{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data management"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import pyerrors as pe"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data has been written using pyerrors 2.0.0.\n",
"Format version 0.1\n",
"Written by fjosw on 2022-01-06 11:11:19 +0100 on host XPS139305, Linux-5.11.0-44-generic-x86_64-with-glibc2.29\n",
"\n",
"Description: Test data for the correlator example\n"
]
}
],
"source": [
"correlator_data = pe.input.json.load_json(\"./data/correlator_test\")\n",
"my_correlator = pe.Corr(correlator_data)\n",
"my_correlator.gamma_method()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import autograd.numpy as anp\n",
"def func_exp(a, x):\n",
" return a[1] * anp.exp(-a[0] * x)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"rows = []\n",
"for t_start in range(12, 17):\n",
" for t_stop in range(30, 35):\n",
" fr = my_correlator.fit(func_exp, [t_start, t_stop], silent=True)\n",
" fr.gamma_method()\n",
" row = {\"t_start\": t_start,\n",
" \"t_stop\": t_stop,\n",
" \"datapoints\": t_stop - t_start + 1,\n",
" \"chisquare_by_dof\": fr.chisquare_by_dof,\n",
" \"mass\": fr[0]}\n",
" rows.append(row)\n",
"my_df = pd.DataFrame(rows)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" t_start | \n",
" t_stop | \n",
" datapoints | \n",
" chisquare_by_dof | \n",
" mass | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 12 | \n",
" 30 | \n",
" 19 | \n",
" 0.057872 | \n",
" 0.2218(12) | \n",
"
\n",
" \n",
" 1 | \n",
" 12 | \n",
" 31 | \n",
" 20 | \n",
" 0.063951 | \n",
" 0.2221(11) | \n",
"
\n",
" \n",
" 2 | \n",
" 12 | \n",
" 32 | \n",
" 21 | \n",
" 0.064960 | \n",
" 0.2223(11) | \n",
"
\n",
" \n",
" 3 | \n",
" 12 | \n",
" 33 | \n",
" 22 | \n",
" 0.066495 | \n",
" 0.2224(10) | \n",
"
\n",
" \n",
" 4 | \n",
" 12 | \n",
" 34 | \n",
" 23 | \n",
" 0.066606 | \n",
" 0.2225(10) | \n",
"
\n",
" \n",
" 5 | \n",
" 13 | \n",
" 30 | \n",
" 18 | \n",
" 0.051577 | \n",
" 0.2215(12) | \n",
"
\n",
" \n",
" 6 | \n",
" 13 | \n",
" 31 | \n",
" 19 | \n",
" 0.060901 | \n",
" 0.2219(11) | \n",
"
\n",
" \n",
" 7 | \n",
" 13 | \n",
" 32 | \n",
" 20 | \n",
" 0.063551 | \n",
" 0.2221(12) | \n",
"
\n",
" \n",
" 8 | \n",
" 13 | \n",
" 33 | \n",
" 21 | \n",
" 0.066406 | \n",
" 0.2223(12) | \n",
"
\n",
" \n",
" 9 | \n",
" 13 | \n",
" 34 | \n",
" 22 | \n",
" 0.067237 | \n",
" 0.2224(12) | \n",
"
\n",
" \n",
" 10 | \n",
" 14 | \n",
" 30 | \n",
" 17 | \n",
" 0.052349 | \n",
" 0.2213(13) | \n",
"
\n",
" \n",
" 11 | \n",
" 14 | \n",
" 31 | \n",
" 18 | \n",
" 0.063640 | \n",
" 0.2218(13) | \n",
"
\n",
" \n",
" 12 | \n",
" 14 | \n",
" 32 | \n",
" 19 | \n",
" 0.066883 | \n",
" 0.2220(14) | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" 33 | \n",
" 20 | \n",
" 0.070019 | \n",
" 0.2223(15) | \n",
"
\n",
" \n",
" 14 | \n",
" 14 | \n",
" 34 | \n",
" 21 | \n",
" 0.070775 | \n",
" 0.2224(15) | \n",
"
\n",
" \n",
" 15 | \n",
" 15 | \n",
" 30 | \n",
" 16 | \n",
" 0.056088 | \n",
" 0.2213(16) | \n",
"
\n",
" \n",
" 16 | \n",
" 15 | \n",
" 31 | \n",
" 17 | \n",
" 0.067552 | \n",
" 0.2218(17) | \n",
"
\n",
" \n",
" 17 | \n",
" 15 | \n",
" 32 | \n",
" 18 | \n",
" 0.070170 | \n",
" 0.2221(18) | \n",
"
\n",
" \n",
" 18 | \n",
" 15 | \n",
" 33 | \n",
" 19 | \n",
" 0.072516 | \n",
" 0.2224(18) | \n",
"
\n",
" \n",
" 19 | \n",
" 15 | \n",
" 34 | \n",
" 20 | \n",
" 0.072509 | \n",
" 0.2225(18) | \n",
"
\n",
" \n",
" 20 | \n",
" 16 | \n",
" 30 | \n",
" 15 | \n",
" 0.059969 | \n",
