pyerrors.obs
1import warnings 2import hashlib 3import pickle 4import numpy as np 5import autograd.numpy as anp # Thinly-wrapped numpy 6import scipy 7from autograd import jacobian 8import matplotlib.pyplot as plt 9from scipy.stats import skew, skewtest, kurtosis, kurtosistest 10import numdifftools as nd 11from itertools import groupby 12from .covobs import Covobs 13 14# Improve print output of numpy.ndarrays containing Obs objects. 15np.set_printoptions(formatter={'object': lambda x: str(x)}) 16 17 18class Obs: 19 """Class for a general observable. 20 21 Instances of Obs are the basic objects of a pyerrors error analysis. 22 They are initialized with a list which contains arrays of samples for 23 different ensembles/replica and another list of same length which contains 24 the names of the ensembles/replica. Mathematical operations can be 25 performed on instances. The result is another instance of Obs. The error of 26 an instance can be computed with the gamma_method. Also contains additional 27 methods for output and visualization of the error calculation. 28 29 Attributes 30 ---------- 31 S_global : float 32 Standard value for S (default 2.0) 33 S_dict : dict 34 Dictionary for S values. If an entry for a given ensemble 35 exists this overwrites the standard value for that ensemble. 36 tau_exp_global : float 37 Standard value for tau_exp (default 0.0) 38 tau_exp_dict : dict 39 Dictionary for tau_exp values. If an entry for a given ensemble exists 40 this overwrites the standard value for that ensemble. 41 N_sigma_global : float 42 Standard value for N_sigma (default 1.0) 43 N_sigma_dict : dict 44 Dictionary for N_sigma values. If an entry for a given ensemble exists 45 this overwrites the standard value for that ensemble. 46 """ 47 __slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue', 48 'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma', 49 'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint', 50 'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint', 51 'idl', 'tag', '_covobs', '__dict__'] 52 53 S_global = 2.0 54 S_dict = {} 55 tau_exp_global = 0.0 56 tau_exp_dict = {} 57 N_sigma_global = 1.0 58 N_sigma_dict = {} 59 60 def __init__(self, samples, names, idl=None, **kwargs): 61 """ Initialize Obs object. 62 63 Parameters 64 ---------- 65 samples : list 66 list of numpy arrays containing the Monte Carlo samples 67 names : list 68 list of strings labeling the individual samples 69 idl : list, optional 70 list of ranges or lists on which the samples are defined 71 """ 72 73 if kwargs.get("means") is None and len(samples): 74 if len(samples) != len(names): 75 raise ValueError('Length of samples and names incompatible.') 76 if idl is not None: 77 if len(idl) != len(names): 78 raise ValueError('Length of idl incompatible with samples and names.') 79 name_length = len(names) 80 if name_length > 1: 81 if name_length != len(set(names)): 82 raise ValueError('Names are not unique.') 83 if not all(isinstance(x, str) for x in names): 84 raise TypeError('All names have to be strings.') 85 else: 86 if not isinstance(names[0], str): 87 raise TypeError('All names have to be strings.') 88 if min(len(x) for x in samples) <= 4: 89 raise ValueError('Samples have to have at least 5 entries.') 90 91 self.names = sorted(names) 92 self.shape = {} 93 self.r_values = {} 94 self.deltas = {} 95 self._covobs = {} 96 97 self._value = 0 98 self.N = 0 99 self.idl = {} 100 if idl is not None: 101 for name, idx in sorted(zip(names, idl)): 102 if isinstance(idx, range): 103 self.idl[name] = idx 104 elif isinstance(idx, (list, np.ndarray)): 105 dc = np.unique(np.diff(idx)) 106 if np.any(dc < 0): 107 raise ValueError("Unsorted idx for idl[%s]" % (name)) 108 if len(dc) == 1: 109 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) 110 else: 111 self.idl[name] = list(idx) 112 else: 113 raise TypeError('incompatible type for idl[%s].' % (name)) 114 else: 115 for name, sample in sorted(zip(names, samples)): 116 self.idl[name] = range(1, len(sample) + 1) 117 118 if kwargs.get("means") is not None: 119 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): 120 self.shape[name] = len(self.idl[name]) 121 self.N += self.shape[name] 122 self.r_values[name] = mean 123 self.deltas[name] = sample 124 else: 125 for name, sample in sorted(zip(names, samples)): 126 self.shape[name] = len(self.idl[name]) 127 self.N += self.shape[name] 128 if len(sample) != self.shape[name]: 129 raise ValueError('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) 130 self.r_values[name] = np.mean(sample) 131 self.deltas[name] = sample - self.r_values[name] 132 self._value += self.shape[name] * self.r_values[name] 133 self._value /= self.N 134 135 self._dvalue = 0.0 136 self.ddvalue = 0.0 137 self.reweighted = False 138 139 self.tag = None 140 141 @property 142 def value(self): 143 return self._value 144 145 @property 146 def dvalue(self): 147 return self._dvalue 148 149 @property 150 def e_names(self): 151 return sorted(set([o.split('|')[0] for o in self.names])) 152 153 @property 154 def cov_names(self): 155 return sorted(set([o for o in self.covobs.keys()])) 156 157 @property 158 def mc_names(self): 159 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) 160 161 @property 162 def e_content(self): 163 res = {} 164 for e, e_name in enumerate(self.e_names): 165 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) 166 if e_name in self.names: 167 res[e_name].append(e_name) 168 return res 169 170 @property 171 def covobs(self): 172 return self._covobs 173 174 def gamma_method(self, **kwargs): 175 """Estimate the error and related properties of the Obs. 176 177 Parameters 178 ---------- 179 S : float 180 specifies a custom value for the parameter S (default 2.0). 181 If set to 0 it is assumed that the data exhibits no 182 autocorrelation. In this case the error estimates coincides 183 with the sample standard error. 184 tau_exp : float 185 positive value triggers the critical slowing down analysis 186 (default 0.0). 187 N_sigma : float 188 number of standard deviations from zero until the tail is 189 attached to the autocorrelation function (default 1). 190 fft : bool 191 determines whether the fft algorithm is used for the computation 192 of the autocorrelation function (default True) 193 """ 194 195 e_content = self.e_content 196 self.e_dvalue = {} 197 self.e_ddvalue = {} 198 self.e_tauint = {} 199 self.e_dtauint = {} 200 self.e_windowsize = {} 201 self.e_n_tauint = {} 202 self.e_n_dtauint = {} 203 e_gamma = {} 204 self.e_rho = {} 205 self.e_drho = {} 206 self._dvalue = 0 207 self.ddvalue = 0 208 209 self.S = {} 210 self.tau_exp = {} 211 self.N_sigma = {} 212 213 if kwargs.get('fft') is False: 214 fft = False 215 else: 216 fft = True 217 218 def _parse_kwarg(kwarg_name): 219 if kwarg_name in kwargs: 220 tmp = kwargs.get(kwarg_name) 221 if isinstance(tmp, (int, float)): 222 if tmp < 0: 223 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 224 for e, e_name in enumerate(self.e_names): 225 getattr(self, kwarg_name)[e_name] = tmp 226 else: 227 raise TypeError(kwarg_name + ' is not in proper format.') 228 else: 229 for e, e_name in enumerate(self.e_names): 230 if e_name in getattr(Obs, kwarg_name + '_dict'): 231 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 232 else: 233 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 234 235 _parse_kwarg('S') 236 _parse_kwarg('tau_exp') 237 _parse_kwarg('N_sigma') 238 239 for e, e_name in enumerate(self.mc_names): 240 gapsize = _determine_gap(self, e_content, e_name) 241 242 r_length = [] 243 for r_name in e_content[e_name]: 244 if isinstance(self.idl[r_name], range): 245 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) 246 else: 247 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) 248 249 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 250 w_max = max(r_length) // 2 251 e_gamma[e_name] = np.zeros(w_max) 252 self.e_rho[e_name] = np.zeros(w_max) 253 self.e_drho[e_name] = np.zeros(w_max) 254 255 for r_name in e_content[e_name]: 256 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 257 258 gamma_div = np.zeros(w_max) 259 for r_name in e_content[e_name]: 260 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 261 gamma_div[gamma_div < 1] = 1.0 262 e_gamma[e_name] /= gamma_div[:w_max] 263 264 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 265 self.e_tauint[e_name] = 0.5 266 self.e_dtauint[e_name] = 0.0 267 self.e_dvalue[e_name] = 0.0 268 self.e_ddvalue[e_name] = 0.0 269 self.e_windowsize[e_name] = 0 270 continue 271 272 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 273 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 274 # Make sure no entry of tauint is smaller than 0.5 275 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 276 # hep-lat/0306017 eq. (42) 277 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) 278 self.e_n_dtauint[e_name][0] = 0.0 279 280 def _compute_drho(i): 281 tmp = (self.e_rho[e_name][i + 1:w_max] 282 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], 283 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) 284 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) 285 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 286 287 if self.tau_exp[e_name] > 0: 288 _compute_drho(1) 289 texp = self.tau_exp[e_name] 290 # Critical slowing down analysis 291 if w_max // 2 <= 1: 292 raise Exception("Need at least 8 samples for tau_exp error analysis") 293 for n in range(1, w_max // 2): 294 _compute_drho(n + 1) 295 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 296 # Bias correction hep-lat/0306017 eq. (49) included 297 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 298 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 299 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 300 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 301 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 302 self.e_windowsize[e_name] = n 303 break 304 else: 305 if self.S[e_name] == 0.0: 306 self.e_tauint[e_name] = 0.5 307 self.e_dtauint[e_name] = 0.0 308 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 309 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 310 self.e_windowsize[e_name] = 0 311 else: 312 # Standard automatic windowing procedure 313 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) 314 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 315 for n in range(1, w_max): 316 if g_w[n - 1] < 0 or n >= w_max - 1: 317 _compute_drho(n) 318 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 319 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 320 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 321 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 322 self.e_windowsize[e_name] = n 323 break 324 325 self._dvalue += self.e_dvalue[e_name] ** 2 326 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 327 328 for e_name in self.cov_names: 329 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 330 self.e_ddvalue[e_name] = 0 331 self._dvalue += self.e_dvalue[e_name]**2 332 333 self._dvalue = np.sqrt(self._dvalue) 334 if self._dvalue == 0.0: 335 self.ddvalue = 0.0 336 else: 337 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 338 return 339 340 gm = gamma_method 341 342 def _calc_gamma(self, deltas, idx, shape, w_max, fft, gapsize): 343 """Calculate Gamma_{AA} from the deltas, which are defined on idx. 344 idx is assumed to be a contiguous range (possibly with a stepsize != 1) 345 346 Parameters 347 ---------- 348 deltas : list 349 List of fluctuations 350 idx : list 351 List or range of configurations on which the deltas are defined. 352 shape : int 353 Number of configurations in idx. 354 w_max : int 355 Upper bound for the summation window. 356 fft : bool 357 determines whether the fft algorithm is used for the computation 358 of the autocorrelation function. 359 gapsize : int 360 The target distance between two configurations. If longer distances 361 are found in idx, the data is expanded. 362 """ 363 gamma = np.zeros(w_max) 364 deltas = _expand_deltas(deltas, idx, shape, gapsize) 365 new_shape = len(deltas) 366 if fft: 367 max_gamma = min(new_shape, w_max) 368 # The padding for the fft has to be even 369 padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 370 gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] 371 else: 372 for n in range(w_max): 373 if new_shape - n >= 0: 374 gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) 375 376 return gamma 377 378 def details(self, ens_content=True): 379 """Output detailed properties of the Obs. 380 381 Parameters 382 ---------- 383 ens_content : bool 384 print details about the ensembles and replica if true. 385 """ 386 if self.tag is not None: 387 print("Description:", self.tag) 388 if not hasattr(self, 'e_dvalue'): 389 print('Result\t %3.8e' % (self.value)) 390 else: 391 if self.value == 0.0: 392 percentage = np.nan 393 else: 394 percentage = np.abs(self._dvalue / self.value) * 100 395 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 396 if len(self.e_names) > 1: 397 print(' Ensemble errors:') 398 e_content = self.e_content 399 for e_name in self.mc_names: 400 gap = _determine_gap(self, e_content, e_name) 401 402 if len(self.e_names) > 1: 403 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) 404 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) 405 tau_string += f" in units of {gap} config" 406 if gap > 1: 407 tau_string += "s" 408 if self.tau_exp[e_name] > 0: 409 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) 410 else: 411 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) 412 print(tau_string) 413 for e_name in self.cov_names: 414 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) 415 if ens_content is True: 416 if len(self.e_names) == 1: 417 print(self.N, 'samples in', len(self.e_names), 'ensemble:') 418 else: 419 print(self.N, 'samples in', len(self.e_names), 'ensembles:') 420 my_string_list = [] 421 for key, value in sorted(self.e_content.items()): 422 if key not in self.covobs: 423 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " 424 if len(value) == 1: 425 my_string += f': {self.shape[value[0]]} configurations' 426 if isinstance(self.idl[value[0]], range): 427 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' 428 else: 429 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' 430 else: 431 sublist = [] 432 for v in value: 433 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " 434 my_substring += f': {self.shape[v]} configurations' 435 if isinstance(self.idl[v], range): 436 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' 437 else: 438 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' 439 sublist.append(my_substring) 440 441 my_string += '\n' + '\n'.join(sublist) 442 else: 443 my_string = ' ' + "\u00B7 Covobs '" + key + "' " 444 my_string_list.append(my_string) 445 print('\n'.join(my_string_list)) 446 447 def reweight(self, weight): 448 """Reweight the obs with given rewighting factors. 449 450 Parameters 451 ---------- 452 weight : Obs 453 Reweighting factor. An Observable that has to be defined on a superset of the 454 configurations in obs[i].idl for all i. 455 all_configs : bool 456 if True, the reweighted observables are normalized by the average of 457 the reweighting factor on all configurations in weight.idl and not 458 on the configurations in obs[i].idl. Default False. 459 """ 460 return reweight(weight, [self])[0] 461 462 def is_zero_within_error(self, sigma=1): 463 """Checks whether the observable is zero within 'sigma' standard errors. 464 465 Parameters 466 ---------- 467 sigma : int 468 Number of standard errors used for the check. 469 470 Works only properly when the gamma method was run. 471 """ 472 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue 473 474 def is_zero(self, atol=1e-10): 475 """Checks whether the observable is zero within a given tolerance. 476 477 Parameters 478 ---------- 479 atol : float 480 Absolute tolerance (for details see numpy documentation). 481 """ 482 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) 483 484 def plot_tauint(self, save=None): 485 """Plot integrated autocorrelation time for each ensemble. 486 487 Parameters 488 ---------- 489 save : str 490 saves the figure to a file named 'save' if. 491 """ 492 if not hasattr(self, 'e_dvalue'): 493 raise Exception('Run the gamma method first.') 494 495 for e, e_name in enumerate(self.mc_names): 496 fig = plt.figure() 497 plt.xlabel(r'$W$') 498 plt.ylabel(r'$\tau_\mathrm{int}$') 499 length = int(len(self.e_n_tauint[e_name])) 500 if self.tau_exp[e_name] > 0: 501 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] 502 x_help = np.arange(2 * self.tau_exp[e_name]) 503 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base 504 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) 505 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') 506 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], 507 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) 508 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 509 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) 510 else: 511 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) 512 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 513 514 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) 515 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') 516 plt.legend() 517 plt.xlim(-0.5, xmax) 518 ylim = plt.ylim() 519 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) 520 plt.draw() 521 if save: 522 fig.savefig(save + "_" + str(e)) 523 524 def plot_rho(self, save=None): 525 """Plot normalized autocorrelation function time for each ensemble. 526 527 Parameters 528 ---------- 529 save : str 530 saves the figure to a file named 'save' if. 531 """ 532 if not hasattr(self, 'e_dvalue'): 533 raise Exception('Run the gamma method first.') 534 for e, e_name in enumerate(self.mc_names): 535 fig = plt.figure() 536 plt.xlabel('W') 537 plt.ylabel('rho') 538 length = int(len(self.e_drho[e_name])) 539 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) 540 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') 541 if self.tau_exp[e_name] > 0: 542 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], 543 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) 544 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 545 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) 546 else: 547 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 548 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) 549 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) 550 plt.xlim(-0.5, xmax) 551 plt.draw() 552 if save: 553 fig.savefig(save + "_" + str(e)) 554 555 def plot_rep_dist(self): 556 """Plot replica distribution for each ensemble with more than one replicum.""" 557 if not hasattr(self, 'e_dvalue'): 558 raise Exception('Run the gamma method first.') 559 for e, e_name in enumerate(self.mc_names): 560 if len(self.e_content[e_name]) == 1: 561 print('No replica distribution for a single replicum (', e_name, ')') 562 continue 563 r_length = [] 564 sub_r_mean = 0 565 for r, r_name in enumerate(self.e_content[e_name]): 566 r_length.append(len(self.deltas[r_name])) 567 sub_r_mean += self.shape[r_name] * self.r_values[r_name] 568 e_N = np.sum(r_length) 569 sub_r_mean /= e_N 570 arr = np.zeros(len(self.e_content[e_name])) 571 for r, r_name in enumerate(self.e_content[e_name]): 572 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) 573 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) 574 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') 575 plt.draw() 576 577 def plot_history(self, expand=True): 578 """Plot derived Monte Carlo history for each ensemble 579 580 Parameters 581 ---------- 582 expand : bool 583 show expanded history for irregular Monte Carlo chains (default: True). 584 """ 585 for e, e_name in enumerate(self.mc_names): 586 plt.figure() 587 r_length = [] 588 tmp = [] 589 tmp_expanded = [] 590 for r, r_name in enumerate(self.e_content[e_name]): 591 tmp.append(self.deltas[r_name] + self.r_values[r_name]) 592 if expand: 593 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) 594 r_length.append(len(tmp_expanded[-1])) 595 else: 596 r_length.append(len(tmp[-1])) 597 e_N = np.sum(r_length) 598 x = np.arange(e_N) 599 y_test = np.concatenate(tmp, axis=0) 600 if expand: 601 y = np.concatenate(tmp_expanded, axis=0) 602 else: 603 y = y_test 604 plt.errorbar(x, y, fmt='.', markersize=3) 605 plt.xlim(-0.5, e_N - 0.5) 606 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') 607 plt.draw() 608 609 def plot_piechart(self, save=None): 610 """Plot piechart which shows the fractional contribution of each 611 ensemble to the error and returns a dictionary containing the fractions. 612 613 Parameters 614 ---------- 615 save : str 616 saves the figure to a file named 'save' if. 617 """ 618 if not hasattr(self, 'e_dvalue'): 619 raise Exception('Run the gamma method first.') 620 if np.isclose(0.0, self._dvalue, atol=1e-15): 621 raise Exception('Error is 0.0') 622 labels = self.e_names 623 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 624 fig1, ax1 = plt.subplots() 625 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) 626 ax1.axis('equal') 627 plt.draw() 628 if save: 629 fig1.savefig(save) 630 631 return dict(zip(labels, sizes)) 632 633 def dump(self, filename, datatype="json.gz", description="", **kwargs): 634 """Dump the Obs to a file 'name' of chosen format. 635 636 Parameters 637 ---------- 638 filename : str 639 name of the file to be saved. 640 datatype : str 641 Format of the exported file. Supported formats include 642 "json.gz" and "pickle" 643 description : str 644 Description for output file, only relevant for json.gz format. 645 path : str 646 specifies a custom path for the file (default '.') 647 """ 648 if 'path' in kwargs: 649 file_name = kwargs.get('path') + '/' + filename 650 else: 651 file_name = filename 652 653 if datatype == "json.gz": 654 from .input.json import dump_to_json 655 dump_to_json([self], file_name, description=description) 656 elif datatype == "pickle": 657 with open(file_name + '.p', 'wb') as fb: 658 pickle.dump(self, fb) 659 else: 660 raise Exception("Unknown datatype " + str(datatype)) 661 662 def export_jackknife(self): 663 """Export jackknife samples from the Obs 664 665 Returns 666 ------- 667 numpy.ndarray 668 Returns a numpy array of length N + 1 where N is the number of samples 669 for the given ensemble and replicum. The zeroth entry of the array contains 670 the mean value of the Obs, entries 1 to N contain the N jackknife samples 671 derived from the Obs. The current implementation only works for observables 672 defined on exactly one ensemble and replicum. The derived jackknife samples 673 should agree with samples from a full jackknife analysis up to O(1/N). 674 """ 675 676 if len(self.names) != 1: 677 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") 678 679 name = self.names[0] 680 full_data = self.deltas[name] + self.r_values[name] 681 n = full_data.size 682 mean = self.value 683 tmp_jacks = np.zeros(n + 1) 684 tmp_jacks[0] = mean 685 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) 686 return tmp_jacks 687 688 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): 689 """Export bootstrap samples from the Obs 690 691 Parameters 692 ---------- 693 samples : int 694 Number of bootstrap samples to generate. 695 random_numbers : np.ndarray 696 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. 697 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. 698 save_rng : str 699 Save the random numbers to a file if a path is specified. 700 701 Returns 702 ------- 703 numpy.ndarray 704 Returns a numpy array of length N + 1 where N is the number of samples 705 for the given ensemble and replicum. The zeroth entry of the array contains 706 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples 707 derived from the Obs. The current implementation only works for observables 708 defined on exactly one ensemble and replicum. The derived bootstrap samples 709 should agree with samples from a full bootstrap analysis up to O(1/N). 710 """ 711 if len(self.names) != 1: 712 raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") 713 714 name = self.names[0] 715 length = self.N 716 717 if random_numbers is None: 718 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF 719 rng = np.random.default_rng(seed) 720 random_numbers = rng.integers(0, length, size=(samples, length)) 721 722 if save_rng is not None: 723 np.savetxt(save_rng, random_numbers, fmt='%i') 724 725 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length 726 ret = np.zeros(samples + 1) 727 ret[0] = self.value 728 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) 729 return ret 730 731 def __float__(self): 732 return float(self.value) 733 734 def __repr__(self): 735 return 'Obs[' + str(self) + ']' 736 737 def __str__(self): 738 return _format_uncertainty(self.value, self._dvalue) 739 740 def __format__(self, format_type): 741 if format_type == "": 742 significance = 2 743 else: 744 significance = int(float(format_type.replace("+", "").replace("-", ""))) 745 my_str = _format_uncertainty(self.value, self._dvalue, 746 significance=significance) 747 for char in ["+", " "]: 748 if format_type.startswith(char): 749 if my_str[0] != "-": 750 my_str = char + my_str 751 return my_str 752 753 def __hash__(self): 754 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) 755 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) 756 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) 757 hash_tuple += tuple([o.encode() for o in self.names]) 758 m = hashlib.md5() 759 [m.update(o) for o in hash_tuple] 760 return int(m.hexdigest(), 16) & 0xFFFFFFFF 761 762 # Overload comparisons 763 def __lt__(self, other): 764 return self.value < other 765 766 def __le__(self, other): 767 return self.value <= other 768 769 def __gt__(self, other): 770 return self.value > other 771 772 def __ge__(self, other): 773 return self.value >= other 774 775 def __eq__(self, other): 776 if other is None: 777 return False 778 return (self - other).is_zero() 779 780 # Overload math operations 781 def __add__(self, y): 782 if isinstance(y, Obs): 783 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) 784 else: 785 if isinstance(y, np.ndarray): 786 return np.array([self + o for o in y]) 787 elif isinstance(y, complex): 788 return CObs(self, 0) + y 789 elif y.__class__.__name__ in ['Corr', 'CObs']: 790 return NotImplemented 791 else: 792 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) 793 794 def __radd__(self, y): 795 return self + y 796 797 def __mul__(self, y): 798 if isinstance(y, Obs): 799 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) 800 else: 801 if isinstance(y, np.ndarray): 802 return np.array([self * o for o in y]) 803 elif isinstance(y, complex): 804 return CObs(self * y.real, self * y.imag) 805 elif y.__class__.__name__ in ['Corr', 'CObs']: 806 return NotImplemented 807 else: 808 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) 809 810 def __rmul__(self, y): 811 return self * y 812 813 def __sub__(self, y): 814 if isinstance(y, Obs): 815 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) 816 else: 817 if isinstance(y, np.ndarray): 818 return np.array([self - o for o in y]) 819 elif y.__class__.__name__ in ['Corr', 'CObs']: 820 return NotImplemented 821 else: 822 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) 823 824 def __rsub__(self, y): 825 return -1 * (self - y) 826 827 def __pos__(self): 828 return self 829 830 def __neg__(self): 831 return -1 * self 832 833 def __truediv__(self, y): 834 if isinstance(y, Obs): 835 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) 836 else: 837 if isinstance(y, np.ndarray): 838 return np.array([self / o for o in y]) 839 elif y.__class__.__name__ in ['Corr', 'CObs']: 840 return NotImplemented 841 else: 842 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) 843 844 def __rtruediv__(self, y): 845 if isinstance(y, Obs): 846 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) 847 else: 848 if isinstance(y, np.ndarray): 849 return np.array([o / self for o in y]) 850 elif y.__class__.__name__ in ['Corr', 'CObs']: 851 return NotImplemented 852 else: 853 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) 854 855 def __pow__(self, y): 856 if isinstance(y, Obs): 857 return derived_observable(lambda x: x[0] ** x[1], [self, y]) 858 else: 859 return derived_observable(lambda x: x[0] ** y, [self]) 860 861 def __rpow__(self, y): 862 if isinstance(y, Obs): 863 return derived_observable(lambda x: x[0] ** x[1], [y, self]) 864 else: 865 return derived_observable(lambda x: y ** x[0], [self]) 866 867 def __abs__(self): 868 return derived_observable(lambda x: anp.abs(x[0]), [self]) 869 870 # Overload numpy functions 871 def sqrt(self): 872 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) 873 874 def log(self): 875 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) 876 877 def exp(self): 878 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) 879 880 def sin(self): 881 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) 882 883 def cos(self): 884 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) 885 886 def tan(self): 887 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) 888 889 def arcsin(self): 890 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) 891 892 def arccos(self): 893 return derived_observable(lambda x: anp.arccos(x[0]), [self]) 894 895 def arctan(self): 896 return derived_observable(lambda x: anp.arctan(x[0]), [self]) 897 898 def sinh(self): 899 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) 900 901 def cosh(self): 902 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) 903 904 def tanh(self): 905 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) 906 907 def arcsinh(self): 908 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) 909 910 def arccosh(self): 911 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) 912 913 def arctanh(self): 914 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) 915 916 917class CObs: 918 """Class for a complex valued observable.""" 919 __slots__ = ['_real', '_imag', 'tag'] 920 921 def __init__(self, real, imag=0.0): 922 self._real = real 923 self._imag = imag 924 self.tag = None 925 926 @property 927 def real(self): 928 return self._real 929 930 @property 931 def imag(self): 932 return self._imag 933 934 def gamma_method(self, **kwargs): 935 """Executes the gamma_method for the real and the imaginary part.""" 936 if isinstance(self.real, Obs): 937 self.real.gamma_method(**kwargs) 938 if isinstance(self.imag, Obs): 939 self.imag.gamma_method(**kwargs) 940 941 def is_zero(self): 942 """Checks whether both real and imaginary part are zero within machine precision.""" 943 return self.real == 0.0 and self.imag == 0.0 944 945 def conjugate(self): 946 return CObs(self.real, -self.imag) 947 948 def __add__(self, other): 949 if isinstance(other, np.ndarray): 950 return other + self 951 elif hasattr(other, 'real') and hasattr(other, 'imag'): 952 return CObs(self.real + other.real, 953 self.imag + other.imag) 954 else: 955 return CObs(self.real + other, self.imag) 956 957 def __radd__(self, y): 958 return self + y 959 960 def __sub__(self, other): 961 if isinstance(other, np.ndarray): 962 return -1 * (other - self) 963 elif hasattr(other, 'real') and hasattr(other, 'imag'): 964 return CObs(self.real - other.real, self.imag - other.imag) 965 else: 966 return CObs(self.real - other, self.imag) 967 968 def __rsub__(self, other): 969 return -1 * (self - other) 970 971 def __mul__(self, other): 972 if isinstance(other, np.ndarray): 973 return other * self 974 elif hasattr(other, 'real') and hasattr(other, 'imag'): 975 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): 976 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], 977 [self.real, other.real, self.imag, other.imag], 978 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), 979 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], 980 [self.real, other.real, self.imag, other.imag], 981 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) 982 elif getattr(other, 'imag', 0) != 0: 983 return CObs(self.real * other.real - self.imag * other.imag, 984 self.imag * other.real + self.real * other.imag) 985 else: 986 return CObs(self.real * other.real, self.imag * other.real) 987 else: 988 return CObs(self.real * other, self.imag * other) 989 990 def __rmul__(self, other): 991 return self * other 992 993 def __truediv__(self, other): 994 if isinstance(other, np.ndarray): 995 return 1 / (other / self) 996 elif hasattr(other, 'real') and hasattr(other, 'imag'): 997 r = other.real ** 2 + other.imag ** 2 998 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) 999 else: 1000 return CObs(self.real / other, self.imag / other) 1001 1002 def __rtruediv__(self, other): 1003 r = self.real ** 2 + self.imag ** 2 1004 if hasattr(other, 'real') and hasattr(other, 'imag'): 1005 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) 1006 else: 1007 return CObs(self.real * other / r, -self.imag * other / r) 1008 1009 def __abs__(self): 1010 return np.sqrt(self.real**2 + self.imag**2) 1011 1012 def __pos__(self): 1013 return self 1014 1015 def __neg__(self): 1016 return -1 * self 1017 1018 def __eq__(self, other): 1019 return self.real == other.real and self.imag == other.imag 1020 1021 def __str__(self): 1022 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' 1023 1024 def __repr__(self): 1025 return 'CObs[' + str(self) + ']' 1026 1027 def __format__(self, format_type): 1028 if format_type == "": 1029 significance = 2 1030 format_type = "2" 1031 else: 1032 significance = int(float(format_type.replace("+", "").replace("-", ""))) 1033 return f"({self.real:{format_type}}{self.imag:+{significance}}j)" 1034 1035 1036def gamma_method(x, **kwargs): 1037 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. 1038 1039 See docstring of pe.Obs.gamma_method for details. 1040 """ 1041 return np.vectorize(lambda o: o.gm(**kwargs))(x) 1042 1043 1044gm = gamma_method 1045 1046 1047def _format_uncertainty(value, dvalue, significance=2): 1048 """Creates a string of a value and its error in paranthesis notation, e.g., 13.02(45)""" 1049 if dvalue == 0.0 or (not np.isfinite(dvalue)): 1050 return str(value) 1051 if not isinstance(significance, int): 1052 raise TypeError("significance needs to be an integer.") 1053 if significance < 1: 1054 raise ValueError("significance needs to be larger than zero.") 1055 fexp = np.floor(np.log10(dvalue)) 1056 if fexp < 0.0: 1057 return '{:{form}}({:1.0f})'.format(value, dvalue * 10 ** (-fexp + significance - 1), form='.' + str(-int(fexp) + significance - 1) + 'f') 1058 elif fexp == 0.0: 1059 return f"{value:.{significance - 1}f}({dvalue:1.{significance - 1}f})" 1060 else: 1061 return f"{value:.{max(0, int(significance - fexp - 1))}f}({dvalue:2.{max(0, int(significance - fexp - 1))}f})" 1062 1063 1064def _expand_deltas(deltas, idx, shape, gapsize): 1065 """Expand deltas defined on idx to a regular range with spacing gapsize between two 1066 configurations and where holes are filled by 0. 1067 If idx is of type range, the deltas are not changed if the idx.step == gapsize. 1068 1069 Parameters 1070 ---------- 1071 deltas : list 1072 List of fluctuations 1073 idx : list 1074 List or range of configs on which the deltas are defined, has to be sorted in ascending order. 1075 shape : int 1076 Number of configs in idx. 1077 gapsize : int 1078 The target distance between two configurations. If longer distances 1079 are found in idx, the data is expanded. 1080 """ 1081 if isinstance(idx, range): 1082 if (idx.step == gapsize): 1083 return deltas 1084 ret = np.zeros((idx[-1] - idx[0] + gapsize) // gapsize) 1085 for i in range(shape): 1086 ret[(idx[i] - idx[0]) // gapsize] = deltas[i] 1087 return ret 1088 1089 1090def _merge_idx(idl): 1091 """Returns the union of all lists in idl as range or sorted list 1092 1093 Parameters 1094 ---------- 1095 idl : list 1096 List of lists or ranges. 1097 """ 1098 1099 if _check_lists_equal(idl): 1100 return idl[0] 1101 1102 idunion = sorted(set().union(*idl)) 1103 1104 # Check whether idunion can be expressed as range 1105 idrange = range(idunion[0], idunion[-1] + 1, idunion[1] - idunion[0]) 1106 idtest = [list(idrange), idunion] 1107 if _check_lists_equal(idtest): 1108 return idrange 1109 1110 return idunion 1111 1112 1113def _intersection_idx(idl): 1114 """Returns the intersection of all lists in idl as range or sorted list 1115 1116 Parameters 1117 ---------- 1118 idl : list 1119 List of lists or ranges. 1120 """ 1121 1122 if _check_lists_equal(idl): 1123 return idl[0] 1124 1125 idinter = sorted(set.intersection(*[set(o) for o in idl])) 1126 1127 # Check whether idinter can be expressed as range 1128 try: 1129 idrange = range(idinter[0], idinter[-1] + 1, idinter[1] - idinter[0]) 1130 idtest = [list(idrange), idinter] 1131 if _check_lists_equal(idtest): 1132 return idrange 1133 except IndexError: 1134 pass 1135 1136 return idinter 1137 1138 1139def _expand_deltas_for_merge(deltas, idx, shape, new_idx): 1140 """Expand deltas defined on idx to the list of configs that is defined by new_idx. 1141 New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest 1142 common divisor of the step sizes is used as new step size. 1143 1144 Parameters 1145 ---------- 1146 deltas : list 1147 List of fluctuations 1148 idx : list 1149 List or range of configs on which the deltas are defined. 1150 Has to be a subset of new_idx and has to be sorted in ascending order. 1151 shape : list 1152 Number of configs in idx. 1153 new_idx : list 1154 List of configs that defines the new range, has to be sorted in ascending order. 1155 """ 1156 1157 if type(idx) is range and type(new_idx) is range: 1158 if idx == new_idx: 1159 return deltas 1160 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) 1161 for i in range(shape): 1162 ret[idx[i] - new_idx[0]] = deltas[i] 1163 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx) 1164 1165 1166def derived_observable(func, data, array_mode=False, **kwargs): 1167 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. 1168 1169 Parameters 1170 ---------- 1171 func : object 1172 arbitrary function of the form func(data, **kwargs). For the 1173 automatic differentiation to work, all numpy functions have to have 1174 the autograd wrapper (use 'import autograd.numpy as anp'). 1175 data : list 1176 list of Obs, e.g. [obs1, obs2, obs3]. 1177 num_grad : bool 1178 if True, numerical derivatives are used instead of autograd 1179 (default False). To control the numerical differentiation the 1180 kwargs of numdifftools.step_generators.MaxStepGenerator 1181 can be used. 1182 man_grad : list 1183 manually supply a list or an array which contains the jacobian 1184 of func. Use cautiously, supplying the wrong derivative will 1185 not be intercepted. 1186 1187 Notes 1188 ----- 1189 For simple mathematical operations it can be practical to use anonymous 1190 functions. For the ratio of two observables one can e.g. use 1191 1192 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) 1193 """ 1194 1195 data = np.asarray(data) 1196 raveled_data = data.ravel() 1197 1198 # Workaround for matrix operations containing non Obs data 1199 if not all(isinstance(x, Obs) for x in raveled_data): 1200 for i in range(len(raveled_data)): 1201 if isinstance(raveled_data[i], (int, float)): 1202 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") 1203 1204 allcov = {} 1205 for o in raveled_data: 1206 for name in o.cov_names: 1207 if name in allcov: 1208 if not np.allclose(allcov[name], o.covobs[name].cov): 1209 raise Exception('Inconsistent covariance matrices for %s!' % (name)) 1210 else: 1211 allcov[name] = o.covobs[name].cov 1212 1213 n_obs = len(raveled_data) 1214 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) 1215 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) 1216 new_sample_names = sorted(set(new_names) - set(new_cov_names)) 1217 1218 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 1219 1220 if data.ndim == 1: 1221 values = np.array([o.value for o in data]) 1222 else: 1223 values = np.vectorize(lambda x: x.value)(data) 1224 1225 new_values = func(values, **kwargs) 1226 1227 multi = int(isinstance(new_values, np.ndarray)) 1228 1229 new_r_values = {} 1230 new_idl_d = {} 1231 for name in new_sample_names: 1232 idl = [] 1233 tmp_values = np.zeros(n_obs) 1234 for i, item in enumerate(raveled_data): 1235 tmp_values[i] = item.r_values.get(name, item.value) 1236 tmp_idl = item.idl.get(name) 1237 if tmp_idl is not None: 1238 idl.append(tmp_idl) 1239 if multi > 0: 1240 tmp_values = np.array(tmp_values).reshape(data.shape) 1241 new_r_values[name] = func(tmp_values, **kwargs) 1242 new_idl_d[name] = _merge_idx(idl) 1243 1244 if 'man_grad' in kwargs: 1245 deriv = np.asarray(kwargs.get('man_grad')) 1246 if new_values.shape + data.shape != deriv.shape: 1247 raise Exception('Manual derivative does not have correct shape.') 1248 elif kwargs.get('num_grad') is True: 1249 if multi > 0: 1250 raise Exception('Multi mode currently not supported for numerical derivative') 1251 options = { 1252 'base_step': 0.1, 1253 'step_ratio': 2.5} 1254 for key in options.keys(): 1255 kwarg = kwargs.get(key) 1256 if kwarg is not None: 1257 options[key] = kwarg 1258 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) 1259 if tmp_df.size == 1: 1260 deriv = np.array([tmp_df.real]) 1261 else: 1262 deriv = tmp_df.real 1263 else: 1264 deriv = jacobian(func)(values, **kwargs) 1265 1266 final_result = np.zeros(new_values.shape, dtype=object) 1267 1268 if array_mode is True: 1269 1270 class _Zero_grad(): 1271 def __init__(self, N): 1272 self.grad = np.zeros((N, 1)) 1273 1274 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) 1275 d_extracted = {} 1276 g_extracted = {} 1277 for name in new_sample_names: 1278 d_extracted[name] = [] 1279 ens_length = len(new_idl_d[name]) 1280 for i_dat, dat in enumerate(data): 1281 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) 1282 for name in new_cov_names: 1283 g_extracted[name] = [] 1284 zero_grad = _Zero_grad(new_covobs_lengths[name]) 1285 for i_dat, dat in enumerate(data): 1286 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) 1287 1288 for i_val, new_val in np.ndenumerate(new_values): 1289 new_deltas = {} 1290 new_grad = {} 1291 if array_mode is True: 1292 for name in new_sample_names: 1293 ens_length = d_extracted[name][0].shape[-1] 1294 new_deltas[name] = np.zeros(ens_length) 1295 for i_dat, dat in enumerate(d_extracted[name]): 1296 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1297 for name in new_cov_names: 1298 new_grad[name] = 0 1299 for i_dat, dat in enumerate(g_extracted[name]): 1300 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1301 else: 1302 for j_obs, obs in np.ndenumerate(data): 1303 for name in obs.names: 1304 if name in obs.cov_names: 1305 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad 1306 else: 1307 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) 1308 1309 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} 1310 1311 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): 1312 raise Exception('The same name has been used for deltas and covobs!') 1313 new_samples = [] 1314 new_means = [] 1315 new_idl = [] 1316 new_names_obs = [] 1317 for name in new_names: 1318 if name not in new_covobs: 1319 new_samples.append(new_deltas[name]) 1320 new_idl.append(new_idl_d[name]) 1321 new_means.append(new_r_values[name][i_val]) 1322 new_names_obs.append(name) 1323 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) 1324 for name in new_covobs: 1325 final_result[i_val].names.append(name) 1326 final_result[i_val]._covobs = new_covobs 1327 final_result[i_val]._value = new_val 1328 final_result[i_val].reweighted = reweighted 1329 1330 if multi == 0: 1331 final_result = final_result.item() 1332 1333 return final_result 1334 1335 1336def _reduce_deltas(deltas, idx_old, idx_new): 1337 """Extract deltas defined on idx_old on all configs of idx_new. 1338 1339 Assumes, that idx_old and idx_new are correctly defined idl, i.e., they 1340 are ordered in an ascending order. 1341 1342 Parameters 1343 ---------- 1344 deltas : list 1345 List of fluctuations 1346 idx_old : list 1347 List or range of configs on which the deltas are defined 1348 idx_new : list 1349 List of configs for which we want to extract the deltas. 1350 Has to be a subset of idx_old. 1351 """ 1352 if not len(deltas) == len(idx_old): 1353 raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) 1354 if type(idx_old) is range and type(idx_new) is range: 1355 if idx_old == idx_new: 1356 return deltas 1357 if _check_lists_equal([idx_old, idx_new]): 1358 return deltas 1359 indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1] 1360 if len(indices) < len(idx_new): 1361 raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old') 1362 return np.array(deltas)[indices] 1363 1364 1365def reweight(weight, obs, **kwargs): 1366 """Reweight a list of observables. 1367 1368 Parameters 1369 ---------- 1370 weight : Obs 1371 Reweighting factor. An Observable that has to be defined on a superset of the 1372 configurations in obs[i].idl for all i. 1373 obs : list 1374 list of Obs, e.g. [obs1, obs2, obs3]. 1375 all_configs : bool 1376 if True, the reweighted observables are normalized by the average of 1377 the reweighting factor on all configurations in weight.idl and not 1378 on the configurations in obs[i].idl. Default False. 1379 """ 1380 result = [] 1381 for i in range(len(obs)): 1382 if len(obs[i].cov_names): 1383 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') 1384 if not set(obs[i].names).issubset(weight.names): 1385 raise Exception('Error: Ensembles do not fit') 1386 for name in obs[i].names: 1387 if not set(obs[i].idl[name]).issubset(weight.idl[name]): 1388 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) 1389 new_samples = [] 1390 w_deltas = {} 1391 for name in sorted(obs[i].names): 1392 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) 1393 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) 1394 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1395 1396 if kwargs.get('all_configs'): 1397 new_weight = weight 1398 else: 1399 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1400 1401 result.append(tmp_obs / new_weight) 1402 result[-1].reweighted = True 1403 1404 return result 1405 1406 1407def correlate(obs_a, obs_b): 1408 """Correlate two observables. 1409 1410 Parameters 1411 ---------- 1412 obs_a : Obs 1413 First observable 1414 obs_b : Obs 1415 Second observable 1416 1417 Notes 1418 ----- 1419 Keep in mind to only correlate primary observables which have not been reweighted 1420 yet. The reweighting has to be applied after correlating the observables. 1421 Currently only works if ensembles are identical (this is not strictly necessary). 1422 """ 1423 1424 if sorted(obs_a.names) != sorted(obs_b.names): 1425 raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") 1426 if len(obs_a.cov_names) or len(obs_b.cov_names): 1427 raise Exception('Error: Not possible to correlate Obs that contain covobs!') 1428 for name in obs_a.names: 1429 if obs_a.shape[name] != obs_b.shape[name]: 1430 raise Exception('Shapes of ensemble', name, 'do not fit') 1431 if obs_a.idl[name] != obs_b.idl[name]: 1432 raise Exception('idl of ensemble', name, 'do not fit') 1433 1434 if obs_a.reweighted is True: 1435 warnings.warn("The first observable is already reweighted.", RuntimeWarning) 1436 if obs_b.reweighted is True: 1437 warnings.warn("The second observable is already reweighted.", RuntimeWarning) 1438 1439 new_samples = [] 1440 new_idl = [] 1441 for name in sorted(obs_a.names): 1442 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) 1443 new_idl.append(obs_a.idl[name]) 1444 1445 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) 1446 o.reweighted = obs_a.reweighted or obs_b.reweighted 1447 return o 1448 1449 1450def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): 1451 r'''Calculates the error covariance matrix of a set of observables. 1452 1453 WARNING: This function should be used with care, especially for observables with support on multiple 1454 ensembles with differing autocorrelations. See the notes below for details. 1455 1456 The gamma method has to be applied first to all observables. 1457 1458 Parameters 1459 ---------- 1460 obs : list or numpy.ndarray 1461 List or one dimensional array of Obs 1462 visualize : bool 1463 If True plots the corresponding normalized correlation matrix (default False). 1464 correlation : bool 1465 If True the correlation matrix instead of the error covariance matrix is returned (default False). 1466 smooth : None or int 1467 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue 1468 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the 1469 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely 1470 small ones. 1471 1472 Notes 1473 ----- 1474 The error covariance is defined such that it agrees with the squared standard error for two identical observables 1475 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ 1476 in the absence of autocorrelation. 1477 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite 1478 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. 1479 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. 1480 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ 1481 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). 1482 ''' 1483 1484 length = len(obs) 1485 1486 max_samples = np.max([o.N for o in obs]) 1487 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: 1488 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) 1489 1490 cov = np.zeros((length, length)) 1491 for i in range(length): 1492 for j in range(i, length): 1493 cov[i, j] = _covariance_element(obs[i], obs[j]) 1494 cov = cov + cov.T - np.diag(np.diag(cov)) 1495 1496 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) 1497 1498 if isinstance(smooth, int): 1499 corr = _smooth_eigenvalues(corr, smooth) 1500 1501 if visualize: 1502 plt.matshow(corr, vmin=-1, vmax=1) 1503 plt.set_cmap('RdBu') 1504 plt.colorbar() 1505 plt.draw() 1506 1507 if correlation is True: 1508 return corr 1509 1510 errors = [o.dvalue for o in obs] 1511 cov = np.diag(errors) @ corr @ np.diag(errors) 1512 1513 eigenvalues = np.linalg.eigh(cov)[0] 1514 if not np.all(eigenvalues >= 0): 1515 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) 1516 1517 return cov 1518 1519 1520def _smooth_eigenvalues(corr, E): 1521 """Eigenvalue smoothing as described in hep-lat/9412087 1522 1523 corr : np.ndarray 1524 correlation matrix 1525 E : integer 1526 Number of eigenvalues to be left substantially unchanged 1527 """ 1528 if not (2 < E < corr.shape[0] - 1): 1529 raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") 1530 vals, vec = np.linalg.eigh(corr) 1531 lambda_min = np.mean(vals[:-E]) 1532 vals[vals < lambda_min] = lambda_min 1533 vals /= np.mean(vals) 1534 return vec @ np.diag(vals) @ vec.T 1535 1536 1537def _covariance_element(obs1, obs2): 1538 """Estimates the covariance of two Obs objects, neglecting autocorrelations.""" 1539 1540 def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx): 1541 deltas1 = _reduce_deltas(deltas1, idx1, new_idx) 1542 deltas2 = _reduce_deltas(deltas2, idx2, new_idx) 1543 return np.sum(deltas1 * deltas2) 1544 1545 if set(obs1.names).isdisjoint(set(obs2.names)): 1546 return 0.0 1547 1548 if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'): 1549 raise Exception('The gamma method has to be applied to both Obs first.') 1550 1551 dvalue = 0.0 1552 1553 for e_name in obs1.mc_names: 1554 1555 if e_name not in obs2.mc_names: 1556 continue 1557 1558 idl_d = {} 1559 for r_name in obs1.e_content[e_name]: 1560 if r_name not in obs2.e_content[e_name]: 1561 continue 1562 idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]]) 1563 1564 gamma = 0.0 1565 1566 for r_name in obs1.e_content[e_name]: 1567 if r_name not in obs2.e_content[e_name]: 1568 continue 1569 if len(idl_d[r_name]) == 0: 1570 continue 1571 gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name]) 1572 1573 if gamma == 0.0: 1574 continue 1575 1576 gamma_div = 0.0 1577 for r_name in obs1.e_content[e_name]: 1578 if r_name not in obs2.e_content[e_name]: 1579 continue 1580 if len(idl_d[r_name]) == 0: 1581 continue 1582 gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name])) 1583 gamma /= gamma_div 1584 1585 dvalue += gamma 1586 1587 for e_name in obs1.cov_names: 1588 1589 if e_name not in obs2.cov_names: 1590 continue 1591 1592 dvalue += np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)).item() 1593 1594 return dvalue 1595 1596 1597def import_jackknife(jacks, name, idl=None): 1598 """Imports jackknife samples and returns an Obs 1599 1600 Parameters 1601 ---------- 1602 jacks : numpy.ndarray 1603 numpy array containing the mean value as zeroth entry and 1604 the N jackknife samples as first to Nth entry. 1605 name : str 1606 name of the ensemble the samples are defined on. 1607 """ 1608 length = len(jacks) - 1 1609 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) 1610 samples = jacks[1:] @ prj 1611 mean = np.mean(samples) 1612 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) 1613 new_obs._value = jacks[0] 1614 return new_obs 1615 1616 1617def import_bootstrap(boots, name, random_numbers): 1618 """Imports bootstrap samples and returns an Obs 1619 1620 Parameters 1621 ---------- 1622 boots : numpy.ndarray 1623 numpy array containing the mean value as zeroth entry and 1624 the N bootstrap samples as first to Nth entry. 1625 name : str 1626 name of the ensemble the samples are defined on. 1627 random_numbers : np.ndarray 1628 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, 1629 where samples is the number of bootstrap samples and length is the length of the original Monte Carlo 1630 chain to be reconstructed. 1631 """ 1632 samples, length = random_numbers.shape 1633 if samples != len(boots) - 1: 1634 raise ValueError("Random numbers do not have the correct shape.") 1635 1636 if samples < length: 1637 raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.") 1638 1639 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length 1640 1641 samples = scipy.linalg.lstsq(proj, boots[1:])[0] 1642 ret = Obs([samples], [name]) 1643 ret._value = boots[0] 1644 return ret 1645 1646 1647def merge_obs(list_of_obs): 1648 """Combine all observables in list_of_obs into one new observable 1649 1650 Parameters 1651 ---------- 1652 list_of_obs : list 1653 list of the Obs object to be combined 1654 1655 Notes 1656 ----- 1657 It is not possible to combine obs which are based on the same replicum 1658 """ 1659 replist = [item for obs in list_of_obs for item in obs.names] 1660 if (len(replist) == len(set(replist))) is False: 1661 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) 1662 if any([len(o.cov_names) for o in list_of_obs]): 1663 raise Exception('Not possible to merge data that contains covobs!') 1664 new_dict = {} 1665 idl_dict = {} 1666 for o in list_of_obs: 1667 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) 1668 for key in set(o.deltas) | set(o.r_values)}) 1669 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) 1670 1671 names = sorted(new_dict.keys()) 1672 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) 1673 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) 1674 return o 1675 1676 1677def cov_Obs(means, cov, name, grad=None): 1678 """Create an Obs based on mean(s) and a covariance matrix 1679 1680 Parameters 1681 ---------- 1682 mean : list of floats or float 1683 N mean value(s) of the new Obs 1684 cov : list or array 1685 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance 1686 name : str 1687 identifier for the covariance matrix 1688 grad : list or array 1689 Gradient of the Covobs wrt. the means belonging to cov. 1690 """ 1691 1692 def covobs_to_obs(co): 1693 """Make an Obs out of a Covobs 1694 1695 Parameters 1696 ---------- 1697 co : Covobs 1698 Covobs to be embedded into the Obs 1699 """ 1700 o = Obs([], [], means=[]) 1701 o._value = co.value 1702 o.names.append(co.name) 1703 o._covobs[co.name] = co 1704 o._dvalue = np.sqrt(co.errsq()) 1705 return o 1706 1707 ol = [] 1708 if isinstance(means, (float, int)): 1709 means = [means] 1710 1711 for i in range(len(means)): 1712 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) 1713 if ol[0].covobs[name].N != len(means): 1714 raise Exception('You have to provide %d mean values!' % (ol[0].N)) 1715 if len(ol) == 1: 1716 return ol[0] 1717 return ol 1718 1719 1720def _determine_gap(o, e_content, e_name): 1721 gaps = [] 1722 for r_name in e_content[e_name]: 1723 if isinstance(o.idl[r_name], range): 1724 gaps.append(o.idl[r_name].step) 1725 else: 1726 gaps.append(np.min(np.diff(o.idl[r_name]))) 1727 1728 gap = min(gaps) 1729 if not np.all([gi % gap == 0 for gi in gaps]): 1730 raise Exception(f"Replica for ensemble {e_name} do not have a common spacing.", gaps) 1731 1732 return gap 1733 1734 1735def _check_lists_equal(idl): 1736 ''' 1737 Use groupby to efficiently check whether all elements of idl are identical. 1738 Returns True if all elements are equal, otherwise False. 1739 1740 Parameters 1741 ---------- 1742 idl : list of lists, ranges or np.ndarrays 1743 ''' 1744 g = groupby([np.nditer(el) if isinstance(el, np.ndarray) else el for el in idl]) 1745 if next(g, True) and not next(g, False): 1746 return True 1747 return False
19class Obs: 20 """Class for a general observable. 21 22 Instances of Obs are the basic objects of a pyerrors error analysis. 23 They are initialized with a list which contains arrays of samples for 24 different ensembles/replica and another list of same length which contains 25 the names of the ensembles/replica. Mathematical operations can be 26 performed on instances. The result is another instance of Obs. The error of 27 an instance can be computed with the gamma_method. Also contains additional 28 methods for output and visualization of the error calculation. 29 30 Attributes 31 ---------- 32 S_global : float 33 Standard value for S (default 2.0) 34 S_dict : dict 35 Dictionary for S values. If an entry for a given ensemble 36 exists this overwrites the standard value for that ensemble. 37 tau_exp_global : float 38 Standard value for tau_exp (default 0.0) 39 tau_exp_dict : dict 40 Dictionary for tau_exp values. If an entry for a given ensemble exists 41 this overwrites the standard value for that ensemble. 42 N_sigma_global : float 43 Standard value for N_sigma (default 1.0) 44 N_sigma_dict : dict 45 Dictionary for N_sigma values. If an entry for a given ensemble exists 46 this overwrites the standard value for that ensemble. 47 """ 48 __slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue', 49 'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma', 50 'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint', 51 'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint', 52 'idl', 'tag', '_covobs', '__dict__'] 53 54 S_global = 2.0 55 S_dict = {} 56 tau_exp_global = 0.0 57 tau_exp_dict = {} 58 N_sigma_global = 1.0 59 N_sigma_dict = {} 60 61 def __init__(self, samples, names, idl=None, **kwargs): 62 """ Initialize Obs object. 63 64 Parameters 65 ---------- 66 samples : list 67 list of numpy arrays containing the Monte Carlo samples 68 names : list 69 list of strings labeling the individual samples 70 idl : list, optional 71 list of ranges or lists on which the samples are defined 72 """ 73 74 if kwargs.get("means") is None and len(samples): 75 if len(samples) != len(names): 76 raise ValueError('Length of samples and names incompatible.') 77 if idl is not None: 78 if len(idl) != len(names): 79 raise ValueError('Length of idl incompatible with samples and names.') 80 name_length = len(names) 81 if name_length > 1: 82 if name_length != len(set(names)): 83 raise ValueError('Names are not unique.') 84 if not all(isinstance(x, str) for x in names): 85 raise TypeError('All names have to be strings.') 86 else: 87 if not isinstance(names[0], str): 88 raise TypeError('All names have to be strings.') 89 if min(len(x) for x in samples) <= 4: 90 raise ValueError('Samples have to have at least 5 entries.') 91 92 self.names = sorted(names) 93 self.shape = {} 94 self.r_values = {} 95 self.deltas = {} 96 self._covobs = {} 97 98 self._value = 0 99 self.N = 0 100 self.idl = {} 101 if idl is not None: 102 for name, idx in sorted(zip(names, idl)): 103 if isinstance(idx, range): 104 self.idl[name] = idx 105 elif isinstance(idx, (list, np.ndarray)): 106 dc = np.unique(np.diff(idx)) 107 if np.any(dc < 0): 108 raise ValueError("Unsorted idx for idl[%s]" % (name)) 109 if len(dc) == 1: 110 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) 111 else: 112 self.idl[name] = list(idx) 113 else: 114 raise TypeError('incompatible type for idl[%s].' % (name)) 115 else: 116 for name, sample in sorted(zip(names, samples)): 117 self.idl[name] = range(1, len(sample) + 1) 118 119 if kwargs.get("means") is not None: 120 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): 121 self.shape[name] = len(self.idl[name]) 122 self.N += self.shape[name] 123 self.r_values[name] = mean 124 self.deltas[name] = sample 125 else: 126 for name, sample in sorted(zip(names, samples)): 127 self.shape[name] = len(self.idl[name]) 128 self.N += self.shape[name] 129 if len(sample) != self.shape[name]: 130 raise ValueError('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) 131 self.r_values[name] = np.mean(sample) 132 self.deltas[name] = sample - self.r_values[name] 133 self._value += self.shape[name] * self.r_values[name] 134 self._value /= self.N 135 136 self._dvalue = 0.0 137 self.ddvalue = 0.0 138 self.reweighted = False 139 140 self.tag = None 141 142 @property 143 def value(self): 144 return self._value 145 146 @property 147 def dvalue(self): 148 return self._dvalue 149 150 @property 151 def e_names(self): 152 return sorted(set([o.split('|')[0] for o in self.names])) 153 154 @property 155 def cov_names(self): 156 return sorted(set([o for o in self.covobs.keys()])) 157 158 @property 159 def mc_names(self): 160 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) 161 162 @property 163 def e_content(self): 164 res = {} 165 for e, e_name in enumerate(self.e_names): 166 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) 167 if e_name in self.names: 168 res[e_name].append(e_name) 169 return res 170 171 @property 172 def covobs(self): 173 return self._covobs 174 175 def gamma_method(self, **kwargs): 176 """Estimate the error and related properties of the Obs. 177 178 Parameters 179 ---------- 180 S : float 181 specifies a custom value for the parameter S (default 2.0). 182 If set to 0 it is assumed that the data exhibits no 183 autocorrelation. In this case the error estimates coincides 184 with the sample standard error. 185 tau_exp : float 186 positive value triggers the critical slowing down analysis 187 (default 0.0). 188 N_sigma : float 189 number of standard deviations from zero until the tail is 190 attached to the autocorrelation function (default 1). 191 fft : bool 192 determines whether the fft algorithm is used for the computation 193 of the autocorrelation function (default True) 194 """ 195 196 e_content = self.e_content 197 self.e_dvalue = {} 198 self.e_ddvalue = {} 199 self.e_tauint = {} 200 self.e_dtauint = {} 201 self.e_windowsize = {} 202 self.e_n_tauint = {} 203 self.e_n_dtauint = {} 204 e_gamma = {} 205 self.e_rho = {} 206 self.e_drho = {} 207 self._dvalue = 0 208 self.ddvalue = 0 209 210 self.S = {} 211 self.tau_exp = {} 212 self.N_sigma = {} 213 214 if kwargs.get('fft') is False: 215 fft = False 216 else: 217 fft = True 218 219 def _parse_kwarg(kwarg_name): 220 if kwarg_name in kwargs: 221 tmp = kwargs.get(kwarg_name) 222 if isinstance(tmp, (int, float)): 223 if tmp < 0: 224 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 225 for e, e_name in enumerate(self.e_names): 226 getattr(self, kwarg_name)[e_name] = tmp 227 else: 228 raise TypeError(kwarg_name + ' is not in proper format.') 229 else: 230 for e, e_name in enumerate(self.e_names): 231 if e_name in getattr(Obs, kwarg_name + '_dict'): 232 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 233 else: 234 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 235 236 _parse_kwarg('S') 237 _parse_kwarg('tau_exp') 238 _parse_kwarg('N_sigma') 239 240 for e, e_name in enumerate(self.mc_names): 241 gapsize = _determine_gap(self, e_content, e_name) 242 243 r_length = [] 244 for r_name in e_content[e_name]: 245 if isinstance(self.idl[r_name], range): 246 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) 247 else: 248 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) 249 250 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 251 w_max = max(r_length) // 2 252 e_gamma[e_name] = np.zeros(w_max) 253 self.e_rho[e_name] = np.zeros(w_max) 254 self.e_drho[e_name] = np.zeros(w_max) 255 256 for r_name in e_content[e_name]: 257 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 258 259 gamma_div = np.zeros(w_max) 260 for r_name in e_content[e_name]: 261 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 262 gamma_div[gamma_div < 1] = 1.0 263 e_gamma[e_name] /= gamma_div[:w_max] 264 265 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 266 self.e_tauint[e_name] = 0.5 267 self.e_dtauint[e_name] = 0.0 268 self.e_dvalue[e_name] = 0.0 269 self.e_ddvalue[e_name] = 0.0 270 self.e_windowsize[e_name] = 0 271 continue 272 273 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 274 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 275 # Make sure no entry of tauint is smaller than 0.5 276 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 277 # hep-lat/0306017 eq. (42) 278 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) 279 self.e_n_dtauint[e_name][0] = 0.0 280 281 def _compute_drho(i): 282 tmp = (self.e_rho[e_name][i + 1:w_max] 283 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], 284 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) 285 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) 286 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 287 288 if self.tau_exp[e_name] > 0: 289 _compute_drho(1) 290 texp = self.tau_exp[e_name] 291 # Critical slowing down analysis 292 if w_max // 2 <= 1: 293 raise Exception("Need at least 8 samples for tau_exp error analysis") 294 for n in range(1, w_max // 2): 295 _compute_drho(n + 1) 296 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 297 # Bias correction hep-lat/0306017 eq. (49) included 298 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 299 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 300 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 301 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 302 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 303 self.e_windowsize[e_name] = n 304 break 305 else: 306 if self.S[e_name] == 0.0: 307 self.e_tauint[e_name] = 0.5 308 self.e_dtauint[e_name] = 0.0 309 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 310 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 311 self.e_windowsize[e_name] = 0 312 else: 313 # Standard automatic windowing procedure 314 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) 315 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 316 for n in range(1, w_max): 317 if g_w[n - 1] < 0 or n >= w_max - 1: 318 _compute_drho(n) 319 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 320 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 321 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 322 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 323 self.e_windowsize[e_name] = n 324 break 325 326 self._dvalue += self.e_dvalue[e_name] ** 2 327 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 328 329 for e_name in self.cov_names: 330 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 331 self.e_ddvalue[e_name] = 0 332 self._dvalue += self.e_dvalue[e_name]**2 333 334 self._dvalue = np.sqrt(self._dvalue) 335 if self._dvalue == 0.0: 336 self.ddvalue = 0.0 337 else: 338 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 339 return 340 341 gm = gamma_method 342 343 def _calc_gamma(self, deltas, idx, shape, w_max, fft, gapsize): 344 """Calculate Gamma_{AA} from the deltas, which are defined on idx. 345 idx is assumed to be a contiguous range (possibly with a stepsize != 1) 346 347 Parameters 348 ---------- 349 deltas : list 350 List of fluctuations 351 idx : list 352 List or range of configurations on which the deltas are defined. 353 shape : int 354 Number of configurations in idx. 355 w_max : int 356 Upper bound for the summation window. 357 fft : bool 358 determines whether the fft algorithm is used for the computation 359 of the autocorrelation function. 360 gapsize : int 361 The target distance between two configurations. If longer distances 362 are found in idx, the data is expanded. 