{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Data management" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import pyerrors as pe" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data has been written using pyerrors 2.0.0.\n", "Format version 0.1\n", "Written by fjosw on 2022-01-06 11:11:19 +0100 on host XPS139305, Linux-5.11.0-44-generic-x86_64-with-glibc2.29\n", "\n", "Description: Test data for the correlator example\n" ] } ], "source": [ "correlator_data = pe.input.json.load_json(\"./data/correlator_test\")\n", "my_correlator = pe.Corr(correlator_data)\n", "my_correlator.gamma_method()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import autograd.numpy as anp\n", "def func_exp(a, x):\n", " return a[1] * anp.exp(-a[0] * x)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "rows = []\n", "for t_start in range(12, 17):\n", " for t_stop in range(30, 35):\n", " fr = my_correlator.fit(func_exp, [t_start, t_stop], silent=True)\n", " fr.gamma_method()\n", " row = {\"t_start\": t_start,\n", " \"t_stop\": t_stop,\n", " \"datapoints\": t_stop - t_start + 1,\n", " \"chisquare_by_dof\": fr.chisquare_by_dof,\n", " \"mass\": fr[0]}\n", " rows.append(row)\n", "my_df = pd.DataFrame(rows)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
t_startt_stopdatapointschisquare_by_dofmass
01230190.0578720.2218(12)
11231200.0639510.2221(11)
21232210.0649600.2223(11)
31233220.0664950.2224(10)
41234230.0666060.2225(10)
51330180.0515770.2215(12)
61331190.0609010.2219(11)
71332200.0635510.2221(12)
81333210.0664060.2223(12)
91334220.0672370.2224(12)
101430170.0523490.2213(13)
111431180.0636400.2218(13)
121432190.0668830.2220(14)
131433200.0700190.2223(15)
141434210.0707750.2224(15)
151530160.0560880.2213(16)
161531170.0675520.2218(17)
171532180.0701700.2221(18)
181533190.0725160.2224(18)
191534200.0725090.2225(18)
201630150.0599690.2214(21)
211631160.0708740.2220(20)
221632170.0724370.2223(21)
231633180.0736840.2225(21)
241634190.0727670.2227(20)
\n", "
" ], "text/plain": [ " t_start t_stop datapoints chisquare_by_dof mass\n", "0 12 30 19 0.057872 0.2218(12)\n", "1 12 31 20 0.063951 0.2221(11)\n", "2 12 32 21 0.064960 0.2223(11)\n", "3 12 33 22 0.066495 0.2224(10)\n", "4 12 34 23 0.066606 0.2225(10)\n", "5 13 30 18 0.051577 0.2215(12)\n", "6 13 31 19 0.060901 0.2219(11)\n", "7 13 32 20 0.063551 0.2221(12)\n", "8 13 33 21 0.066406 0.2223(12)\n", "9 13 34 22 0.067237 0.2224(12)\n", "10 14 30 17 0.052349 0.2213(13)\n", "11 14 31 18 0.063640 0.2218(13)\n", "12 14 32 19 0.066883 0.2220(14)\n", "13 14 33 20 0.070019 0.2223(15)\n", "14 14 34 21 0.070775 0.2224(15)\n", "15 15 30 16 0.056088 0.2213(16)\n", "16 15 31 17 0.067552 0.2218(17)\n", "17 15 32 18 0.070170 0.2221(18)\n", "18 15 33 19 0.072516 0.2224(18)\n", "19 15 34 20 0.072509 0.2225(18)\n", "20 16 30 15 0.059969 0.2214(21)\n", "21 16 31 16 0.070874 0.2220(20)\n", "22 16 32 17 0.072437 0.2223(21)\n", "23 16 33 18 0.073684 0.2225(21)\n", "24 16 34 19 0.072767 0.2227(20)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_df" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "pe.input.pandas.to_sql(my_df, \"mass_table\", \"my_db.sqlite\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "new_df = df = pe.input.pandas.read_sql(f\"SELECT t_start, t_stop, mass FROM mass_table WHERE t_start > 13\"\n", " ,\"my_db.sqlite\"\n", " ,auto_gamma=True)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
t_startt_stopmass
014300.2213(13)
114310.2218(13)
214320.2220(14)
314330.2223(15)
414340.2224(15)
515300.2213(16)
615310.2218(17)
715320.2221(18)
815330.2224(18)
915340.2225(18)
1016300.2214(21)
1116310.2220(20)
1216320.2223(21)
1316330.2225(21)
1416340.2227(20)
\n", "
" ], "text/plain": [ " t_start t_stop mass\n", "0 14 30 0.2213(13)\n", "1 14 31 0.2218(13)\n", "2 14 32 0.2220(14)\n", "3 14 33 0.2223(15)\n", "4 14 34 0.2224(15)\n", "5 15 30 0.2213(16)\n", "6 15 31 0.2218(17)\n", "7 15 32 0.2221(18)\n", "8 15 33 0.2224(18)\n", "9 15 34 0.2225(18)\n", "10 16 30 0.2214(21)\n", "11 16 31 0.2220(20)\n", "12 16 32 0.2223(21)\n", "13 16 33 0.2225(21)\n", "14 16 34 0.2227(20)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }