g2) + (3*c1*cG/2)*projalg((ga/h3)*g2) + - (3*c1*cG/2)*projalg((g1/U[b,id2,r])*h1) - - frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + (3*c1*cG/2) * projalg((U[b,id2,r]\h1)*g1) + - c1*projalg(g2*h2/U[bu2,id1,ru2]) + + frc2[bu1,id2,ru1] -= (cG*c0)*projalg(g1*g2) + c1*projalg((ga/h3)*g2) + + c1*projalg((g1/U[b,id2,r])*h1) + c1*projalg(g1*g2*g1*g2) + + frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + c1*projalg((U[b,id2,r]\h1)*g1) + + c1*projalg(g2*h2/U[bu2,id1,ru2]) + c1*projalg(g2*g1*g2*g1) elseif SFBC && (it == lp.iL[end]) - X = (cG*c0)*projalg(U[b,id1,r]*g1/U[b,id2,r]) + - (3*c1*cG/2) * (projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))) - - frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4) - frc1[b,id2,r] += X + (3*c1*cG/2)*projalg(h1*g1/U[b,id2,r]) - - frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + (3*c1*cG/2) * projalg((U[b,id2,r]\h1)*g1) + - c1 * projalg(h4\U[b,id1,r]*g1) + X = cG*c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + + c1 * (projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))) + c1*(projalg(U[b,id1,r]*g1*g2*g1/U[b,id2,r])) + + frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4) + frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r]) + + frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + c1*projalg((U[b,id2,r]\h1)*g1) + + c1 * projalg(h4\U[b,id1,r]*g1) + c1* projalg(g2*g1*g2*g1) else if TWP X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r]) @@ -294,11 +694,11 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, end if TWH1 frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r]) - frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1) frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1) else frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r]) - frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1) end if TWH2 @@ -310,34 +710,420 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, end if TWH3 X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3)) - frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2) else X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) - frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) + frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) end if TWH4 - frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4) + frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4) frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r]) - frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1) + frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1) else - frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4) + frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4) frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r]) - frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1) + frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1) + end + frc1[b,id1,r] -= X + frc1[b,id2,r] += X + + end + + end + + return nothing +end + +function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_SF_AFWB,D}) where {T,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + @inbounds begin + id1, id2 = lp.plidx[ipl] + bu1, ru1 = up((b, r), id1, lp) + bu2, ru2 = up((b, r), id2, lp) + + SFBC = (id1 == N) + TWP = (I[id1]==1) && (I[id2]==1) + TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) ) + TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) + TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) + TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) ) + + # H1 staple + (b1, r1) = dw((b,r), id2, lp) + (b2, r2) = up((b1,r1), id1, lp) + if SFBC && (it == lp.iL[end]) + gc = Ubnd[id2] + else + gc = U[b2,id2,r2] + end + h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc + + # H2 staple + (b1, r1) = up((b,r), id1, lp) + (b2, r2) = up((b1,r1), id1, lp) + if SFBC && (it == lp.iL[end]-1) + gb = Ubnd[id2] + else + gb = U[b2,id2,r2] + end + + (b2, r2) = up((b1,r1), id2, lp) + h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] + + # H3 staple + (b1, r1) = up((b,r), id2, lp) + (b2, r2) = up((b1,r1), id2, lp) + (b3, r3) = up((b1,r1), id1, lp) + if SFBC && (it == lp.iL[end]) + gc = Ubnd[id2] + else + gc = U[b3,id2,r3] + end + h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc + + # H4 staple + (b1, r1) = dw((b,r), id1, lp) + (b2, r2) = up((b1,r1), id2, lp) + h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2] + # END staples + + if SFBC && (it == lp.iL[end]) + ga = Ubnd[id2] + else + ga = U[bu1,id2,ru1] + end + + g1 = ga/U[bu2,id1,ru2] + g2 = U[b,id2,r]\U[b,id1,r] + + if SFBC && (it == 1) + X = (cG*c0)*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + + (3*c1*cG/2)*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + + frc1[b,id1,r] -= X + + frc2[bu1,id2,ru1] -= (cG*c0)*projalg(g1*g2) + (3*c1*cG/2)*projalg((ga/h3)*g2) + + (3*c1*cG/2)*projalg((g1/U[b,id2,r])*h1) + + frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + (3*c1*cG/2) * projalg((U[b,id2,r]\h1)*g1) + + c1*projalg(g2*h2/U[bu2,id1,ru2]) + elseif SFBC && (it == lp.iL[end]) + X = (cG*c0)*projalg(U[b,id1,r]*g1/U[b,id2,r]) + + (3*c1*cG/2) * (projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))) + + frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4) + frc1[b,id2,r] += X + (3*c1*cG/2)*projalg(h1*g1/U[b,id2,r]) + + frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + (3*c1*cG/2) * projalg((U[b,id2,r]\h1)*g1) + + c1 * projalg(h4\U[b,id1,r]*g1) + else + if TWP + X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2) + frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1) + else + X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c0*projalg(g1*g2) + frc2[bu2,id1,ru2] += c0*projalg(g2*g1) + end + if TWH1 + frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1) + else + frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1) + end + if TWH2 + X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2]) + else + X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2]) + end + if TWH3 + X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3)) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2) + else + X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) + end + if TWH4 + frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1) + else + frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4) + frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1) + end + frc1[b,id1,r] -= X + frc1[b,id2,r] += X + + end + + end + + return nothing +end + + + +## +## PERIODIC +## +function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,NB,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + ipl = 0 + S = zero(eltype(plx)) + @inbounds begin + for id1 in N:-1:1 + bu1, ru1 = up((b, r), id1, lp) + + for id2 = 1:id1-1 + bu2, ru2 = up((b, r), id2, lp) + ipl = ipl + 1 + + TWP = (I[id1]==1) && (I[id2]==1) + TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) + TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) + + # H2 staple + (b1, r1) = up((b,r), id1, lp) + (b2, r2) = up((b1,r1), id1, lp) + gb = U[b2,id2,r2] + + (b2, r2) = up((b1,r1), id2, lp) + h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] + + # H3 staple + (b1, r1) = up((b,r), id2, lp) + (b2, r2) = up((b1,r1), id2, lp) + + (b3, r3) = up((b1,r1), id1, lp) + + gc = U[b3,id2,r3] + + h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc + # END staples + + ga = U[bu1,id2,ru1] + + g2 = U[b,id2,r]\U[b,id1,r] + + if TWP + S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2]) + else + S += c0*tr(g2*ga/U[bu2,id1,ru2]) + end + if TWH2 + S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2]) + else + S += c1*tr(g2*h2/U[bu2,id1,ru2]) + end + if TWH3 + S += (ztw[ipl]*c1)*tr(g2*ga/h3) + else + S += c1*tr(g2*ga/h3) + end + end - frc1[b,id1,r] -= X - frc1[b,id2,r] += X - end + plx[I] = S end + + return nothing +end + +function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D} + + + @inbounds begin + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + S = zero(eltype(plx)) + ipl = 0 + for id1 in N:-1:1 + bu1, ru1 = up((b, r), id1, lp) + + for id2 = 1:id1-1 + bu2, ru2 = up((b, r), id2, lp) + ipl = ipl + 1 + TWP = (I[id1]==1) && (I[id2]==1) + + gt1 = U[bu1,id2,ru1] + + if TWP + S += ztw[ipl]*tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2])) + else + S += tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2])) + end + end + end + plx[I] = S + end + + return nothing +end + +function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + @inbounds begin + id1, id2 = lp.plidx[ipl] + bu1, ru1 = up((b, r), id1, lp) + bu2, ru2 = up((b, r), id2, lp) + TWP = (I[id1]==1)&&(I[id2]==1) + + gt1 = U[bu1,id2,ru1] + + g1 = gt1/U[bu2,id1,ru2] + g2 = U[b,id2,r]\U[b,id1,r] + + if TWP + X = projalg(ztw,U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(ztw,g1*g2) + frc2[bu2,id1,ru2] += projalg(ztw,g2*g1) + else + X = projalg(U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(g1*g2) + frc2[bu2,id1,ru2] += projalg(g2*g1) + end + frc1[b ,id1, r ] -= X + frc1[b ,id2, r ] += X + end + + return nothing +end + +function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D} + + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + I = point_coord((b,r), lp) + it = I[N] + + @inbounds begin + id1, id2 = lp.plidx[ipl] + bu1, ru1 = up((b, r), id1, lp) + bu2, ru2 = up((b, r), id2, lp) + + TWP = (I[id1]==1) && (I[id2]==1) + TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) ) + TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) + TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) ) + TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) ) + + # H1 staple + (b1, r1) = dw((b,r), id2, lp) + (b2, r2) = up((b1,r1), id1, lp) + + gc = U[b2,id2,r2] + + h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc + + # H2 staple + (b1, r1) = up((b,r), id1, lp) + (b2, r2) = up((b1,r1), id1, lp) + + gb = U[b2,id2,r2] + + (b2, r2) = up((b1,r1), id2, lp) + h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2] + + # H3 staple + (b1, r1) = up((b,r), id2, lp) + (b2, r2) = up((b1,r1), id2, lp) + (b3, r3) = up((b1,r1), id1, lp) + + gc = U[b3,id2,r3] + h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc + + # H4 staple + (b1, r1) = dw((b,r), id1, lp) + (b2, r2) = up((b1,r1), id2, lp) + h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2] + # END staples + + ga = U[bu1,id2,ru1] + + g1 = ga/U[bu2,id1,ru2] + g2 = U[b,id2,r]\U[b,id1,r] + + if TWP + X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2) + frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1) + else + X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c0*projalg(g1*g2) + frc2[bu2,id1,ru2] += c0*projalg(g2*g1) + end + if TWH1 + frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1) + else + frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r]) + frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1) + frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1) + end + if TWH2 + X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2]) + else + X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2]) + end + if TWH3 + X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3)) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2) + else + X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2) + end + if TWH4 + frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4) + frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1) + else + frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4) + frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r]) + frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1) + end + frc1[b,id1,r] -= X + frc1[b,id2,r] += X + + + end + return nothing end """ - function force_wilson(ymws::YMworkspace, U, lp::SpaceParm) + function force_gauge(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) -Computes the force deriving from the Wilson plaquette action, without +Computes the force deriving from an improved action with parameter `c0`, without the prefactor 1/g0^2, and assign it to the workspace force `ymws.frc1` """ function force_gauge(ymws::YMworkspace, U, c0, cG, gp::GaugeParm, lp::SpaceParm) @@ -354,8 +1140,15 @@ function force_gauge(ymws::YMworkspace, U, c0, cG, gp::GaugeParm, lp::SpaceParm) end return nothing end - force_gauge(ymws::YMworkspace, U, c0, gp, lp) = force_gauge(ymws, U, c0, gp.cG[1], gp, lp) +force_gauge(ymws::YMworkspace, U, gp, lp) = force_gauge(ymws, U, gp.c0, gp.cG[1], gp, lp) + +""" + function force_wilson(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) + +Computes the force deriving from the Wilson plaquette action, without +the prefactor 1/g0^2, and assign it to the workspace force `ymws.frc1` +""" force_wilson(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) = force_gauge(ymws, U, 1, gp, lp) force_wilson(ymws::YMworkspace, U, cG, gp::GaugeParm, lp::SpaceParm) = force_gauge(ymws, U, 1, gp.cG[1], gp, lp) @@ -381,4 +1174,3 @@ function force_pln!(frc1, ftmp, U, Ubnd, cG, ztw, lp::SpaceParm, c0=1) return nothing end - diff --git a/src/YM/YMfields.jl b/src/YM/YMfields.jl index d853c49..2b2db44 100644 --- a/src/YM/YMfields.jl +++ b/src/YM/YMfields.jl @@ -9,8 +9,14 @@ ### created: Thu Jul 15 15:16:47 2021 ### -function randomize!(f, lp::SpaceParm, ymws::YMworkspace; curng=CUDA.default_rng()) +""" + function randomize!(f, lp::SpaceParm, ymws::YMworkspace; curng=CUDA.default_rng()) + +Given an algebra field with natural indexing, this routine sets the components to random Gaussian distributed values. If SF boundary conditions are used, the force at the boundaries is set to zero. +""" +function randomize!(f, lp::SpaceParm, ymws::YMworkspace; curng=CUDA.default_rng()) + if ymws.ALG == SU2alg @timeit "Randomize SU(2) algebra field" begin m = Random.randn(curng, ymws.PRC, lp.bsz,lp.ndim,3,lp.rsz) @@ -49,31 +55,44 @@ function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_PERIODI return nothing end -function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} +function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D} + + @inbounds begin + b = Int64(CUDA.threadIdx().x) + r = Int64(CUDA.blockIdx().x) + for id in 1:lp.ndim + frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r], + m[b,id,4,r], m[b,id,5,r], m[b,id,6,r], + m[b,id,7,r], m[b,id,8,r]) + end + end + + return nothing +end + +function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D} @inbounds begin b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) it = point_time((b,r), lp) - if ((B==BC_SF_AFWB)||(B==BC_SF_ORBI)) - if it == 1 - for id in 1:lp.ndim-1 - frc[b,id,r] = zero(T) - end - frc[b,N,r] = SU3alg(m[b,N,1,r], m[b,N,2,r], m[b,N,3,r], - m[b,N,4,r], m[b,N,5,r], m[b,N,6,r], - m[b,N,7,r], m[b,N,8,r]) - else - for id in 1:lp.ndim - frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r], - m[b,id,4,r], m[b,id,5,r], m[b,id,6,r], - m[b,id,7,r], m[b,id,8,r]) - end + if it == 1 + for id in 1:lp.ndim-1 + frc[b,id,r] = zero(T) + end + frc[b,N,r] = SU3alg(m[b,N,1,r], m[b,N,2,r], m[b,N,3,r], + m[b,N,4,r], m[b,N,5,r], m[b,N,6,r], + m[b,N,7,r], m[b,N,8,r]) + else + for id in 1:lp.ndim + frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r], + m[b,id,4,r], m[b,id,5,r], m[b,id,6,r], + m[b,id,7,r], m[b,id,8,r]) end end end - + return nothing end diff --git a/src/YM/YMflow.jl b/src/YM/YMflow.jl index 8da9b35..42ed545 100644 --- a/src/YM/YMflow.jl +++ b/src/YM/YMflow.jl @@ -10,6 +10,11 @@ ### +""" + struct FlowIntr{N,T} + +Structure containing info about a particular flow integrator +""" struct FlowIntr{N,T} r::T e0::NTuple{N,T} @@ -26,11 +31,46 @@ struct FlowIntr{N,T} end # pre-defined integrators +""" + wfl_euler(::Type{T}, eps::T, tol::T) + +Euler scheme integrator for the Wilson Flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. +""" wfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10) + +""" + zfl_euler(::Type{T}, eps::T, tol::T) + +Euler scheme integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. +""" zfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10) + +""" + wfl_rk2(::Type{T}, eps::T, tol::T) + +Second order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. +""" wfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10) + +""" + zfl_rk2(::Type{T}, eps::T, tol::T) + +Second order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. +""" zfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10) + +""" + wfl_rk3(::Type{T}, eps::T, tol::T) + +Third order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. +""" wfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10) + +""" + Zfl_rk3(::Type{T}, eps::T, tol::T) + +Third order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. +""" zfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10) function Base.show(io::IO, int::FlowIntr{N,T}) where {N,T} @@ -94,7 +134,8 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S r = Int64(CUDA.blockIdx().x) it = point_time((b, r), lp) - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) + SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) + OBC = (B == BC_OPEN) @inbounds for id in 1:N bu, ru = up((b,r), id, lp) @@ -112,16 +153,29 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) end - else + end + if OBC + if (it > 1) && (it < lp.iL[end]) + frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + + projalg(U[b,id,r]*X/U[b,id,r])) + elseif ((it == lp.iL[end]) || (it == 1)) && (id < N) + frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + + projalg(U[b,id,r]*X/U[b,id,r])) + end + else frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) end end end - return nothing end +""" + function flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) + +Integrates the flow equations with the integration scheme defined by `int` performing `ns` steps with fixed step size. The configuration `U` is overwritten. +""" function flw(U, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} @timeit "Integrating flow equations" begin for i in 1:ns @@ -152,21 +206,28 @@ flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMwor # Adaptive step size integrators ## +""" + function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) + +Integrates the flow equations with the integration scheme defined by `int` using the adaptive step size integrator up to `tend` with the tolerance defined in `int`. The configuration `U` is overwritten. +""" function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} - eps = int.eps_ini + eps = epsini dt = tend nstp = 0 + eps_all = Vector{T}(undef,0) while true ns = convert(Int64, floor(dt/eps)) if ns > 10 flw(U, int, 9, eps, gp, lp, ymws) ymws.U1 .= U - flw(U, int, 2, eps/2, gp, lp, ymws) - flw(ymws.U1, int, 1, eps, gp, lp, ymws) + flw(U, int, 1, eps, gp, lp, ymws) + flw(ymws.U1, int, 2, eps/2, gp, lp, ymws) dt = dt - 10*eps nstp = nstp + 10 + push!(eps_all,ntuple(i->eps,10)...) # adjust step size ymws.U1 .= ymws.U1 ./ U @@ -177,6 +238,9 @@ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp flw(U, int, ns, eps, gp, lp, ymws) dt = dt - ns*eps + push!(eps_all,ntuple(i->eps,ns)...) + push!(eps_all,dt) + flw(U, int, 1, dt, gp, lp, ymws) dt = zero(tend) @@ -188,7 +252,7 @@ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp end end - return nstp, eps + return nstp, eps_all end flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} = flw_adapt(U, int, tend, int.eps_ini, gp, lp, ymws) @@ -201,7 +265,7 @@ flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::Y """ function Eoft_plaq([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) -Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc` +Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc` is given the contribution for each Euclidean time slice and plane are returned. """ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace) where {T,G,NN,N,M,B,D} @@ -209,7 +273,8 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws: @timeit "E(t) plaquette measurement" begin ztw = ztwist(gp, lp) - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) + SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) + OBC = (B == BC_OPEN) tp = ntuple(i->i, N-1) V3 = prod(lp.iL[1:end-1]) @@ -230,6 +295,10 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws: if !SFBC Eslc[1,ipl] = Etmp[1] + Etmp[end] end + if OBC ## Check normalization of timelike boundary plaquettes + Eslc[end,ipl] = Etmp[end-1] + Eslc[1,ipl] = Etmp[1] + end else for it in 1:lp.iL[end] Eslc[it,ipl] = 2*Etmp[it] @@ -254,7 +323,7 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{ I = point_coord((b,r), lp) id1, id2 = lp.plidx[ipl] - SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == lp.iL[end]) + SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == N) TWP = ((I[id1]==1)&&(I[id2]==1)) bu1, ru1 = up((b, r), id1, lp) @@ -272,15 +341,13 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{ plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2])) end end - return nothing end """ - Qtop([Qslc,] U, lp, ymws) + Qtop([Qslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) -Measure the topological charge `Q` of the configuration `U`. If the argument `Qslc` is present -the contribution for each Euclidean time slice are returned. +Measure the topological charge `Q` of the configuration `U` using the clover definition of the field strength tensor. If the argument `Qslc` is present the contributions for each Euclidean time slice are returned. Only works in 4D. """ function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D} @@ -296,21 +363,18 @@ function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) end - CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp) end - CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) end - Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2) end @@ -322,7 +386,7 @@ Qtop(U, gp::GaugeParm, lp::SpaceParm{4,M,D}, ymws::YMworkspace{T}) where {T,M,D} """ function Eoft_clover([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) -Measure the action density `E(t)` using the clover discretization. If the argument `Eslc` +Measure the action density `E(t)` using the clover discretization. If the argument `Eslc` is given the contribution for each Euclidean time slice and plane are returned. """ function Eoft_clover(Eslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace{T}) where {T,M,B,D} @@ -391,7 +455,7 @@ function krnl_add_et!