sfcf.jl/src/io.jl
2024-02-23 16:47:10 +01:00

235 lines
6.6 KiB
Julia

using LatticeGPU
using TOML
using ArgParse
using CUDA
using BDIO
using InteractiveUtils
using MD5
"""
function read_input()
Stores as global variables 'parsed_args' (info from the command line) and 'params' (info from the input file)
"""
function read_input()
global parsed_args = parse_commandline()
global params = TOML.parsefile(parsed_args["i"])
return nothing
end
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"-i"
help = "Input parameters file"
required = true
arg_type = String
"-c"
help = "Gauge configuration file"
required = true
arg_type = String
"--cern"
help = "Config written with the export_cnfg_cern() convention"
action = :store_true
end
return parse_args(s)
end
"""
function load_gauge_field()
Returns the gauge field and computes the Csw term
"""
function load_gauge_field()
if !parsed_args["cern"]
println(log_file,"\nReading gauge field with LGPU native convention from: ", parsed_args["c"], "...")
U,_ = read_cnfg(parsed_args["c"])
else
println(log_file,"\nReading gauge field with CERN convention from: ", parsed_args["c"], "...")
U = read_cnfg_cern(parsed_args["c"],lp)
end
f = open(parsed_args["c"],"r")
println(log_file,"MD5 checksum of gauge config: ",bytes2hex(md5(f)),"\n")
close(f)
Csw!(dws, U, gp, lp)
return U
end
function read_cnfg_cern(path::String,lp::SpaceParm)
Ucpu = Array{SU3{Float64}, 3}(undef, lp.bsz, lp.ndim, lp.rsz)
file = open(path)
for t in 1:lp.iL[4]
for i in 1:lp.iL[1]
for j in 1:lp.iL[2]
for k in 1:lp.iL[3]
for d in [4,1,2,3]
f,r = point_index(CartesianIndex((i,j,k,t)),lp)
#a11 !!
re11 = read(file,Float64)
co11 = read(file,Float64)
#a12 !!
re12 = read(file,Float64)
co12 = read(file,Float64)
#a13 !!
re13 = read(file,Float64)
co13 = read(file,Float64)
#a21 !!
re21 = read(file,Float64)
co21 = read(file,Float64)
#a22 !!
re22 = read(file,Float64)
co22 = read(file,Float64)
#a23 !!
re23 = read(file,Float64)
co23 = read(file,Float64)
#a31
re31 = read(file,Float64)
co31 = read(file,Float64)
#a32
re32 = read(file,Float64)
co32 = read(file,Float64)
#a33
re33 = read(file,Float64)
co33 = read(file,Float64)
(Ucpu[f,d,r] = SU3{Float64}(re11 + im*co11, re12 + im*co12, re13 + im*co13,
re21 + im*co21, re22 + im*co22, re23 + im*co23))
end
end
end
end
end
length(read(file)) == (prod(lp.iL[1:3])*4*8*9*2) ? nothing : error("File not fully read")
close(file)
return CuArray(Ucpu)
end
"""
function load_structs()
Stores in global variables the needed structures, i.e. lp, gp, dpar, dws, ymws
"""
function load_structs()
global lp = SpaceParm{4}(tuple(params["Space"]["size"]...), tuple(params["Space"]["blocks"]...),BC_SF_ORBI, (0,0,0,0,0,0))
global gp = GaugeParm{Float64}(SU3{Float64},params["Fermion"]["beta"],1.0,(params["Space"]["cG"],0.0),params["Space"]["phiT"],lp.iL);
global dpar = DiracParam{Float64}(SU3fund,(1/(2*params["Fermion"]["kappa"])) - 4,params["Fermion"]["csw"],ntuple(i -> exp((i!=4)*im*params["Fermion"]["theta"]/lp.iL[i]),4),0.0,params["Fermion"]["ct"]);
global dws = DiracWorkspace(SU3fund,Float64,lp);
global ymws = YMworkspace(SU3,Float64,lp);
return nothing
end
function write_log()
println(log_file,"Running sfcf.jl by ", params["Run"]["user"],". Name of the run: ",params["Run"]["name"])
println(log_file,"")
print(log_file,"Calling: ")
print(log_file,PROGRAM_FILE*" "); for x in ARGS; print(log_file,x*" "); end
println(log_file,"\n")
println(log_file,"Version info:")
versioninfo(log_file)
println(log_file,"")
println(log_file,"Reading input file from:", parsed_args["i"], "...\n")
println(log_file,"Parameters:")
println(log_file,"Lattice size: ", lp.iL)
println(log_file,"Phi0 = ", params["Space"]["phi0"])
println(log_file,"PhiT = ", params["Space"]["phiT"])
println(log_file,"cG = ", gp.cG[1])
println(log_file,"kappa = ", params["Fermion"]["kappa"])
println(log_file,"theta = ", params["Fermion"]["theta"])
println(log_file,"csw = ", dpar.csw)
println(log_file,"ct = ", dpar.ct)
println(log_file,"tolerance = ", params["Solver"]["tolerance"])
println(log_file,"maxiter = ", params["Solver"]["maxiter"])
flush(log_file)
return nothing
end
function save_correlators()
ihdr = [convert(Int32,1708683512)]
fname = "./output/"*params["Run"]["name"]*".bdio"
if isfile(fname)
fb = BDIO_open(fname, "a")
println(log_file,"\n\nAppending output to "*fname*"\n\n")
else
fb = BDIO_open(fname, "w", "BDIO output from sfcf.jl")
println(log_file,"Creating new BDIO output file "*fname)
BDIO_start_record!(fb, BDIO_BIN_GENERIC, 14)
BDIO_write!(fb, ihdr)
BDIO_write_hash!(fb)
BDIO_start_record!(fb, BDIO_BIN_GENERIC, 1)
BDIO_write!(fb, [convert(Int32, 4)])
BDIO_write!(fb, [convert(Int32, lp.iL[i]) for i in 1:4])
BDIO_write!(fb, [convert(Int32, lp.ntw[i]) for i in 1:6])
BDIO_write!(fb, [dpar.m0, dpar.csw, dpar.tm, dpar.ct])
BDIO_write!(fb, [dpar.th[i] for i in 1:4])
BDIO_write_hash!(fb)
end
BDIO_start_record!(fb, BDIO_BIN_GENERIC, 8)
BDIO_write!(fb,basename(parsed_args["c"]))
fg = open(parsed_args["c"],"r")
BDIO_write!(fb,bytes2hex(md5(fg)))
close(fg)
BDIO_write!(fb,fP)
BDIO_write!(fb,fA)
BDIO_write!(fb,[f1])
BDIO_write!(fb,gP)
BDIO_write!(fb,gA)
BDIO_write!(fb,kV)
BDIO_write!(fb,lV)
BDIO_write!(fb,[k1])
BDIO_write!(fb,kT)
BDIO_write!(fb,lT)
BDIO_write_hash!(fb)
BDIO_close!(fb)
return nothing
end