363 """ 364 gamma = np.zeros(w_max) 365 deltas = _expand_deltas(deltas, idx, shape, gapsize) 366 new_shape = len(deltas) 367 if fft: 368 max_gamma = min(new_shape, w_max) 369 # The padding for the fft has to be even 370 padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 371 gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] 372 else: 373 for n in range(w_max): 374 if new_shape - n >= 0: 375 gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) 376 377 return gamma 378 379 def details(self, ens_content=True): 380 """Output detailed properties of the Obs. 381 382 Parameters 383 ---------- 384 ens_content : bool 385 print details about the ensembles and replica if true. 386 """ 387 if self.tag is not None: 388 print("Description:", self.tag) 389 if not hasattr(self, 'e_dvalue'): 390 print('Result\t %3.8e' % (self.value)) 391 else: 392 if self.value == 0.0: 393 percentage = np.nan 394 else: 395 percentage = np.abs(self._dvalue / self.value) * 100 396 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 397 if len(self.e_names) > 1: 398 print(' Ensemble errors:') 399 e_content = self.e_content 400 for e_name in self.mc_names: 401 gap = _determine_gap(self, e_content, e_name) 402 403 if len(self.e_names) > 1: 404 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) 405 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) 406 tau_string += f" in units of {gap} config" 407 if gap > 1: 408 tau_string += "s" 409 if self.tau_exp[e_name] > 0: 410 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) 411 else: 412 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) 413 print(tau_string) 414 for e_name in self.cov_names: 415 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) 416 if ens_content is True: 417 if len(self.e_names) == 1: 418 print(self.N, 'samples in', len(self.e_names), 'ensemble:') 419 else: 420 print(self.N, 'samples in', len(self.e_names), 'ensembles:') 421 my_string_list = [] 422 for key, value in sorted(self.e_content.items()): 423 if key not in self.covobs: 424 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " 425 if len(value) == 1: 426 my_string += f': {self.shape[value[0]]} configurations' 427 if isinstance(self.idl[value[0]], range): 428 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' 429 else: 430 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' 431 else: 432 sublist = [] 433 for v in value: 434 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " 435 my_substring += f': {self.shape[v]} configurations' 436 if isinstance(self.idl[v], range): 437 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' 438 else: 439 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' 440 sublist.append(my_substring) 441 442 my_string += '\n' + '\n'.join(sublist) 443 else: 444 my_string = ' ' + "\u00B7 Covobs '" + key + "' " 445 my_string_list.append(my_string) 446 print('\n'.join(my_string_list)) 447 448 def reweight(self, weight): 449 """Reweight the obs with given rewighting factors. 450 451 Parameters 452 ---------- 453 weight : Obs 454 Reweighting factor. An Observable that has to be defined on a superset of the 455 configurations in obs[i].idl for all i. 456 all_configs : bool 457 if True, the reweighted observables are normalized by the average of 458 the reweighting factor on all configurations in weight.idl and not 459 on the configurations in obs[i].idl. Default False. 460 """ 461 return reweight(weight, [self])[0] 462 463 def is_zero_within_error(self, sigma=1): 464 """Checks whether the observable is zero within 'sigma' standard errors. 465 466 Parameters 467 ---------- 468 sigma : int 469 Number of standard errors used for the check. 470 471 Works only properly when the gamma method was run. 472 """ 473 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue 474 475 def is_zero(self, atol=1e-10): 476 """Checks whether the observable is zero within a given tolerance. 477 478 Parameters 479 ---------- 480 atol : float 481 Absolute tolerance (for details see numpy documentation). 482 """ 483 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) 484 485 def plot_tauint(self, save=None): 486 """Plot integrated autocorrelation time for each ensemble. 487 488 Parameters 489 ---------- 490 save : str 491 saves the figure to a file named 'save' if. 492 """ 493 if not hasattr(self, 'e_dvalue'): 494 raise Exception('Run the gamma method first.') 495 496 for e, e_name in enumerate(self.mc_names): 497 fig = plt.figure() 498 plt.xlabel(r'$W$') 499 plt.ylabel(r'$\tau_\mathrm{int}$') 500 length = int(len(self.e_n_tauint[e_name])) 501 if self.tau_exp[e_name] > 0: 502 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] 503 x_help = np.arange(2 * self.tau_exp[e_name]) 504 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base 505 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) 506 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') 507 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], 508 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) 509 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 510 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) 511 else: 512 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) 513 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 514 515 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) 516 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') 517 plt.legend() 518 plt.xlim(-0.5, xmax) 519 ylim = plt.ylim() 520 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) 521 plt.draw() 522 if save: 523 fig.savefig(save + "_" + str(e)) 524 525 def plot_rho(self, save=None): 526 """Plot normalized autocorrelation function time for each ensemble. 527 528 Parameters 529 ---------- 530 save : str 531 saves the figure to a file named 'save' if. 532 """ 533 if not hasattr(self, 'e_dvalue'): 534 raise Exception('Run the gamma method first.') 535 for e, e_name in enumerate(self.mc_names): 536 fig = plt.figure() 537 plt.xlabel('W') 538 plt.ylabel('rho') 539 length = int(len(self.e_drho[e_name])) 540 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) 541 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') 542 if self.tau_exp[e_name] > 0: 543 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], 544 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) 545 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 546 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) 547 else: 548 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 549 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) 550 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) 551 plt.xlim(-0.5, xmax) 552 plt.draw() 553 if save: 554 fig.savefig(save + "_" + str(e)) 555 556 def plot_rep_dist(self): 557 """Plot replica distribution for each ensemble with more than one replicum.""" 558 if not hasattr(self, 'e_dvalue'): 559 raise Exception('Run the gamma method first.') 560 for e, e_name in enumerate(self.mc_names): 561 if len(self.e_content[e_name]) == 1: 562 print('No replica distribution for a single replicum (', e_name, ')') 563 continue 564 r_length = [] 565 sub_r_mean = 0 566 for r, r_name in enumerate(self.e_content[e_name]): 567 r_length.append(len(self.deltas[r_name])) 568 sub_r_mean += self.shape[r_name] * self.r_values[r_name] 569 e_N = np.sum(r_length) 570 sub_r_mean /= e_N 571 arr = np.zeros(len(self.e_content[e_name])) 572 for r, r_name in enumerate(self.e_content[e_name]): 573 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) 574 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) 575 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') 576 plt.draw() 577 578 def plot_history(self, expand=True): 579 """Plot derived Monte Carlo history for each ensemble 580 581 Parameters 582 ---------- 583 expand : bool 584 show expanded history for irregular Monte Carlo chains (default: True). 585 """ 586 for e, e_name in enumerate(self.mc_names): 587 plt.figure() 588 r_length = [] 589 tmp = [] 590 tmp_expanded = [] 591 for r, r_name in enumerate(self.e_content[e_name]): 592 tmp.append(self.deltas[r_name] + self.r_values[r_name]) 593 if expand: 594 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) 595 r_length.append(len(tmp_expanded[-1])) 596 else: 597 r_length.append(len(tmp[-1])) 598 e_N = np.sum(r_length) 599 x = np.arange(e_N) 600 y_test = np.concatenate(tmp, axis=0) 601 if expand: 602 y = np.concatenate(tmp_expanded, axis=0) 603 else: 604 y = y_test 605 plt.errorbar(x, y, fmt='.', markersize=3) 606 plt.xlim(-0.5, e_N - 0.5) 607 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') 608 plt.draw() 609 610 def plot_piechart(self, save=None): 611 """Plot piechart which shows the fractional contribution of each 612 ensemble to the error and returns a dictionary containing the fractions. 613 614 Parameters 615 ---------- 616 save : str 617 saves the figure to a file named 'save' if. 618 """ 619 if not hasattr(self, 'e_dvalue'): 620 raise Exception('Run the gamma method first.') 621 if np.isclose(0.0, self._dvalue, atol=1e-15): 622 raise Exception('Error is 0.0') 623 labels = self.e_names 624 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 625 fig1, ax1 = plt.subplots() 626 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) 627 ax1.axis('equal') 628 plt.draw() 629 if save: 630 fig1.savefig(save) 631 632 return dict(zip(labels, sizes)) 633 634 def dump(self, filename, datatype="json.gz", description="", **kwargs): 635 """Dump the Obs to a file 'name' of chosen format. 636 637 Parameters 638 ---------- 639 filename : str 640 name of the file to be saved. 641 datatype : str 642 Format of the exported file. Supported formats include 643 "json.gz" and "pickle" 644 description : str 645 Description for output file, only relevant for json.gz format. 646 path : str 647 specifies a custom path for the file (default '.') 648 """ 649 if 'path' in kwargs: 650 file_name = kwargs.get('path') + '/' + filename 651 else: 652 file_name = filename 653 654 if datatype == "json.gz": 655 from .input.json import dump_to_json 656 dump_to_json([self], file_name, description=description) 657 elif datatype == "pickle": 658 with open(file_name + '.p', 'wb') as fb: 659 pickle.dump(self, fb) 660 else: 661 raise Exception("Unknown datatype " + str(datatype)) 662 663 def export_jackknife(self): 664 """Export jackknife samples from the Obs 665 666 Returns 667 ------- 668 numpy.ndarray 669 Returns a numpy array of length N + 1 where N is the number of samples 670 for the given ensemble and replicum. The zeroth entry of the array contains 671 the mean value of the Obs, entries 1 to N contain the N jackknife samples 672 derived from the Obs. The current implementation only works for observables 673 defined on exactly one ensemble and replicum. The derived jackknife samples 674 should agree with samples from a full jackknife analysis up to O(1/N). 675 """ 676 677 if len(self.names) != 1: 678 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") 679 680 name = self.names[0] 681 full_data = self.deltas[name] + self.r_values[name] 682 n = full_data.size 683 mean = self.value 684 tmp_jacks = np.zeros(n + 1) 685 tmp_jacks[0] = mean 686 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) 687 return tmp_jacks 688 689 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): 690 """Export bootstrap samples from the Obs 691 692 Parameters 693 ---------- 694 samples : int 695 Number of bootstrap samples to generate. 696 random_numbers : np.ndarray 697 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. 698 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. 699 save_rng : str 700 Save the random numbers to a file if a path is specified. 701 702 Returns 703 ------- 704 numpy.ndarray 705 Returns a numpy array of length N + 1 where N is the number of samples 706 for the given ensemble and replicum. The zeroth entry of the array contains 707 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples 708 derived from the Obs. The current implementation only works for observables 709 defined on exactly one ensemble and replicum. The derived bootstrap samples 710 should agree with samples from a full bootstrap analysis up to O(1/N). 711 """ 712 if len(self.names) != 1: 713 raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") 714 715 name = self.names[0] 716 length = self.N 717 718 if random_numbers is None: 719 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF 720 rng = np.random.default_rng(seed) 721 random_numbers = rng.integers(0, length, size=(samples, length)) 722 723 if save_rng is not None: 724 np.savetxt(save_rng, random_numbers, fmt='%i') 725 726 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length 727 ret = np.zeros(samples + 1) 728 ret[0] = self.value 729 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) 730 return ret 731 732 def __float__(self): 733 return float(self.value) 734 735 def __repr__(self): 736 return 'Obs[' + str(self) + ']' 737 738 def __str__(self): 739 return _format_uncertainty(self.value, self._dvalue) 740 741 def __format__(self, format_type): 742 if format_type == "": 743 significance = 2 744 else: 745 significance = int(float(format_type.replace("+", "").replace("-", ""))) 746 my_str = _format_uncertainty(self.value, self._dvalue, 747 significance=significance) 748 for char in ["+", " "]: 749 if format_type.startswith(char): 750 if my_str[0] != "-": 751 my_str = char + my_str 752 return my_str 753 754 def __hash__(self): 755 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) 756 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) 757 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) 758 hash_tuple += tuple([o.encode() for o in self.names]) 759 m = hashlib.md5() 760 [m.update(o) for o in hash_tuple] 761 return int(m.hexdigest(), 16) & 0xFFFFFFFF 762 763 # Overload comparisons 764 def __lt__(self, other): 765 return self.value < other 766 767 def __le__(self, other): 768 return self.value <= other 769 770 def __gt__(self, other): 771 return self.value > other 772 773 def __ge__(self, other): 774 return self.value >= other 775 776 def __eq__(self, other): 777 if other is None: 778 return False 779 return (self - other).is_zero() 780 781 # Overload math operations 782 def __add__(self, y): 783 if isinstance(y, Obs): 784 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) 785 else: 786 if isinstance(y, np.ndarray): 787 return np.array([self + o for o in y]) 788 elif isinstance(y, complex): 789 return CObs(self, 0) + y 790 elif y.__class__.__name__ in ['Corr', 'CObs']: 791 return NotImplemented 792 else: 793 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) 794 795 def __radd__(self, y): 796 return self + y 797 798 def __mul__(self, y): 799 if isinstance(y, Obs): 800 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) 801 else: 802 if isinstance(y, np.ndarray): 803 return np.array([self * o for o in y]) 804 elif isinstance(y, complex): 805 return CObs(self * y.real, self * y.imag) 806 elif y.__class__.__name__ in ['Corr', 'CObs']: 807 return NotImplemented 808 else: 809 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) 810 811 def __rmul__(self, y): 812 return self * y 813 814 def __sub__(self, y): 815 if isinstance(y, Obs): 816 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) 817 else: 818 if isinstance(y, np.ndarray): 819 return np.array([self - o for o in y]) 820 elif y.__class__.__name__ in ['Corr', 'CObs']: 821 return NotImplemented 822 else: 823 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) 824 825 def __rsub__(self, y): 826 return -1 * (self - y) 827 828 def __pos__(self): 829 return self 830 831 def __neg__(self): 832 return -1 * self 833 834 def __truediv__(self, y): 835 if isinstance(y, Obs): 836 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) 837 else: 838 if isinstance(y, np.ndarray): 839 return np.array([self / o for o in y]) 840 elif y.__class__.__name__ in ['Corr', 'CObs']: 841 return NotImplemented 842 else: 843 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) 844 845 def __rtruediv__(self, y): 846 if isinstance(y, Obs): 847 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) 848 else: 849 if isinstance(y, np.ndarray): 850 return np.array([o / self for o in y]) 851 elif y.__class__.__name__ in ['Corr', 'CObs']: 852 return NotImplemented 853 else: 854 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) 855 856 def __pow__(self, y): 857 if isinstance(y, Obs): 858 return derived_observable(lambda x: x[0] ** x[1], [self, y]) 859 else: 860 return derived_observable(lambda x: x[0] ** y, [self]) 861 862 def __rpow__(self, y): 863 if isinstance(y, Obs): 864 return derived_observable(lambda x: x[0] ** x[1], [y, self]) 865 else: 866 return derived_observable(lambda x: y ** x[0], [self]) 867 868 def __abs__(self): 869 return derived_observable(lambda x: anp.abs(x[0]), [self]) 870 871 # Overload numpy functions 872 def sqrt(self): 873 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) 874 875 def log(self): 876 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) 877 878 def exp(self): 879 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) 880 881 def sin(self): 882 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) 883 884 def cos(self): 885 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) 886 887 def tan(self): 888 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) 889 890 def arcsin(self): 891 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) 892 893 def arccos(self): 894 return derived_observable(lambda x: anp.arccos(x[0]), [self]) 895 896 def arctan(self): 897 return derived_observable(lambda x: anp.arctan(x[0]), [self]) 898 899 def sinh(self): 900 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) 901 902 def cosh(self): 903 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) 904 905 def tanh(self): 906 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) 907 908 def arcsinh(self): 909 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) 910 911 def arccosh(self): 912 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) 913 914 def arctanh(self): 915 return derived_observable(lambda x: anp.arctanh(x[0]), [self])
Class for a general observable.
Instances of Obs are the basic objects of a pyerrors error analysis. They are initialized with a list which contains arrays of samples for different ensembles/replica and another list of same length which contains the names of the ensembles/replica. Mathematical operations can be performed on instances. The result is another instance of Obs. The error of an instance can be computed with the gamma_method. Also contains additional methods for output and visualization of the error calculation.
Attributes
- S_global (float): Standard value for S (default 2.0)
- S_dict (dict): Dictionary for S values. If an entry for a given ensemble exists this overwrites the standard value for that ensemble.
- tau_exp_global (float): Standard value for tau_exp (default 0.0)
- tau_exp_dict (dict): Dictionary for tau_exp values. If an entry for a given ensemble exists this overwrites the standard value for that ensemble.