(rm, frc1, lp::SpaceParm{4,M,B,D}) where {M,B,D} I = point_coord((b,r), lp) rm[I] = dot(X1,X1) end - + return nothing end @@ -420,6 +484,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T}, #First plane id1, id2 = lp.plidx[ipl1] SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) + OBC = ((B == BC_OPEN) && (id1 == 4)) TWP = ((I[id1]==1)&&(I[id2]==1)) bu1, ru1 = up((b, r), id1, lp) @@ -439,6 +504,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T}, frc1[bu1,2,ru1] = zero(TA) frc1[bd,3,rd] = zero(TA) frc1[bu2,4,ru2] = projalg(l2*l1) + elseif OBC && (it == lp.iL[end]) + frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) + frc1[bu1,2,ru1] = zero(TA) + frc1[bd,3,rd] = zero(TA) + frc1[bu2,4,ru2] = projalg(l2*l1) else if TWP frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r]) @@ -456,6 +526,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T}, # Second plane id1, id2 = lp.plidx[ipl2] SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) + OBC = ((B == BC_OPEN) && (id1 == 4)) TWP = ((I[id1]==1)&&(I[id2]==1)) bu1, ru1 = up((b, r), id1, lp) @@ -475,6 +546,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T}, frc2[bu1,2,ru1] = zero(TA) frc2[bd,3,rd] = zero(TA) frc2[bu2,4,ru2] = projalg(l2*l1) + elseif OBC && (it == lp.iL[end]) + frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) + frc1[bu1,2,ru1] = zero(TA) + frc1[bd,3,rd] = zero(TA) + frc1[bu2,4,ru2] = projalg(l2*l1) else if TWP frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r]) @@ -489,7 +565,5 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T}, end end end - return nothing end - diff --git a/src/YM/YMhmc.jl b/src/YM/YMhmc.jl index 81a93c0..2669cec 100644 --- a/src/YM/YMhmc.jl +++ b/src/YM/YMhmc.jl @@ -13,7 +13,7 @@ function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace) -Returns the value of the gauge plaquette action for the configuration U. The parameters `\beta` and `c0` are taken from the `gp` structure. +Returns the value of the gauge action for the configuration U. The parameters ``\\beta`` and `c0` are taken from the `gp` structure. """ function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where T <: AbstractFloat @@ -37,6 +37,11 @@ function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) whe return S end +""" + function plaquette(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace) + +Computes the average plaquette for the configuration `U`. +""" function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D} ztw = ztwist(gp, lp) @@ -48,7 +53,12 @@ function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) return CUDA.mapreduce(real, +, ymws.cm)/(prod(lp.iL)*lp.npls) end - + +""" + function hamiltonian(mom, U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace) + +Returns the Energy ``H = \\frac{p^2}{2}+S[U]``, where the momenta field is given by `mom` and the configuration by `U`. +""" function hamiltonian(mom, U, lp, gp, ymws) @timeit "Computing Hamiltonian" begin K = CUDA.mapreduce(norm2, +, mom)/2 @@ -58,6 +68,12 @@ function hamiltonian(mom, U, lp, gp, ymws) return K+V end + +""" + HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace; noacc=false, rng=Random.default_rng(), curng=CUDA.default_rng()) + +Performs a HMC step (molecular dynamics integration and accept/reject step). The configuration `U` is updated and function returns the energy violation and if the configuration was accepted in a tuple. +""" function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false, rng=Random.default_rng(), curng=CUDA.default_rng()) where T @timeit "HMC trayectory" begin @@ -92,6 +108,11 @@ function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspac end HMC!(U, eps, ns, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false, rng=Random.default_rng(), curng=CUDA.default_rng()) where T = HMC!(U, omf4(T, eps, ns), lp, gp, ymws; noacc=noacc, rng, curng) +""" + function MD!(mom, U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace) + +Performs the integration of a molecular dynamics trajectory starting from the momentum field `mom` and the configuration `U` according to the integrator described by `int`. +""" function MD!(mom, U, int::IntrScheme{NI, T}, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where {NI, T <: AbstractFloat} @timeit "MD evolution" begin diff --git a/src/YM/YMio.jl b/src/YM/YMio.jl index 41e6132..b8a15d8 100644 --- a/src/YM/YMio.jl +++ b/src/YM/YMio.jl @@ -75,7 +75,7 @@ function read_cnfg(fname::String) end if ibc == BC_SF_AFWB || ibc == BC_SF_ORBI - BDIO_read(fb, V) + BDIO_read(fb, vec(V)) Ubnd = ntuple(i->assign(i, V, 1), 3) BDIO_close!(fb) @@ -297,3 +297,50 @@ function import_cern64(fname, ibc, lp::SpaceParm; log=true) return CuArray(Ucpu) end + + + +""" + read_gp(fname::String) + +Reads Gauge parameters from file `fname` using the native (BDIO) format. Returns GaugeParm and SpaceParm. +""" +function read_gp(fname::String) + + UID_HDR = 14 + fb = BDIO_open(fname, "r") + while BDIO_get_uinfo(fb) != UID_HDR + BDIO_seek!(fb) + end + ihdr = Vector{Int32}(undef, 2) + BDIO_read(fb, ihdr) + if (ihdr[1] != convert(Int32, 1653996111)) && (ihdr[2] != convert(Int32, 2)) + error("Wrong file format [header]") + end + + run = BDIO.BDIO_read_str(fb) + + while BDIO_get_uinfo(fb) != 1 + BDIO_seek!(fb) + end + + ifoo = Vector{Int32}(undef, 4) + BDIO_read(fb, ifoo) + ndim = convert(Int64, ifoo[1]) + npls = convert(Int64, round(ndim*(ndim-1)/2)) + ibc = convert(Int64, ifoo[2]) + nf = ifoo[4] + + ifoo = Vector{Int32}(undef, ndim+convert(Int32, npls)) + BDIO_read(fb, ifoo) + iL = ntuple(i -> convert(Int64, ifoo[i]),ndim) + ntw = ntuple(i -> convert(Int64, ifoo[i+ndim]), npls) + + dfoo = Vector{Float64}(undef, 4) + BDIO_read(fb, dfoo) + + lp = SpaceParm{ndim}(iL, (4,4,4,4), ibc, ntw) + gp = GaugeParm{Float64}(SU3{Float64}, dfoo[1], dfoo[2]) + + return gp, lp +end diff --git a/src/YM/YMsf.jl b/src/YM/YMsf.jl index 6ecc916..abd93d9 100644 --- a/src/YM/YMsf.jl +++ b/src/YM/YMsf.jl @@ -10,9 +10,9 @@ ### """ - sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D} + sfcoupling(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace) -Measures the Schrodinger Functional coupling `ds/d\eta` and `d^2S/d\eta d\nu`. +Measures the Schrodinger Functional coupling ``{\\rm d}S/{\\rm d}\\eta`` and ``{\\rm d}^2S/{\\rm d}\\eta d\nu``. """ function sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D} @@ -89,7 +89,11 @@ end return exp(X) end +""" + function setbndfield(U, phi, lp::SpaceParm) +Sets abelian boundary fields with phases `phi[1]` and `phi[2]` to the configuration `U` at time salice ``x_0=0``. +""" function setbndfield(U, phi, lp::SpaceParm{N,M,B,D}) where {N,M,B,D} CUDA.@sync begin diff --git a/test/dirac/test_backflow.jl b/test/dirac/test_backflow.jl new file mode 100644 index 0000000..601c276 --- /dev/null +++ b/test/dirac/test_backflow.jl @@ -0,0 +1,42 @@ +using CUDA + +using Pkg + +Pkg.activate("/home/fperez/Git/LGPU_fork_ferflow") + +using LatticeGPU + +lp = SpaceParm{4}((4,4,4,4),(2,2,2,2),0,(0,0,0,0,0,0)); + +pso = scalar_field(Spinor{4,SU3fund{Float64}},lp); +psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); +psi2 = scalar_field(Spinor{4,SU3fund{Float64}},lp); + +ymws = YMworkspace(SU3,Float64,lp); +dws = DiracWorkspace(SU3fund,Float64,lp); + +int = wfl_rk3(Float64, 0.01, 1.0) + +gp = GaugeParm{Float64}(SU3{Float64},6.0,1.0,(1.0,0.0),(0.0,0.0),lp.iL) + +dpar = DiracParam{Float64}(SU3fund,1.3,0.9,(1.0,1.0,1.0,1.0),0.0) + +randomize!(ymws.mom, lp, ymws) +U = exp.(ymws.mom); + +pfrandomize!(psi,lp) +for L in 4:19 + pso .= psi + V = Array(U) + a,b = flw_adapt(U, psi, int, L*int.eps, gp,dpar, lp, ymws,dws) + # for i in 1:a + # flw(U, psi, int, 1 ,b[i], gp, dpar, lp, ymws, dws) + # end + pfrandomize!(psi2,lp) + + foo = sum(dot.(psi,psi2))# field_dot(psi,psi2,sumf,lp) + copyto!(U,V); + backflow(psi2,U,L*int.eps,7,gp,dpar,lp, ymws,dws) + println("Error:",(sum(dot.(pso,psi2))-foo)/foo) + psi .= pso +end diff --git a/test/dirac/test_backflow_tl.jl b/test/dirac/test_backflow_tl.jl new file mode 100644 index 0000000..2bf0d18 --- /dev/null +++ b/test/dirac/test_backflow_tl.jl @@ -0,0 +1,119 @@ +using LatticeGPU, CUDA, TimerOutputs + +#Test for the relation K(t,y;0,n)^+ Dw(n|m)^{-1} e^(ipm) = D(p)^{-1} exp(4t sin^2(p/2)) e^{ipn} with a given momenta (if p=0 its randomized), spin and color +#Kernel en 1207.2096 + + +@timeit "Plw backflow test" begin + + function Dwpw_test(;p=0,s=1,c=1) + lp = SpaceParm{4}((16,16,16,16), (4,4,4,4), 0, (0,0,0,0,0,0)) + gp = GaugeParm{Float64}(SU3{Float64}, 6.0, 1.0) + dpar = DiracParam{Float64}(SU3fund,1.3,0.0,(1.0,1.0,1.0,1.0),0.0) + dws = DiracWorkspace(SU3fund,Float64,lp); + ymws = YMworkspace(SU3,Float64,lp); + + p==0 ? p = Int.(round.(lp.iL.*rand(4),RoundUp)) : nothing + U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})) + + rm = 2* pi* p./(lp.iL) + rmom=(rm[1],rm[2],rm[3],rm[4]) + + int = wfl_rk3(Float64, 0.01, 1.0) + Nsteps = 15 + + @timeit "Generate plane wave" begin + + pwave = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + prop = scalar_field(Spinor{4,SU3fund{Float64}},lp) + prop_th = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + + + #Generate plane wave + + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar pwave[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)) + end end end end + + end + + @timeit "Generate analitical solution" begin + + #Th solution + + if s == 1 + vals = (dpar.m0 + 4.0 - sum(cos.(rmom)),0.0,im*sin(rmom[4])+sin(rmom[3]),im*sin(rmom[2])+sin(rmom[1])) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + elseif s == 2 + vals = (0.0,dpar.m0 + 4.0 - sum(cos.(rmom)),sin(rmom[1]) - im *sin(rmom[2]),-sin(rmom[3])+im*sin(rmom[4])) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + elseif s == 3 + vals = (-sin(rmom[3])+im*sin(rmom[4]),-sin(rmom[1])-im*sin(rmom[2]),dpar.m0 + 4.0 - sum(cos.(rmom)),0.0) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + else + vals = (-sin(rmom[1])+im*sin(rmom[2]),sin(rmom[3])+im*sin(rmom[4]),0.0,dpar.m0 + 4.0 - sum(cos.(rmom))) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + end + + end + + prop_th .= exp(-4*Nsteps*int.eps*sum(sin.(rmom./2).^2))*prop_th + + + #compute Sum{x} D^-1(x|y)P(y) + + @timeit "Solving propagator and flowing" begin + + function krnlg5!(src) + b=Int64(CUDA.threadIdx().x) + r=Int64(CUDA.blockIdx().x) + src[b,r] = dmul(Gamma{5},src[b,r]) + return nothing + end + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(pwave) + end + g5Dw!(prop,U,pwave,dpar,dws,lp) + CG!(prop,U,DwdagDw!,dpar,lp,dws,10000,1.0e-14) + + for _ in 1:Nsteps + backflow(U,prop,1,int.eps,gp,dpar,lp, ymws,dws) + end + end + + + dif = sum(norm2.(prop - prop_th)) + + return dif + end + + + + begin + dif = 0.0 + for i in 1:3 for j in 1:4 + dif += Dwpw_test(c=i,s=j) + end end + + if dif < 1.0e-5 + print("Backflow_tl test passed with average error ", dif/12,"!\n") + else + error("Backflow_tl test failed with difference: ",dif,"\n") + end + + + end +end diff --git a/test/dirac/test_flow_tl.jl b/test/dirac/test_flow_tl.jl new file mode 100644 index 0000000..65ed678 --- /dev/null +++ b/test/dirac/test_flow_tl.jl @@ -0,0 +1,119 @@ +using LatticeGPU, CUDA, TimerOutputs + +#Test for the relation K(t,y;0,n) Dw(n|m)^{-1} e^(ipm) = D(p)^{-1} exp(-4t sin^2(p/2)) e^{ipn} with a given momenta (if p=0 its randomized), spin and color +#Kernel en 1207.2096 + + +@timeit "Plw flow test" begin + + function Dwpw_test(;p=0,s=1,c=1) + lp = SpaceParm{4}((16,16,16,16), (4,4,4,4), 0, (0,0,0,0,0,0)) + gp = GaugeParm{Float64}(SU3{Float64}, 6.0, 1.0) + dpar = DiracParam{Float64}(SU3fund,1.3,0.0,(1.0,1.0,1.0,1.0),0.0) + dws = DiracWorkspace(SU3fund,Float64,lp); + ymws = YMworkspace(SU3,Float64,lp); + + p==0 ? p = Int.(round.(lp.iL.*rand(4),RoundUp)) : nothing + U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})) + + rm = 2* pi* p./(lp.iL) + rmom=(rm[1],rm[2],rm[3],rm[4]) + + int = wfl_rk3(Float64, 0.01, 1.0) + Nsteps = 15 + + @timeit "Generate plane wave" begin + + pwave = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + prop = scalar_field(Spinor{4,SU3fund{Float64}},lp) + prop_th = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) + + + #Generate plane wave + + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar pwave[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)) + end end end end + + end + + @timeit "Generate analitical solution" begin + + #Th solution + + if s == 1 + vals = (dpar.m0 + 4.0 - sum(cos.(rmom)),0.0,im*sin(rmom[4])+sin(rmom[3]),im*sin(rmom[2])+sin(rmom[1])) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + elseif s == 2 + vals = (0.0,dpar.m0 + 4.0 - sum(cos.(rmom)),sin(rmom[1]) - im *sin(rmom[2]),-sin(rmom[3])+im*sin(rmom[4])) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + elseif s == 3 + vals = (-sin(rmom[3])+im*sin(rmom[4]),-sin(rmom[1])-im*sin(rmom[2]),dpar.m0 + 4.0 - sum(cos.(rmom)),0.0) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + else + vals = (-sin(rmom[1])+im*sin(rmom[2]),sin(rmom[3])+im*sin(rmom[4]),0.0,dpar.m0 + 4.0 - sum(cos.(rmom))) + for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4] + CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))* + ( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2) + end end end end + end + + end + + prop_th .= exp(-4*Nsteps*int.eps*sum(sin.(rmom./2).^2))*prop_th + + + #compute Sum{x} D^-1(x|y)P(y) + + @timeit "Solving propagator and flowing" begin + + function krnlg5!(src) + b=Int64(CUDA.threadIdx().x) + r=Int64(CUDA.blockIdx().x) + src[b,r] = dmul(Gamma{5},src[b,r]) + return nothing + end + + CUDA.@sync begin + CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(pwave) + end + g5Dw!(prop,U,pwave,dpar,dws,lp) + CG!(prop,U,DwdagDw!,dpar,lp,dws,10000,1.0e-14) + + flw(U, prop, int, Nsteps ,int.eps, gp, dpar, lp, ymws, dws) + end + + + dif = sum(norm2.(prop - prop_th)) + + + return dif + end + + + + + begin + dif = 0.0 + for i in 1:3 for j in 1:4 + dif += Dwpw_test(c=i,s=j) + end end + + if dif < 1.0e-4 + print("Flow_tl test passed with average error ", dif/12,"!\n") + else + error("Flow_tl test failed with difference: ",dif,"\n") + end + + + end +end diff --git a/test/dirac/test_fp_fa.jl b/test/dirac/test_fp_fa.jl index 6610bb4..5551da5 100644 --- a/test/dirac/test_fp_fa.jl +++ b/test/dirac/test_fp_fa.jl @@ -2,124 +2,120 @@ using LatticeGPU using CUDA using TimerOutputs - @timeit "fA_fP test" begin -function fP_test(;theta = (0.5,0.7,1.0,0.0), m = 1.3, size = (8,8,8,16),prec = 1.0e-16) + function fP_test(;theta = (0.5,0.7,1.0,0.0), m = 1.3, size = (8,8,8,16),prec = 1.0e-16) -@timeit "fP inversion (x12)" begin + @timeit "fP inversion (x12)" begin -lp = SpaceParm{4}(size,(4,4,4,4),1,(0,0,0,0,0,0)); -exptheta = exp.(im.*theta./lp.iL); + lp = SpaceParm{4}(size,(4,4,4,4),1,(0,0,0,0,0,0)); + exptheta = exp.(im.*theta./lp.iL); + dpar = DiracParam{Float64}(SU3fund,m,0.0,exptheta,0.0,1.0); + dws = DiracWorkspace(SU3fund,Float64,lp); -dpar = DiracParam{Float64}(SU3fund,m,0.0,exptheta,1.0); -dws = DiracWorkspace(SU3fund,Float64,lp); + U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})); + psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); -U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})); -psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); + res = zeros(lp.iL[4]) -res = zeros(lp.iL[4]) + for s in 1:4 for c in 1:3 + bndpropagator!(psi,U,dpar,dws,lp,1000,prec,c,s); -for s in 1:4 for c in 1:3 - bndpropagator!(psi,U,dpar,dws,lp,1000,prec,c,s); + for t in 1:lp.iL[4] + #for i in 1:lp.iL[1] for j in 1:lp.iL[2] for k in 1:lp.iL[3] + i=abs(rand(Int))%lp.iL[1] +1;j=abs(rand(Int))%lp.iL[2] +1;k=abs(rand(Int))%lp.iL[3] +1; + CUDA.@allowscalar (res[t] += norm2(psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...])/2) + #end end end + #res[t] = res[t]/(lp.iL[1]*lp.iL[2]*lp.iL[3]) - for t in 1:lp.iL[4] - #for i in 1:lp.iL[1] for j in 1:lp.iL[2] for k in 1:lp.iL[3] - i=abs(rand(Int))%lp.iL[1] +1;j=abs(rand(Int))%lp.iL[2] +1;k=abs(rand(Int))%lp.iL[3] +1; - CUDA.@allowscalar (res[t] += norm2(psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...])/2) - #end end end - #res[t] = res[t]/(lp.iL[1]*lp.iL[2]*lp.iL[3]) + end + + end end + + end + + @timeit "fP analitical solution" begin + + #THEORETICAL SOLUTION: hep-lat/9606016 eq (2.33) + + res_th = zeros(lp.iL[4]) + + pp3 = ntuple(i -> theta[i]/lp.iL[i],3) + omega = 2 * asinh(0.5* sqrt(( sum((sin.(pp3)).^2) + (m + 2*(sum((sin.(pp3./2)).^2) ))^2) / (1+m+2*(sum((sin.(pp3./2)).^2) )) ) ) + pp = (-im*omega,pp3...) + Mpp = m + 2* sum((sin.(pp./2)).^2) + Rpp = Mpp*(1-exp(-2*omega*lp.iL[4])) + sinh(omega) * (1+exp(-2*omega*lp.iL[4])) + + for i in 2:lp.iL[4] + res_th[i] = (2*3*sinh(omega)/(Rpp^2)) * ( (Mpp + sinh(omega))*exp(-2*omega*(i-1)) - (Mpp - sinh(omega))*exp(-2*omega*(2*lp.iL[4]- (i - 1))) ) + end + + end + return sum(abs.(res-res_th)) end -end end + function fA_test(;theta = (0.5,0.7,1.0,0.0), m = 1.3, size = (8,8,8,16),prec = 1.0e-16) -end + @timeit "fA inversion (x12)" begin -@timeit "fP analitical solution" begin + lp = SpaceParm{4}(size,(4,4,4,4),1,(0,0,0,0,0,0)); + exptheta = exp.(im.*theta./lp.iL); - #THEORETICAL SOLUTION: hep-lat/9606016 eq (2.33) + dpar = DiracParam{Float64}(SU3fund,m,0.0,exptheta,0.0,1.0); + dws = DiracWorkspace(SU3fund,Float64,lp); - res_th = zeros(lp.iL[4]) + U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})); + psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); - pp3 = ntuple(i -> theta[i]/lp.iL[i],3) - omega = 2 * asinh(0.5* sqrt(( sum((sin.(pp3)).^2) + (m + 2*(sum((sin.(pp3./2)).^2) ))^2) / (1+m+2*(sum((sin.(pp3./2)).^2) )) ) ) - pp = (-im*omega,pp3...) - Mpp = m + 2* sum((sin.(pp./2)).^2) - Rpp = Mpp*(1-exp(-2*omega*lp.iL[4])) + sinh(omega) * (1+exp(-2*omega*lp.iL[4])) + res = im*zeros(lp.iL[4]) - for i in 2:lp.iL[4] - res_th[i] = (2*3*sinh(omega)/(Rpp^2)) * ( (Mpp + sinh(omega))*exp(-2*omega*(i-1)) - (Mpp - sinh(omega))*exp(-2*omega*(2*lp.iL[4]- (i - 1))) ) - end + for s in 1:4 for c in 1:3 + bndpropagator!(psi,U,dpar,dws,lp,1000,prec,c,s); -end - return sum(abs.(res-res_th)) - -end - -function fA_test(;theta = (0.5,0.7,1.0,0.0), m = 1.3, size = (8,8,8,16),prec = 1.0e-16) - -@timeit "fA inversion (x12)" begin - - lp = SpaceParm{4}(size,(4,4,4,4),1,(0,0,0,0,0,0)); - exptheta = exp.(im.*theta./lp.iL); - - dpar = DiracParam{Float64}(SU3fund,m,0.0,exptheta,1.0); - dws = DiracWorkspace(SU3fund,Float64,lp); - - U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})); - psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); - - res = im*zeros(lp.iL[4]) - - for s in 1:4 for c in 1:3 - bndpropagator!(psi,U,dpar,dws,lp,1000,prec,c,s); - - for t in 1:lp.iL[4] - #for i in 1:lp.iL[1] for j in 1:lp.iL[2] for k in 1:lp.iL[3] + for t in 1:lp.iL[4] + #for i in 1:lp.iL[1] for j in 1:lp.iL[2] for k in 1:lp.iL[3] i=abs(rand(Int))%lp.iL[1] +1;j=abs(rand(Int))%lp.iL[2] +1;k=abs(rand(Int))%lp.iL[3] +1; CUDA.@allowscalar (res[t] += -dot(psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...],dmul(Gamma{4},psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...]))/2) - #end end end - #res[t] = res[t]/(lp.iL[1]*lp.iL[2]*lp.iL[3]) - + #end end end + #res[t] = res[t]/(lp.iL[1]*lp.iL[2]*lp.iL[3]) + + end + + end end + end - - end end - -end - #THEORETICAL SOLUTION: hep-lat/9606016 eq (2.32) - -@timeit "fA analitical solution" begin - res_th = zeros(lp.iL[4]) - - pp3 = ntuple(i -> theta[i]/lp.iL[i],3) - omega = 2 * asinh(0.5* sqrt(( sum((sin.(pp3)).^2) + (m + 2*(sum((sin.(pp3./2)).^2) ))^2) / (1+m+2*(sum((sin.(pp3./2)).^2) )) ) ) - pp = (-im*omega,pp3...) - Mpp = m + 2* sum((sin.(pp./2)).^2) - Rpp = Mpp*(1-exp(-2*omega*lp.iL[4])) + sinh(omega) * (1+exp(-2*omega*lp.iL[4])) - - for i in 2:lp.iL[4] - res_th[i] = (6/(Rpp^2)) * ( 2*(Mpp - sinh(omega))*(Mpp + sinh(omega))*exp(-2*omega*lp.iL[4]) - - Mpp*((Mpp + sinh(omega))*exp(-2*omega*(i-1)) + (Mpp - sinh(omega))*exp(-2*omega*(2*lp.iL[4]- (i - 1))))) + #THEORETICAL SOLUTION: hep-lat/9606016 eq (2.32) + + @timeit "fA analitical solution" begin + res_th = zeros(lp.iL[4]) + + pp3 = ntuple(i -> theta[i]/lp.iL[i],3) + omega = 2 * asinh(0.5* sqrt(( sum((sin.(pp3)).^2) + (m + 2*(sum((sin.(pp3./2)).^2) ))^2) / (1+m+2*(sum((sin.(pp3./2)).^2) )) ) ) + pp = (-im*omega,pp3...) + Mpp = m + 2* sum((sin.(pp./2)).^2) + Rpp = Mpp*(1-exp(-2*omega*lp.iL[4])) + sinh(omega) * (1+exp(-2*omega*lp.iL[4])) + + for i in 2:lp.iL[4] + res_th[i] = (6/(Rpp^2)) * ( 2*(Mpp - sinh(omega))*(Mpp + sinh(omega))*exp(-2*omega*lp.iL[4]) + - Mpp*((Mpp + sinh(omega))*exp(-2*omega*(i-1)) + (Mpp - sinh(omega))*exp(-2*omega*(2*lp.iL[4]- (i - 1))))) + end + + end + return sum(abs.(res-res_th)) end - -end - - return sum(abs.(res-res_th)) - -end -difA = fA_test(); -difP = fP_test(); + difA = fA_test(); + difP = fP_test(); -if difA > 1.0e-15 - error("fA test failed with error ", difA) -elseif difP > 1.0e-15 - error("fP test failed with error ", difP) -else - print("fA & fP tests passed with errors: ", difA," and ",difP,"!\n") -end + if difA > 1.0e-15 + error("fA test failed with error ", difA) + elseif difP > 1.0e-15 + error("fP test failed with error ", difP) + else + print("fA & fP tests passed with errors: ", difA," and ",difP,"!\n") + end end diff --git a/test/dirac/test_solver_plw.jl b/test/dirac/test_solver_plw.jl index 195a1a3..a4de0c7 100644 --- a/test/dirac/test_solver_plw.jl +++ b/test/dirac/test_solver_plw.jl @@ -7,7 +7,7 @@ using LatticeGPU, CUDA, TimerOutputs function Dwpw_test(;p=0,s=1,c=1) lp = SpaceParm{4}((16,16,16,16), (4,4,4,4), 0, (0,0,0,0,0,0)) gp = GaugeParm{Float64}(SU3{Float64}, 6.0, 1.0) -dpar = DiracParam{Float64}(SU3fund,1.3,0.0,(1.0,1.0,1.0,1.0),0.0) +dpar = DiracParam{Float64}(SU3fund,1.3,0.0,(1.0,1.0,1.0,1.0),0.0,0.0) dws = DiracWorkspace(SU3fund,Float64,lp); p==0 ? p = Int.(round.(lp.iL.*rand(4),RoundUp)) : nothing @@ -96,15 +96,15 @@ end begin -dif = 0.0 +diff = 0.0 for i in 1:3 for j in 1:4 - dif += Dwpw_test(c=i,s=j) + global diff += Dwpw_test(c=i,s=j) end end -if dif < 1.0e-15 - print("Dwpl test passed with average error ", dif/12,"!\n") +if diff < 1.0e-15 + print("Dwpl test passed with average error ", diff/12,"!\n") else - error("Dwpl test failed with difference: ",dif,"\n") + error("Dwpl test failed with difference: ",diff,"\n") end diff --git a/test/dirac/test_solver_rand.jl b/test/dirac/test_solver_rand.jl index c06de0a..0714d8f 100644 --- a/test/dirac/test_solver_rand.jl +++ b/test/dirac/test_solver_rand.jl @@ -9,7 +9,7 @@ using CUDA, LatticeGPU, TimerOutputs lp = SpaceParm{4}((16,16,16,16), (4,4,4,4), 0, (0,0,0,0,0,0)) gp = GaugeParm{Float64}(SU3{Float64}, 6.0, 1.0) ymws = YMworkspace(SU3, Float64, lp) - dpar = DiracParam{Float64}(SU3fund,2.3,0.0,(1.0,1.0,1.0,1.0),0.0) + dpar = DiracParam{Float64}(SU3fund,2.3,0.0,(1.0,1.0,1.0,1.0),0.0,0.0) dws = DiracWorkspace(SU3fund,Float64,lp); randomize!(ymws.mom, lp, ymws) @@ -32,7 +32,8 @@ end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(rpsi) end -g5Dw!(prop,U,rpsi,dpar,dws,lp) + +g5Dw!(prop,U,rpsi,mtwmdpar(dpar),dws,lp) CG!(prop,U,DwdagDw!,dpar,lp,dws,10000,1.0e-14) Dw!(dws.sp,U,prop,dpar,dws,lp) diff --git a/test/runtests.jl b/test/runtests.jl index fe59102..2f68f70 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,3 +1,6 @@ -#include("SAD/test_sad.jl") +include("SAD/test_sad.jl") include("flow/test_adapt.jl") +include("dirac/test_fp_fa.jl") +include("dirac/test_solver_plw.jl") +include("dirac/test_solver_rand.jl")