" 0.2214(21) | \n",
"
\n",
" \n",
" 21 | \n",
" 16 | \n",
" 31 | \n",
" 16 | \n",
" 0.070874 | \n",
" 0.2220(20) | \n",
"
\n",
" \n",
" 22 | \n",
" 16 | \n",
" 32 | \n",
" 17 | \n",
" 0.072437 | \n",
" 0.2223(21) | \n",
"
\n",
" \n",
" 23 | \n",
" 16 | \n",
" 33 | \n",
" 18 | \n",
" 0.073684 | \n",
" 0.2225(21) | \n",
"
\n",
" \n",
" 24 | \n",
" 16 | \n",
" 34 | \n",
" 19 | \n",
" 0.072767 | \n",
" 0.2227(20) | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" t_start t_stop datapoints chisquare_by_dof mass\n",
"0 12 30 19 0.057872 0.2218(12)\n",
"1 12 31 20 0.063951 0.2221(11)\n",
"2 12 32 21 0.064960 0.2223(11)\n",
"3 12 33 22 0.066495 0.2224(10)\n",
"4 12 34 23 0.066606 0.2225(10)\n",
"5 13 30 18 0.051577 0.2215(12)\n",
"6 13 31 19 0.060901 0.2219(11)\n",
"7 13 32 20 0.063551 0.2221(12)\n",
"8 13 33 21 0.066406 0.2223(12)\n",
"9 13 34 22 0.067237 0.2224(12)\n",
"10 14 30 17 0.052349 0.2213(13)\n",
"11 14 31 18 0.063640 0.2218(13)\n",
"12 14 32 19 0.066883 0.2220(14)\n",
"13 14 33 20 0.070019 0.2223(15)\n",
"14 14 34 21 0.070775 0.2224(15)\n",
"15 15 30 16 0.056088 0.2213(16)\n",
"16 15 31 17 0.067552 0.2218(17)\n",
"17 15 32 18 0.070170 0.2221(18)\n",
"18 15 33 19 0.072516 0.2224(18)\n",
"19 15 34 20 0.072509 0.2225(18)\n",
"20 16 30 15 0.059969 0.2214(21)\n",
"21 16 31 16 0.070874 0.2220(20)\n",
"22 16 32 17 0.072437 0.2223(21)\n",
"23 16 33 18 0.073684 0.2225(21)\n",
"24 16 34 19 0.072767 0.2227(20)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"my_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"pe.input.pandas.to_sql(my_df, \"mass_table\", \"my_db.sqlite\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"new_df = df = pe.input.pandas.read_sql(f\"SELECT t_start, t_stop, mass FROM mass_table WHERE t_start > 13\"\n",
" ,\"my_db.sqlite\"\n",
" ,auto_gamma=True)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" t_start | \n",
" t_stop | \n",
" mass | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 14 | \n",
" 30 | \n",
" 0.2213(13) | \n",
"
\n",
" \n",
" 1 | \n",
" 14 | \n",
" 31 | \n",
" 0.2218(13) | \n",
"
\n",
" \n",
" 2 | \n",
" 14 | \n",
" 32 | \n",
" 0.2220(14) | \n",
"
\n",
" \n",
" 3 | \n",
" 14 | \n",
" 33 | \n",
" 0.2223(15) | \n",
"
\n",
" \n",
" 4 | \n",
" 14 | \n",
" 34 | \n",
" 0.2224(15) | \n",
"
\n",
" \n",
" 5 | \n",
" 15 | \n",
" 30 | \n",
" 0.2213(16) | \n",
"
\n",
" \n",
" 6 | \n",
" 15 | \n",
" 31 | \n",
" 0.2218(17) | \n",
"
\n",
" \n",
" 7 | \n",
" 15 | \n",
" 32 | \n",
" 0.2221(18) | \n",
"
\n",
" \n",
" 8 | \n",
" 15 | \n",
" 33 | \n",
" 0.2224(18) | \n",
"
\n",
" \n",
" 9 | \n",
" 15 | \n",
" 34 | \n",
" 0.2225(18) | \n",
"
\n",
" \n",
" 10 | \n",
" 16 | \n",
" 30 | \n",
" 0.2214(21) | \n",
"
\n",
" \n",
" 11 | \n",
" 16 | \n",
" 31 | \n",
" 0.2220(20) | \n",
"
\n",
" \n",
" 12 | \n",
" 16 | \n",
" 32 | \n",
" 0.2223(21) | \n",
"
\n",
" \n",
" 13 | \n",
" 16 | \n",
" 33 | \n",
" 0.2225(21) | \n",
"
\n",
" \n",
" 14 | \n",
" 16 | \n",
" 34 | \n",
" 0.2227(20) | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" t_start t_stop mass\n",
"0 14 30 0.2213(13)\n",
"1 14 31 0.2218(13)\n",
"2 14 32 0.2220(14)\n",
"3 14 33 0.2223(15)\n",
"4 14 34 0.2224(15)\n",
"5 15 30 0.2213(16)\n",
"6 15 31 0.2218(17)\n",
"7 15 32 0.2221(18)\n",
"8 15 33 0.2224(18)\n",
"9 15 34 0.2225(18)\n",
"10 16 30 0.2214(21)\n",
"11 16 31 0.2220(20)\n",
"12 16 32 0.2223(21)\n",
"13 16 33 0.2225(21)\n",
"14 16 34 0.2227(20)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}