- N_sigma_global (float): Standard value for N_sigma (default 1.0)
- N_sigma_dict (dict): Dictionary for N_sigma values. If an entry for a given ensemble exists this overwrites the standard value for that ensemble.
61 def __init__(self, samples, names, idl=None, **kwargs): 62 """ Initialize Obs object. 63 64 Parameters 65 ---------- 66 samples : list 67 list of numpy arrays containing the Monte Carlo samples 68 names : list 69 list of strings labeling the individual samples 70 idl : list, optional 71 list of ranges or lists on which the samples are defined 72 """ 73 74 if kwargs.get("means") is None and len(samples): 75 if len(samples) != len(names): 76 raise ValueError('Length of samples and names incompatible.') 77 if idl is not None: 78 if len(idl) != len(names): 79 raise ValueError('Length of idl incompatible with samples and names.') 80 name_length = len(names) 81 if name_length > 1: 82 if name_length != len(set(names)): 83 raise ValueError('Names are not unique.') 84 if not all(isinstance(x, str) for x in names): 85 raise TypeError('All names have to be strings.') 86 else: 87 if not isinstance(names[0], str): 88 raise TypeError('All names have to be strings.') 89 if min(len(x) for x in samples) <= 4: 90 raise ValueError('Samples have to have at least 5 entries.') 91 92 self.names = sorted(names) 93 self.shape = {} 94 self.r_values = {} 95 self.deltas = {} 96 self._covobs = {} 97 98 self._value = 0 99 self.N = 0 100 self.idl = {} 101 if idl is not None: 102 for name, idx in sorted(zip(names, idl)): 103 if isinstance(idx, range): 104 self.idl[name] = idx 105 elif isinstance(idx, (list, np.ndarray)): 106 dc = np.unique(np.diff(idx)) 107 if np.any(dc < 0): 108 raise ValueError("Unsorted idx for idl[%s]" % (name)) 109 if len(dc) == 1: 110 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) 111 else: 112 self.idl[name] = list(idx) 113 else: 114 raise TypeError('incompatible type for idl[%s].' % (name)) 115 else: 116 for name, sample in sorted(zip(names, samples)): 117 self.idl[name] = range(1, len(sample) + 1) 118 119 if kwargs.get("means") is not None: 120 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): 121 self.shape[name] = len(self.idl[name]) 122 self.N += self.shape[name] 123 self.r_values[name] = mean 124 self.deltas[name] = sample 125 else: 126 for name, sample in sorted(zip(names, samples)): 127 self.shape[name] = len(self.idl[name]) 128 self.N += self.shape[name] 129 if len(sample) != self.shape[name]: 130 raise ValueError('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) 131 self.r_values[name] = np.mean(sample) 132 self.deltas[name] = sample - self.r_values[name] 133 self._value += self.shape[name] * self.r_values[name] 134 self._value /= self.N 135 136 self._dvalue = 0.0 137 self.ddvalue = 0.0 138 self.reweighted = False 139 140 self.tag = None
Initialize Obs object.
Parameters
- samples (list): list of numpy arrays containing the Monte Carlo samples
- names (list): list of strings labeling the individual samples
- idl (list, optional): list of ranges or lists on which the samples are defined
175 def gamma_method(self, **kwargs): 176 """Estimate the error and related properties of the Obs. 177 178 Parameters 179 ---------- 180 S : float 181 specifies a custom value for the parameter S (default 2.0). 182 If set to 0 it is assumed that the data exhibits no 183 autocorrelation. In this case the error estimates coincides 184 with the sample standard error. 185 tau_exp : float 186 positive value triggers the critical slowing down analysis 187 (default 0.0). 188 N_sigma : float 189 number of standard deviations from zero until the tail is 190 attached to the autocorrelation function (default 1). 191 fft : bool 192 determines whether the fft algorithm is used for the computation 193 of the autocorrelation function (default True) 194 """ 195 196 e_content = self.e_content 197 self.e_dvalue = {} 198 self.e_ddvalue = {} 199 self.e_tauint = {} 200 self.e_dtauint = {} 201 self.e_windowsize = {} 202 self.e_n_tauint = {} 203 self.e_n_dtauint = {} 204 e_gamma = {} 205 self.e_rho = {} 206 self.e_drho = {} 207 self._dvalue = 0 208 self.ddvalue = 0 209 210 self.S = {} 211 self.tau_exp = {} 212 self.N_sigma = {} 213 214 if kwargs.get('fft') is False: 215 fft = False 216 else: 217 fft = True 218 219 def _parse_kwarg(kwarg_name): 220 if kwarg_name in kwargs: 221 tmp = kwargs.get(kwarg_name) 222 if isinstance(tmp, (int, float)): 223 if tmp < 0: 224 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 225 for e, e_name in enumerate(self.e_names): 226 getattr(self, kwarg_name)[e_name] = tmp 227 else: 228 raise TypeError(kwarg_name + ' is not in proper format.') 229 else: 230 for e, e_name in enumerate(self.e_names): 231 if e_name in getattr(Obs, kwarg_name + '_dict'): 232 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 233 else: 234 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 235 236 _parse_kwarg('S') 237 _parse_kwarg('tau_exp') 238 _parse_kwarg('N_sigma') 239 240 for e, e_name in enumerate(self.mc_names): 241 gapsize = _determine_gap(self, e_content, e_name) 242 243 r_length = [] 244 for r_name in e_content[e_name]: 245 if isinstance(self.idl[r_name], range): 246 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) 247 else: 248 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) 249 250 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 251 w_max = max(r_length) // 2 252 e_gamma[e_name] = np.zeros(w_max) 253 self.e_rho[e_name] = np.zeros(w_max) 254 self.e_drho[e_name] = np.zeros(w_max) 255 256 for r_name in e_content[e_name]: 257 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 258 259 gamma_div = np.zeros(w_max) 260 for r_name in e_content[e_name]: 261 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 262 gamma_div[gamma_div < 1] = 1.0 263 e_gamma[e_name] /= gamma_div[:w_max] 264 265 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 266 self.e_tauint[e_name] = 0.5 267 self.e_dtauint[e_name] = 0.0 268 self.e_dvalue[e_name] = 0.0 269 self.e_ddvalue[e_name] = 0.0 270 self.e_windowsize[e_name] = 0 271 continue 272 273 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 274 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 275 # Make sure no entry of tauint is smaller than 0.5 276 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 277 # hep-lat/0306017 eq. (42) 278 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) 279 self.e_n_dtauint[e_name][0] = 0.0 280 281 def _compute_drho(i): 282 tmp = (self.e_rho[e_name][i + 1:w_max] 283 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], 284 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) 285 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) 286 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 287 288 if self.tau_exp[e_name] > 0: 289 _compute_drho(1) 290 texp = self.tau_exp[e_name] 291 # Critical slowing down analysis 292 if w_max // 2 <= 1: 293 raise Exception("Need at least 8 samples for tau_exp error analysis") 294 for n in range(1, w_max // 2): 295 _compute_drho(n + 1) 296 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 297 # Bias correction hep-lat/0306017 eq. (49) included 298 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 299 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 300 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 301 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 302 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 303 self.e_windowsize[e_name] = n 304 break 305 else: 306 if self.S[e_name] == 0.0: 307 self.e_tauint[e_name] = 0.5 308 self.e_dtauint[e_name] = 0.0 309 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 310 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 311 self.e_windowsize[e_name] = 0 312 else: 313 # Standard automatic windowing procedure 314 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) 315 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 316 for n in range(1, w_max): 317 if g_w[n - 1] < 0 or n >= w_max - 1: 318 _compute_drho(n) 319 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 320 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 321 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 322 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 323 self.e_windowsize[e_name] = n 324 break 325 326 self._dvalue += self.e_dvalue[e_name] ** 2 327 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 328 329 for e_name in self.cov_names: 330 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 331 self.e_ddvalue[e_name] = 0 332 self._dvalue += self.e_dvalue[e_name]**2 333 334 self._dvalue = np.sqrt(self._dvalue) 335 if self._dvalue == 0.0: 336 self.ddvalue = 0.0 337 else: 338 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 339 return
Estimate the error and related properties of the Obs.
Parameters
- S (float): specifies a custom value for the parameter S (default 2.0). If set to 0 it is assumed that the data exhibits no autocorrelation. In this case the error estimates coincides with the sample standard error.
- tau_exp (float): positive value triggers the critical slowing down analysis (default 0.0).
- N_sigma (float): number of standard deviations from zero until the tail is attached to the autocorrelation function (default 1).
- fft (bool): determines whether the fft algorithm is used for the computation of the autocorrelation function (default True)
175 def gamma_method(self, **kwargs): 176 """Estimate the error and related properties of the Obs. 177 178 Parameters 179 ---------- 180 S : float 181 specifies a custom value for the parameter S (default 2.0). 182 If set to 0 it is assumed that the data exhibits no 183 autocorrelation. In this case the error estimates coincides 184 with the sample standard error. 185 tau_exp : float 186 positive value triggers the critical slowing down analysis 187 (default 0.0). 188 N_sigma : float 189 number of standard deviations from zero until the tail is 190 attached to the autocorrelation function (default 1). 191 fft : bool 192 determines whether the fft algorithm is used for the computation 193 of the autocorrelation function (default True) 194 """ 195 196 e_content = self.e_content 197 self.e_dvalue = {} 198 self.e_ddvalue = {} 199 self.e_tauint = {} 200 self.e_dtauint = {} 201 self.e_windowsize = {} 202 self.e_n_tauint = {} 203 self.e_n_dtauint = {} 204 e_gamma = {} 205 self.e_rho = {} 206 self.e_drho = {} 207 self._dvalue = 0 208 self.ddvalue = 0 209 210 self.S = {} 211 self.tau_exp = {} 212 self.N_sigma = {} 213 214 if kwargs.get('fft') is False: 215 fft = False 216 else: 217 fft = True 218 219 def _parse_kwarg(kwarg_name): 220 if kwarg_name in kwargs: 221 tmp = kwargs.get(kwarg_name) 222 if isinstance(tmp, (int, float)): 223 if tmp < 0: 224 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 225 for e, e_name in enumerate(self.e_names): 226 getattr(self, kwarg_name)[e_name] = tmp 227 else: 228 raise TypeError(kwarg_name + ' is not in proper format.') 229 else: 230 for e, e_name in enumerate(self.e_names): 231 if e_name in getattr(Obs, kwarg_name + '_dict'): 232 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 233 else: 234 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 235 236 _parse_kwarg('S') 237 _parse_kwarg('tau_exp') 238 _parse_kwarg('N_sigma') 239 240 for e, e_name in enumerate(self.mc_names): 241 gapsize = _determine_gap(self, e_content, e_name) 242 243 r_length = [] 244 for r_name in e_content[e_name]: 245 if isinstance(self.idl[r_name], range): 246 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) 247 else: 248 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) 249 250 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 251 w_max = max(r_length) // 2 252 e_gamma[e_name] = np.zeros(w_max) 253 self.e_rho[e_name] = np.zeros(w_max) 254 self.e_drho[e_name] = np.zeros(w_max) 255 256 for r_name in e_content[e_name]: 257 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 258 259 gamma_div = np.zeros(w_max) 260 for r_name in e_content[e_name]: 261 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) 262 gamma_div[gamma_div < 1] = 1.0 263 e_gamma[e_name] /= gamma_div[:w_max] 264 265 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 266 self.e_tauint[e_name] = 0.5 267 self.e_dtauint[e_name] = 0.0 268 self.e_dvalue[e_name] = 0.0 269 self.e_ddvalue[e_name] = 0.0 270 self.e_windowsize[e_name] = 0 271 continue 272 273 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 274 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 275 # Make sure no entry of tauint is smaller than 0.5 276 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 277 # hep-lat/0306017 eq. (42) 278 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) 279 self.e_n_dtauint[e_name][0] = 0.0 280 281 def _compute_drho(i): 282 tmp = (self.e_rho[e_name][i + 1:w_max] 283 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], 284 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) 285 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) 286 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 287 288 if self.tau_exp[e_name] > 0: 289 _compute_drho(1) 290 texp = self.tau_exp[e_name] 291 # Critical slowing down analysis 292 if w_max // 2 <= 1: 293 raise Exception("Need at least 8 samples for tau_exp error analysis") 294 for n in range(1, w_max // 2): 295 _compute_drho(n + 1) 296 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 297 # Bias correction hep-lat/0306017 eq. (49) included 298 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 299 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 300 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 301 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 302 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 303 self.e_windowsize[e_name] = n 304 break 305 else: 306 if self.S[e_name] == 0.0: 307 self.e_tauint[e_name] = 0.5 308 self.e_dtauint[e_name] = 0.0 309 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 310 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 311 self.e_windowsize[e_name] = 0 312 else: 313 # Standard automatic windowing procedure 314 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) 315 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 316 for n in range(1, w_max): 317 if g_w[n - 1] < 0 or n >= w_max - 1: 318 _compute_drho(n) 319 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 320 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 321 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 322 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) 323 self.e_windowsize[e_name] = n 324 break 325 326 self._dvalue += self.e_dvalue[e_name] ** 2 327 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 328 329 for e_name in self.cov_names: 330 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 331 self.e_ddvalue[e_name] = 0 332 self._dvalue += self.e_dvalue[e_name]**2 333 334 self._dvalue = np.sqrt(self._dvalue) 335 if self._dvalue == 0.0: 336 self.ddvalue = 0.0 337 else: 338 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 339 return
Estimate the error and related properties of the Obs.
Parameters
- S (float): specifies a custom value for the parameter S (default 2.0). If set to 0 it is assumed that the data exhibits no autocorrelation. In this case the error estimates coincides with the sample standard error.
- tau_exp (float): positive value triggers the critical slowing down analysis (default 0.0).
- N_sigma (float): number of standard deviations from zero until the tail is attached to the autocorrelation function (default 1).
- fft (bool): determines whether the fft algorithm is used for the computation of the autocorrelation function (default True)
379 def details(self, ens_content=True): 380 """Output detailed properties of the Obs. 381 382 Parameters 383 ---------- 384 ens_content : bool 385 print details about the ensembles and replica if true. 386 """ 387 if self.tag is not None: 388 print("Description:", self.tag) 389 if not hasattr(self, 'e_dvalue'): 390 print('Result\t %3.8e' % (self.value)) 391 else: 392 if self.value == 0.0: 393 percentage = np.nan 394 else: 395 percentage = np.abs(self._dvalue / self.value) * 100 396 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 397 if len(self.e_names) > 1: 398 print(' Ensemble errors:') 399 e_content = self.e_content 400 for e_name in self.mc_names: 401 gap = _determine_gap(self, e_content, e_name) 402 403 if len(self.e_names) > 1: 404 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) 405 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) 406 tau_string += f" in units of {gap} config" 407 if gap > 1: 408 tau_string += "s" 409 if self.tau_exp[e_name] > 0: 410 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) 411 else: 412 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) 413 print(tau_string) 414 for e_name in self.cov_names: 415 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) 416 if ens_content is True: 417 if len(self.e_names) == 1: 418 print(self.N, 'samples in', len(self.e_names), 'ensemble:') 419 else: 420 print(self.N, 'samples in', len(self.e_names), 'ensembles:') 421 my_string_list = [] 422 for key, value in sorted(self.e_content.items()): 423 if key not in self.covobs: 424 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " 425 if len(value) == 1: 426 my_string += f': {self.shape[value[0]]} configurations' 427 if isinstance(self.idl[value[0]], range): 428 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' 429 else: 430 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' 431 else: 432 sublist = [] 433 for v in value: 434 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " 435 my_substring += f': {self.shape[v]} configurations' 436 if isinstance(self.idl[v], range): 437 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' 438 else: 439 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' 440 sublist.append(my_substring) 441 442 my_string += '\n' + '\n'.join(sublist) 443 else: 444 my_string = ' ' + "\u00B7 Covobs '" + key + "' " 445 my_string_list.append(my_string) 446 print('\n'.join(my_string_list))
Output detailed properties of the Obs.
Parameters
- ens_content (bool): print details about the ensembles and replica if true.
448 def reweight(self, weight): 449 """Reweight the obs with given rewighting factors. 450 451 Parameters 452 ---------- 453 weight : Obs 454 Reweighting factor. An Observable that has to be defined on a superset of the 455 configurations in obs[i].idl for all i. 456 all_configs : bool 457 if True, the reweighted observables are normalized by the average of 458 the reweighting factor on all configurations in weight.idl and not 459 on the configurations in obs[i].idl. Default False. 460 """ 461 return reweight(weight, [self])[0]
Reweight the obs with given rewighting factors.
Parameters
- weight (Obs): Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i.
- all_configs (bool): if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not on the configurations in obs[i].idl. Default False.
463 def is_zero_within_error(self, sigma=1): 464 """Checks whether the observable is zero within 'sigma' standard errors. 465 466 Parameters 467 ---------- 468 sigma : int 469 Number of standard errors used for the check. 470 471 Works only properly when the gamma method was run. 472 """ 473 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue
Checks whether the observable is zero within 'sigma' standard errors.
Parameters
- sigma (int): Number of standard errors used for the check.
- Works only properly when the gamma method was run.
475 def is_zero(self, atol=1e-10): 476 """Checks whether the observable is zero within a given tolerance. 477 478 Parameters 479 ---------- 480 atol : float 481 Absolute tolerance (for details see numpy documentation). 482 """ 483 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values())
Checks whether the observable is zero within a given tolerance.
Parameters
- atol (float): Absolute tolerance (for details see numpy documentation).
485 def plot_tauint(self, save=None): 486 """Plot integrated autocorrelation time for each ensemble. 487 488 Parameters 489 ---------- 490 save : str 491 saves the figure to a file named 'save' if. 492 """ 493 if not hasattr(self, 'e_dvalue'): 494 raise Exception('Run the gamma method first.') 495 496 for e, e_name in enumerate(self.mc_names): 497 fig = plt.figure() 498 plt.xlabel(r'$W$') 499 plt.ylabel(r'$\tau_\mathrm{int}$') 500 length = int(len(self.e_n_tauint[e_name])) 501 if self.tau_exp[e_name] > 0: 502 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] 503 x_help = np.arange(2 * self.tau_exp[e_name]) 504 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base 505 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) 506 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') 507 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], 508 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) 509 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 510 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) 511 else: 512 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) 513 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 514 515 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) 516 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') 517 plt.legend() 518 plt.xlim(-0.5, xmax) 519 ylim = plt.ylim() 520 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) 521 plt.draw() 522 if save: 523 fig.savefig(save + "_" + str(e))
Plot integrated autocorrelation time for each ensemble.
Parameters
- save (str): saves the figure to a file named 'save' if.
525 def plot_rho(self, save=None): 526 """Plot normalized autocorrelation function time for each ensemble. 527 528 Parameters 529 ---------- 530 save : str 531 saves the figure to a file named 'save' if. 532 """ 533 if not hasattr(self, 'e_dvalue'): 534 raise Exception('Run the gamma method first.') 535 for e, e_name in enumerate(self.mc_names): 536 fig = plt.figure() 537 plt.xlabel('W') 538 plt.ylabel('rho') 539 length = int(len(self.e_drho[e_name])) 540 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) 541 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') 542 if self.tau_exp[e_name] > 0: 543 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], 544 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) 545 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 546 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) 547 else: 548 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 549 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) 550 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) 551 plt.xlim(-0.5, xmax) 552 plt.draw() 553 if save: 554 fig.savefig(save + "_" + str(e))
Plot normalized autocorrelation function time for each ensemble.
Parameters
- save (str): saves the figure to a file named 'save' if.
556 def plot_rep_dist(self): 557 """Plot replica distribution for each ensemble with more than one replicum.""" 558 if not hasattr(self, 'e_dvalue'): 559 raise Exception('Run the gamma method first.') 560 for e, e_name in enumerate(self.mc_names): 561 if len(self.e_content[e_name]) == 1: 562 print('No replica distribution for a single replicum (', e_name, ')') 563 continue 564 r_length = [] 565 sub_r_mean = 0 566 for r, r_name in enumerate(self.e_content[e_name]): 567 r_length.append(len(self.deltas[r_name])) 568 sub_r_mean += self.shape[r_name] * self.r_values[r_name] 569 e_N = np.sum(r_length) 570 sub_r_mean /= e_N 571 arr = np.zeros(len(self.e_content[e_name])) 572 for r, r_name in enumerate(self.e_content[e_name]): 573 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) 574 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) 575 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') 576 plt.draw()
Plot replica distribution for each ensemble with more than one replicum.
578 def plot_history(self, expand=True): 579 """Plot derived Monte Carlo history for each ensemble 580 581 Parameters 582 ---------- 583 expand : bool 584 show expanded history for irregular Monte Carlo chains (default: True). 585 """ 586 for e, e_name in enumerate(self.mc_names): 587 plt.figure() 588 r_length = [] 589 tmp = [] 590 tmp_expanded = [] 591 for r, r_name in enumerate(self.e_content[e_name]): 592 tmp.append(self.deltas[r_name] + self.r_values[r_name]) 593 if expand: 594 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) 595 r_length.append(len(tmp_expanded[-1])) 596 else: 597 r_length.append(len(tmp[-1])) 598 e_N = np.sum(r_length) 599 x = np.arange(e_N) 600 y_test = np.concatenate(tmp, axis=0) 601 if expand: 602 y = np.concatenate(tmp_expanded, axis=0) 603 else: 604 y = y_test 605 plt.errorbar(x, y, fmt='.', markersize=3) 606 plt.xlim(-0.5, e_N - 0.5) 607 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') 608 plt.draw()
Plot derived Monte Carlo history for each ensemble
Parameters
- expand (bool): show expanded history for irregular Monte Carlo chains (default: True).
610 def plot_piechart(self, save=None): 611 """Plot piechart which shows the fractional contribution of each 612 ensemble to the error and returns a dictionary containing the fractions. 613 614 Parameters 615 ---------- 616 save : str 617 saves the figure to a file named 'save' if. 618 """ 619 if not hasattr(self, 'e_dvalue'): 620 raise Exception('Run the gamma method first.') 621 if np.isclose(0.0, self._dvalue, atol=1e-15): 622 raise Exception('Error is 0.0') 623 labels = self.e_names 624 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 625 fig1, ax1 = plt.subplots() 626 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) 627 ax1.axis('equal') 628 plt.draw() 629 if save: 630 fig1.savefig(save) 631 632 return dict(zip(labels, sizes))
Plot piechart which shows the fractional contribution of each ensemble to the error and returns a dictionary containing the fractions.
Parameters
- save (str): saves the figure to a file named 'save' if.
634 def dump(self, filename, datatype="json.gz", description="", **kwargs): 635 """Dump the Obs to a file 'name' of chosen format. 636 637 Parameters 638 ---------- 639 filename : str 640 name of the file to be saved. 641 datatype : str 642 Format of the exported file. Supported formats include 643 "json.gz" and "pickle" 644 description : str 645 Description for output file, only relevant for json.gz format. 646 path : str 647 specifies a custom path for the file (default '.') 648 """ 649 if 'path' in kwargs: 650 file_name = kwargs.get('path') + '/' + filename 651 else: 652 file_name = filename 653 654 if datatype == "json.gz": 655 from .input.json import dump_to_json 656 dump_to_json([self], file_name, description=description) 657 elif datatype == "pickle": 658 with open(file_name + '.p', 'wb') as fb: 659 pickle.dump(self, fb) 660 else: 661 raise Exception("Unknown datatype " + str(datatype))
Dump the Obs to a file 'name' of chosen format.
Parameters
- filename (str): name of the file to be saved.
- datatype (str): Format of the exported file. Supported formats include "json.gz" and "pickle"
- description (str): Description for output file, only relevant for json.gz format.
- path (str): specifies a custom path for the file (default '.')
663 def export_jackknife(self): 664 """Export jackknife samples from the Obs 665 666 Returns 667 ------- 668 numpy.ndarray 669 Returns a numpy array of length N + 1 where N is the number of samples 670 for the given ensemble and replicum. The zeroth entry of the array contains 671 the mean value of the Obs, entries 1 to N contain the N jackknife samples 672 derived from the Obs. The current implementation only works for observables 673 defined on exactly one ensemble and replicum. The derived jackknife samples 674 should agree with samples from a full jackknife analysis up to O(1/N). 675 """ 676 677 if len(self.names) != 1: 678 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") 679 680 name = self.names[0] 681 full_data = self.deltas[name] + self.r_values[name] 682 n = full_data.size 683 mean = self.value 684 tmp_jacks = np.zeros(n + 1) 685 tmp_jacks[0] = mean 686 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) 687 return tmp_jacks
Export jackknife samples from the Obs
Returns
- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples for the given ensemble and replicum. The zeroth entry of the array contains the mean value of the Obs, entries 1 to N contain the N jackknife samples derived from the Obs. The current implementation only works for observables defined on exactly one ensemble and replicum. The derived jackknife samples should agree with samples from a full jackknife analysis up to O(1/N).
689 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): 690 """Export bootstrap samples from the Obs 691 692 Parameters 693 ---------- 694 samples : int 695 Number of bootstrap samples to generate. 696 random_numbers : np.ndarray 697 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. 698 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. 699 save_rng : str 700 Save the random numbers to a file if a path is specified. 701 702 Returns 703 ------- 704 numpy.ndarray 705 Returns a numpy array of length N + 1 where N is the number of samples 706 for the given ensemble and replicum. The zeroth entry of the array contains 707 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples 708 derived from the Obs. The current implementation only works for observables 709 defined on exactly one ensemble and replicum. The derived bootstrap samples 710 should agree with samples from a full bootstrap analysis up to O(1/N). 711 """ 712 if len(self.names) != 1: 713 raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") 714 715 name = self.names[0] 716 length = self.N 717 718 if random_numbers is None: 719 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF 720 rng = np.random.default_rng(seed) 721 random_numbers = rng.integers(0, length, size=(samples, length)) 722 723 if save_rng is not None: 724 np.savetxt(save_rng, random_numbers, fmt='%i') 725 726 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length 727 ret = np.zeros(samples + 1) 728 ret[0] = self.value 729 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) 730 return ret
Export bootstrap samples from the Obs
Parameters
- samples (int): Number of bootstrap samples to generate.
- random_numbers (np.ndarray): Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
- save_rng (str): Save the random numbers to a file if a path is specified.
Returns
- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples for the given ensemble and replicum. The zeroth entry of the array contains the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples derived from the Obs. The current implementation only works for observables defined on exactly one ensemble and replicum. The derived bootstrap samples should agree with samples from a full bootstrap analysis up to O(1/N).
918class CObs: 919 """Class for a complex valued observable.""" 920 __slots__ = ['_real', '_imag', 'tag'] 921 922 def __init__(self, real, imag=0.0): 923 self._real = real 924 self._imag = imag 925 self.tag = None 926 927 @property 928 def real(self): 929 return self._real 930 931 @property 932 def imag(self): 933 return self._imag 934 935 def gamma_method(self, **kwargs): 936 """Executes the gamma_method for the real and the imaginary part.""" 937 if isinstance(self.real, Obs): 938 self.real.gamma_method(**kwargs) 939 if isinstance(self.imag, Obs): 940 self.imag.gamma_method(**kwargs) 941 942 def is_zero(self): 943 """Checks whether both real and imaginary part are zero within machine precision.""" 944 return self.real == 0.0 and self.imag == 0.0 945 946 def conjugate(self): 947 return CObs(self.real, -self.imag) 948 949 def __add__(self, other): 950 if isinstance(other, np.ndarray): 951 return other + self 952 elif hasattr(other, 'real') and hasattr(other, 'imag'): 953 return CObs(self.real + other.real, 954 self.imag + other.imag) 955 else: 956 return CObs(self.real + other, self.imag) 957 958 def __radd__(self, y): 959 return self + y 960 961 def __sub__(self, other): 962 if isinstance(other, np.ndarray): 963 return -1 * (other - self) 964 elif hasattr(other, 'real') and hasattr(other, 'imag'): 965 return CObs(self.real - other.real, self.imag - other.imag) 966 else: 967 return CObs(self.real - other, self.imag) 968 969 def __rsub__(self, other): 970 return -1 * (self - other) 971 972 def __mul__(self, other): 973 if isinstance(other, np.ndarray): 974 return other * self 975 elif hasattr(other, 'real') and hasattr(other, 'imag'): 976 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): 977 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], 978 [self.real, other.real, self.imag, other.imag], 979 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), 980 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], 981 [self.real, other.real, self.imag, other.imag], 982 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) 983 elif getattr(other, 'imag', 0) != 0: 984 return CObs(self.real * other.real - self.imag * other.imag, 985 self.imag * other.real + self.real * other.imag) 986 else: 987 return CObs(self.real * other.real, self.imag * other.real) 988 else: 989 return CObs(self.real * other, self.imag * other) 990 991 def __rmul__(self, other): 992 return self * other 993 994 def __truediv__(self, other): 995 if isinstance(other, np.ndarray): 996 return 1 / (other / self) 997 elif hasattr(other, 'real') and hasattr(other, 'imag'): 998 r = other.real ** 2 + other.imag ** 2 999 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) 1000 else: 1001 return CObs(self.real / other, self.imag / other) 1002 1003 def __rtruediv__(self, other): 1004 r = self.real ** 2 + self.imag ** 2 1005 if hasattr(other, 'real') and hasattr(other, 'imag'): 1006 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) 1007 else: 1008 return CObs(self.real * other / r, -self.imag * other / r) 1009 1010 def __abs__(self): 1011 return np.sqrt(self.real**2 + self.imag**2) 1012 1013 def __pos__(self): 1014 return self 1015 1016 def __neg__(self): 1017 return -1 * self 1018 1019 def __eq__(self, other): 1020 return self.real == other.real and self.imag == other.imag 1021 1022 def __str__(self): 1023 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' 1024 1025 def __repr__(self): 1026 return 'CObs[' + str(self) + ']' 1027 1028 def __format__(self, format_type): 1029 if format_type == "": 1030 significance = 2 1031 format_type = "2" 1032 else: 1033 significance = int(float(format_type.replace("+", "").replace("-", ""))) 1034 return f"({self.real:{format_type}}{self.imag:+{significance}}j)"
Class for a complex valued observable.
935 def gamma_method(self, **kwargs): 936 """Executes the gamma_method for the real and the imaginary part.""" 937 if isinstance(self.real, Obs): 938 self.real.gamma_method(**kwargs) 939 if isinstance(self.imag, Obs): 940 self.imag.gamma_method(**kwargs)
Executes the gamma_method for the real and the imaginary part.
1037def gamma_method(x, **kwargs): 1038 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. 1039 1040 See docstring of pe.Obs.gamma_method for details. 1041 """ 1042 return np.vectorize(lambda o: o.gm(**kwargs))(x)
Vectorized version of the gamma_method applicable to lists or arrays of Obs.
See docstring of pe.Obs.gamma_method for details.
1037def gamma_method(x, **kwargs): 1038 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. 1039 1040 See docstring of pe.Obs.gamma_method for details. 1041 """ 1042 return np.vectorize(lambda o: o.gm(**kwargs))(x)
Vectorized version of the gamma_method applicable to lists or arrays of Obs.
See docstring of pe.Obs.gamma_method for details.
1167def derived_observable(func, data, array_mode=False, **kwargs): 1168 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. 1169 1170 Parameters 1171 ---------- 1172 func : object 1173 arbitrary function of the form func(data, **kwargs). For the 1174 automatic differentiation to work, all numpy functions have to have 1175 the autograd wrapper (use 'import autograd.numpy as anp'). 1176 data : list 1177 list of Obs, e.g. [obs1, obs2, obs3]. 1178 num_grad : bool 1179 if True, numerical derivatives are used instead of autograd 1180 (default False). To control the numerical differentiation the 1181 kwargs of numdifftools.step_generators.MaxStepGenerator 1182 can be used. 1183 man_grad : list 1184 manually supply a list or an array which contains the jacobian 1185 of func. Use cautiously, supplying the wrong derivative will 1186 not be intercepted. 1187 1188 Notes 1189 ----- 1190 For simple mathematical operations it can be practical to use anonymous 1191 functions. For the ratio of two observables one can e.g. use 1192 1193 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) 1194 """ 1195 1196 data = np.asarray(data) 1197 raveled_data = data.ravel() 1198 1199 # Workaround for matrix operations containing non Obs data 1200 if not all(isinstance(x, Obs) for x in raveled_data): 1201 for i in range(len(raveled_data)): 1202 if isinstance(raveled_data[i], (int, float)): 1203 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") 1204 1205 allcov = {} 1206 for o in raveled_data: 1207 for name in o.cov_names: 1208 if name in allcov: 1209 if not np.allclose(allcov[name], o.covobs[name].cov): 1210 raise Exception('Inconsistent covariance matrices for %s!' % (name)) 1211 else: 1212 allcov[name] = o.covobs[name].cov 1213 1214 n_obs = len(raveled_data) 1215 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) 1216 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) 1217 new_sample_names = sorted(set(new_names) - set(new_cov_names)) 1218 1219 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 1220 1221 if data.ndim == 1: 1222 values = np.array([o.value for o in data]) 1223 else: 1224 values = np.vectorize(lambda x: x.value)(data) 1225 1226 new_values = func(values, **kwargs) 1227 1228 multi = int(isinstance(new_values, np.ndarray)) 1229 1230 new_r_values = {} 1231 new_idl_d = {} 1232 for name in new_sample_names: 1233 idl = [] 1234 tmp_values = np.zeros(n_obs) 1235 for i, item in enumerate(raveled_data): 1236 tmp_values[i] = item.r_values.get(name, item.value) 1237 tmp_idl = item.idl.get(name) 1238 if tmp_idl is not None: 1239 idl.append(tmp_idl) 1240 if multi > 0: 1241 tmp_values = np.array(tmp_values).reshape(data.shape) 1242 new_r_values[name] = func(tmp_values, **kwargs) 1243 new_idl_d[name] = _merge_idx(idl) 1244 1245 if 'man_grad' in kwargs: 1246 deriv = np.asarray(kwargs.get('man_grad')) 1247 if new_values.shape + data.shape != deriv.shape: 1248 raise Exception('Manual derivative does not have correct shape.') 1249 elif kwargs.get('num_grad') is True: 1250 if multi > 0: 1251 raise Exception('Multi mode currently not supported for numerical derivative') 1252 options = { 1253 'base_step': 0.1, 1254 'step_ratio': 2.5} 1255 for key in options.keys(): 1256 kwarg = kwargs.get(key) 1257 if kwarg is not None: 1258 options[key] = kwarg 1259 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) 1260 if tmp_df.size == 1: 1261 deriv = np.array([tmp_df.real]) 1262 else: 1263 deriv = tmp_df.real 1264 else: 1265 deriv = jacobian(func)(values, **kwargs) 1266 1267 final_result = np.zeros(new_values.shape, dtype=object) 1268 1269 if array_mode is True: 1270 1271 class _Zero_grad(): 1272 def __init__(self, N): 1273 self.grad = np.zeros((N, 1)) 1274 1275 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) 1276 d_extracted = {} 1277 g_extracted = {} 1278 for name in new_sample_names: 1279 d_extracted[name] = [] 1280 ens_length = len(new_idl_d[name]) 1281 for i_dat, dat in enumerate(data): 1282 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) 1283 for name in new_cov_names: 1284 g_extracted[name] = [] 1285 zero_grad = _Zero_grad(new_covobs_lengths[name]) 1286 for i_dat, dat in enumerate(data): 1287 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) 1288 1289 for i_val, new_val in np.ndenumerate(new_values): 1290 new_deltas = {} 1291 new_grad = {} 1292 if array_mode is True: 1293 for name in new_sample_names: 1294 ens_length = d_extracted[name][0].shape[-1] 1295 new_deltas[name] = np.zeros(ens_length) 1296 for i_dat, dat in enumerate(d_extracted[name]): 1297 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1298 for name in new_cov_names: 1299 new_grad[name] = 0 1300 for i_dat, dat in enumerate(g_extracted[name]): 1301 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1302 else: 1303 for j_obs, obs in np.ndenumerate(data): 1304 for name in obs.names: 1305 if name in obs.cov_names: 1306 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad 1307 else: 1308 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) 1309 1310 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} 1311 1312 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): 1313 raise Exception('The same name has been used for deltas and covobs!') 1314 new_samples = [] 1315 new_means = [] 1316 new_idl = [] 1317 new_names_obs = [] 1318 for name in new_names: 1319 if name not in new_covobs: 1320 new_samples.append(new_deltas[name]) 1321 new_idl.append(new_idl_d[name]) 1322 new_means.append(new_r_values[name][i_val]) 1323 new_names_obs.append(name) 1324 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) 1325 for name in new_covobs: 1326 final_result[i_val].names.append(name) 1327 final_result[i_val]._covobs = new_covobs 1328 final_result[i_val]._value = new_val 1329 final_result[i_val].reweighted = reweighted 1330 1331 if multi == 0: 1332 final_result = final_result.item() 1333 1334 return final_result
Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
Parameters
- func (object): arbitrary function of the form func(data, **kwargs). For the automatic differentiation to work, all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as anp').
- data (list): list of Obs, e.g. [obs1, obs2, obs3].
- num_grad (bool): if True, numerical derivatives are used instead of autograd (default False). To control the numerical differentiation the kwargs of numdifftools.step_generators.MaxStepGenerator can be used.
- man_grad (list): manually supply a list or an array which contains the jacobian of func. Use cautiously, supplying the wrong derivative will not be intercepted.
Notes
For simple mathematical operations it can be practical to use anonymous functions. For the ratio of two observables one can e.g. use
new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
1366def reweight(weight, obs, **kwargs): 1367 """Reweight a list of observables. 1368 1369 Parameters 1370 ---------- 1371 weight : Obs 1372 Reweighting factor. An Observable that has to be defined on a superset of the 1373 configurations in obs[i].idl for all i. 1374 obs : list 1375 list of Obs, e.g. [obs1, obs2, obs3]. 1376 all_configs : bool 1377 if True, the reweighted observables are normalized by the average of 1378 the reweighting factor on all configurations in weight.idl and not 1379 on the configurations in obs[i].idl. Default False. 1380 """ 1381 result = [] 1382 for i in range(len(obs)): 1383 if len(obs[i].cov_names): 1384 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') 1385 if not set(obs[i].names).issubset(weight.names): 1386 raise Exception('Error: Ensembles do not fit') 1387 for name in obs[i].names: 1388 if not set(obs[i].idl[name]).issubset(weight.idl[name]): 1389 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) 1390 new_samples = [] 1391 w_deltas = {} 1392 for name in sorted(obs[i].names): 1393 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) 1394 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) 1395 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1396 1397 if kwargs.get('all_configs'): 1398 new_weight = weight 1399 else: 1400 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1401 1402 result.append(tmp_obs / new_weight) 1403 result[-1].reweighted = True 1404 1405 return result
Reweight a list of observables.
Parameters
- weight (Obs): Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i.
- obs (list): list of Obs, e.g. [obs1, obs2, obs3].
- all_configs (bool): if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not on the configurations in obs[i].idl. Default False.
1408def correlate(obs_a, obs_b): 1409 """Correlate two observables. 1410 1411 Parameters 1412 ---------- 1413 obs_a : Obs 1414 First observable 1415 obs_b : Obs 1416 Second observable 1417 1418 Notes 1419 ----- 1420 Keep in mind to only correlate primary observables which have not been reweighted 1421 yet. The reweighting has to be applied after correlating the observables. 1422 Currently only works if ensembles are identical (this is not strictly necessary). 1423 """ 1424 1425 if sorted(obs_a.names) != sorted(obs_b.names): 1426 raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") 1427 if len(obs_a.cov_names) or len(obs_b.cov_names): 1428 raise Exception('Error: Not possible to correlate Obs that contain covobs!') 1429 for name in obs_a.names: 1430 if obs_a.shape[name] != obs_b.shape[name]: 1431 raise Exception('Shapes of ensemble', name, 'do not fit') 1432 if obs_a.idl[name] != obs_b.idl[name]: 1433 raise Exception('idl of ensemble', name, 'do not fit') 1434 1435 if obs_a.reweighted is True: 1436 warnings.warn("The first observable is already reweighted.", RuntimeWarning) 1437 if obs_b.reweighted is True: 1438 warnings.warn("The second observable is already reweighted.", RuntimeWarning) 1439 1440 new_samples = [] 1441 new_idl = [] 1442 for name in sorted(obs_a.names): 1443 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) 1444 new_idl.append(obs_a.idl[name]) 1445 1446 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) 1447 o.reweighted = obs_a.reweighted or obs_b.reweighted 1448 return o
Correlate two observables.
Parameters
- obs_a (Obs): First observable
- obs_b (Obs): Second observable
Notes
Keep in mind to only correlate primary observables which have not been reweighted yet. The reweighting has to be applied after correlating the observables. Currently only works if ensembles are identical (this is not strictly necessary).
1451def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): 1452 r'''Calculates the error covariance matrix of a set of observables. 1453 1454 WARNING: This function should be used with care, especially for observables with support on multiple 1455 ensembles with differing autocorrelations. See the notes below for details. 1456 1457 The gamma method has to be applied first to all observables. 1458 1459 Parameters 1460 ---------- 1461 obs : list or numpy.ndarray 1462 List or one dimensional array of Obs 1463 visualize : bool 1464 If True plots the corresponding normalized correlation matrix (default False). 1465 correlation : bool 1466 If True the correlation matrix instead of the error covariance matrix is returned (default False). 1467 smooth : None or int 1468 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue 1469 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the 1470 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely 1471 small ones. 1472 1473 Notes 1474 ----- 1475 The error covariance is defined such that it agrees with the squared standard error for two identical observables 1476 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ 1477 in the absence of autocorrelation. 1478 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite 1479 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. 1480 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. 1481 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ 1482 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). 1483 ''' 1484 1485 length = len(obs) 1486 1487 max_samples = np.max([o.N for o in obs]) 1488 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: 1489 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) 1490 1491 cov = np.zeros((length, length)) 1492 for i in range(length): 1493 for j in range(i, length): 1494 cov[i, j] = _covariance_element(obs[i], obs[j]) 1495 cov = cov + cov.T - np.diag(np.diag(cov)) 1496 1497 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) 1498 1499 if isinstance(smooth, int): 1500 corr = _smooth_eigenvalues(corr, smooth) 1501 1502 if visualize: 1503 plt.matshow(corr, vmin=-1, vmax=1) 1504 plt.set_cmap('RdBu') 1505 plt.colorbar() 1506 plt.draw() 1507 1508 if correlation is True: 1509 return corr 1510 1511 errors = [o.dvalue for o in obs] 1512 cov = np.diag(errors) @ corr @ np.diag(errors) 1513 1514 eigenvalues = np.linalg.eigh(cov)[0] 1515 if not np.all(eigenvalues >= 0): 1516 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) 1517 1518 return cov
Calculates the error covariance matrix of a set of observables.
WARNING: This function should be used with care, especially for observables with support on multiple ensembles with differing autocorrelations. See the notes below for details.
The gamma method has to be applied first to all observables.
Parameters
- obs (list or numpy.ndarray): List or one dimensional array of Obs
- visualize (bool): If True plots the corresponding normalized correlation matrix (default False).
- correlation (bool): If True the correlation matrix instead of the error covariance matrix is returned (default False).
- smooth (None or int): If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely small ones.
Notes
The error covariance is defined such that it agrees with the squared standard error for two identical observables $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ in the absence of autocorrelation. The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
1598def import_jackknife(jacks, name, idl=None): 1599 """Imports jackknife samples and returns an Obs 1600 1601 Parameters 1602 ---------- 1603 jacks : numpy.ndarray 1604 numpy array containing the mean value as zeroth entry and 1605 the N jackknife samples as first to Nth entry. 1606 name : str 1607 name of the ensemble the samples are defined on. 1608 """ 1609 length = len(jacks) - 1 1610 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) 1611 samples = jacks[1:] @ prj 1612 mean = np.mean(samples) 1613 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) 1614 new_obs._value = jacks[0] 1615 return new_obs
Imports jackknife samples and returns an Obs
Parameters
- jacks (numpy.ndarray): numpy array containing the mean value as zeroth entry and the N jackknife samples as first to Nth entry.
- name (str): name of the ensemble the samples are defined on.
1618def import_bootstrap(boots, name, random_numbers): 1619 """Imports bootstrap samples and returns an Obs 1620 1621 Parameters 1622 ---------- 1623 boots : numpy.ndarray 1624 numpy array containing the mean value as zeroth entry and 1625 the N bootstrap samples as first to Nth entry. 1626 name : str 1627 name of the ensemble the samples are defined on. 1628 random_numbers : np.ndarray 1629 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, 1630 where samples is the number of bootstrap samples and length is the length of the original Monte Carlo 1631 chain to be reconstructed. 1632 """ 1633 samples, length = random_numbers.shape 1634 if samples != len(boots) - 1: 1635 raise ValueError("Random numbers do not have the correct shape.") 1636 1637 if samples < length: 1638 raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.") 1639 1640 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length 1641 1642 samples = scipy.linalg.lstsq(proj, boots[1:])[0] 1643 ret = Obs([samples], [name]) 1644 ret._value = boots[0] 1645 return ret
Imports bootstrap samples and returns an Obs
Parameters
- boots (numpy.ndarray): numpy array containing the mean value as zeroth entry and the N bootstrap samples as first to Nth entry.
- name (str): name of the ensemble the samples are defined on.
- random_numbers (np.ndarray): Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, where samples is the number of bootstrap samples and length is the length of the original Monte Carlo chain to be reconstructed.
1648def merge_obs(list_of_obs): 1649 """Combine all observables in list_of_obs into one new observable 1650 1651 Parameters 1652 ---------- 1653 list_of_obs : list 1654 list of the Obs object to be combined 1655 1656 Notes 1657 ----- 1658 It is not possible to combine obs which are based on the same replicum 1659 """ 1660 replist = [item for obs in list_of_obs for item in obs.names] 1661 if (len(replist) == len(set(replist))) is False: 1662 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) 1663 if any([len(o.cov_names) for o in list_of_obs]): 1664 raise Exception('Not possible to merge data that contains covobs!') 1665 new_dict = {} 1666 idl_dict = {} 1667 for o in list_of_obs: 1668 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) 1669 for key in set(o.deltas) | set(o.r_values)}) 1670 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) 1671 1672 names = sorted(new_dict.keys()) 1673 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) 1674 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) 1675 return o
Combine all observables in list_of_obs into one new observable
Parameters
- list_of_obs (list): list of the Obs object to be combined
Notes
It is not possible to combine obs which are based on the same replicum
1678def cov_Obs(means, cov, name, grad=None): 1679 """Create an Obs based on mean(s) and a covariance matrix 1680 1681 Parameters 1682 ---------- 1683 mean : list of floats or float 1684 N mean value(s) of the new Obs 1685 cov : list or array 1686 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance 1687 name : str 1688 identifier for the covariance matrix 1689 grad : list or array 1690 Gradient of the Covobs wrt. the means belonging to cov. 1691 """ 1692 1693 def covobs_to_obs(co): 1694 """Make an Obs out of a Covobs 1695 1696 Parameters 1697 ---------- 1698 co : Covobs 1699 Covobs to be embedded into the Obs 1700 """ 1701 o = Obs([], [], means=[]) 1702 o._value = co.value 1703 o.names.append(co.name) 1704 o._covobs[co.name] = co 1705 o._dvalue = np.sqrt(co.errsq()) 1706 return o 1707 1708 ol = [] 1709 if isinstance(means, (float, int)): 1710 means = [means] 1711 1712 for i in range(len(means)): 1713 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) 1714 if ol[0].covobs[name].N != len(means): 1715 raise Exception('You have to provide %d mean values!' % (ol[0].N)) 1716 if len(ol) == 1: 1717 return ol[0] 1718 return ol
Create an Obs based on mean(s) and a covariance matrix
Parameters
- mean (list of floats or float): N mean value(s) of the new Obs
- cov (list or array): 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
- name (str): identifier for the covariance matrix
- grad (list or array): Gradient of the Covobs wrt. the means belonging to cov.