From fce6bcd1f893cf98729b78be840ba2ca11b4171a Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Thu, 25 Apr 2024 20:55:35 +0200 Subject: [PATCH 01/30] [build] Bump version to v2.12.0-dev --- pyerrors/version.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyerrors/version.py b/pyerrors/version.py index 200c2363..5f6c80fd 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.11.1" +__version__ = "2.12.0-dev" From 0e8d68a1f03dd5b243143ae71ab15e82f976d010 Mon Sep 17 00:00:00 2001 From: Justus Kuhlmann <82444481+jkuhl-uni@users.noreply.github.com> Date: Mon, 13 May 2024 22:27:17 +0200 Subject: [PATCH 02/30] erase print rep data (#235) --- pyerrors/input/sfcf.py | 1 - 1 file changed, 1 deletion(-) diff --git a/pyerrors/input/sfcf.py b/pyerrors/input/sfcf.py index 64ce8899..0a6eed85 100644 --- a/pyerrors/input/sfcf.py +++ b/pyerrors/input/sfcf.py @@ -307,7 +307,6 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= cfg_path = path + '/' + item + '/' + subitem file_data = _read_o_file(cfg_path, name, needed_keys, intern, version, im) rep_data.append(file_data) - print(rep_data) for t in range(intern[name]["T"]): internal_ret_dict[key][t].append([]) for cfg in range(no_cfg): From d17513f0436ef7a5590581ff47ce710b28754957 Mon Sep 17 00:00:00 2001 From: Justus Kuhlmann <82444481+jkuhl-uni@users.noreply.github.com> Date: Wed, 19 Jun 2024 12:55:30 +0200 Subject: [PATCH 03/30] bugfix: read bb and bib/bi corr in one with keyed_out (#237) --- pyerrors/input/sfcf.py | 1 + 1 file changed, 1 insertion(+) diff --git a/pyerrors/input/sfcf.py b/pyerrors/input/sfcf.py index 0a6eed85..739b1752 100644 --- a/pyerrors/input/sfcf.py +++ b/pyerrors/input/sfcf.py @@ -362,6 +362,7 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= result_dict = {} if keyed_out: for key in needed_keys: + name = _key2specs(key)[0] result = [] for t in range(intern[name]["T"]): result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) From 7ca9d4ee4174ec157f073f448b431e8096fba16f Mon Sep 17 00:00:00 2001 From: Justus Kuhlmann <82444481+jkuhl-uni@users.noreply.github.com> Date: Thu, 15 Aug 2024 19:00:52 +0200 Subject: [PATCH 04/30] corrected sfcf_read_multi behaviour (#238) --- pyerrors/input/sfcf.py | 42 ++++++++++++++++++++++++++++++++---------- 1 file changed, 32 insertions(+), 10 deletions(-) diff --git a/pyerrors/input/sfcf.py b/pyerrors/input/sfcf.py index 739b1752..e9f2837e 100644 --- a/pyerrors/input/sfcf.py +++ b/pyerrors/input/sfcf.py @@ -224,12 +224,23 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= intern[name]["spec"][quarks][off] = {} for w in wf_list: intern[name]["spec"][quarks][off][w] = {} - for w2 in wf2_list: - intern[name]["spec"][quarks][off][w][w2] = {} - intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks) + if b2b: + for w2 in wf2_list: + intern[name]["spec"][quarks][off][w][w2] = {} + intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks) + else: + intern[name]["spec"][quarks][off][w]["0"] = {} + intern[name]["spec"][quarks][off][w]["0"]["pattern"] = _make_pattern(version, name, off, w, 0, intern[name]['b2b'], quarks) internal_ret_dict = {} - needed_keys = _lists2key(name_list, quarks_list, noffset_list, wf_list, wf2_list) + needed_keys = [] + for name, corr_type in zip(name_list, corr_type_list): + b2b, single = _extract_corr_type(corr_type) + if b2b: + needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, wf2_list)) + else: + needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, ["0"])) + for key in needed_keys: internal_ret_dict[key] = [] @@ -270,10 +281,14 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= if i == 0: if version != "0.0" and compact: file = path + '/' + item + '/' + sub_ls[0] - for name in name_list: + for name_index, name in enumerate(name_list): if version == "0.0" or not compact: file = path + '/' + item + '/' + sub_ls[0] + '/' + name - for key in _lists2key(quarks_list, noffset_list, wf_list, wf2_list): + if corr_type_list[name_index] == 'bi': + name_keys = _lists2key(quarks_list, noffset_list, wf_list, ["0"]) + else: + name_keys = _lists2key(quarks_list, noffset_list, wf_list, wf2_list) + for key in name_keys: specs = _key2specs(key) quarks = specs[0] off = specs[1] @@ -368,7 +383,7 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) result_dict[key] = result else: - for name in name_list: + for name, corr_type in zip(name_list, corr_type_list): result_dict[name] = {} for quarks in quarks_list: result_dict[name][quarks] = {} @@ -376,12 +391,19 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= result_dict[name][quarks][off] = {} for w in wf_list: result_dict[name][quarks][off][w] = {} - for w2 in wf2_list: - key = _specs2key(name, quarks, off, w, w2) + if corr_type != 'bi': + for w2 in wf2_list: + key = _specs2key(name, quarks, off, w, w2) + result = [] + for t in range(intern[name]["T"]): + result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) + result_dict[name][quarks][str(off)][str(w)][str(w2)] = result + else: + key = _specs2key(name, quarks, off, w, "0") result = [] for t in range(intern[name]["T"]): result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) - result_dict[name][quarks][str(off)][str(w)][str(w2)] = result + result_dict[name][quarks][str(off)][str(w)][str(0)] = result return result_dict From 55cd7829092dc97800c5c5eec47a73251f2294d8 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Thu, 22 Aug 2024 21:59:07 +0200 Subject: [PATCH 05/30] [Build] Remove python3.8 and add support for numpy 2 (#239) * [build] Remove python 3.8 and bump dependency version. * [Build] Remove python 3.8 from ci and update README python badge. * [ci] Temporarily remove -Werror from pytest workflow. * [ci] Remove python 3.8 from examples workflow. * [Build] Bump further dependency versions. --- .github/workflows/examples.yml | 2 +- .github/workflows/pytest.yml | 4 ++-- README.md | 2 +- setup.py | 5 ++--- 4 files changed, 6 insertions(+), 7 deletions(-) diff --git a/.github/workflows/examples.yml b/.github/workflows/examples.yml index 67636577..b8220691 100644 --- a/.github/workflows/examples.yml +++ b/.github/workflows/examples.yml @@ -17,7 +17,7 @@ jobs: fail-fast: false matrix: os: [ubuntu-latest] - python-version: ["3.8", "3.10", "3.12"] + python-version: ["3.10", "3.12"] steps: - name: Checkout source diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index 34c18faa..52ce74c7 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -17,7 +17,7 @@ jobs: fail-fast: false matrix: os: [ubuntu-latest] - python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] + python-version: ["3.9", "3.10", "3.11", "3.12"] include: - os: macos-latest python-version: "3.10" @@ -45,4 +45,4 @@ jobs: pip freeze - name: Run tests - run: pytest --cov=pyerrors -vv -Werror + run: pytest --cov=pyerrors -vv diff --git a/README.md b/README.md index 93afe409..aa669ad5 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -[![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cpc.2023.108750-blue)](https://doi.org/10.1016/j.cpc.2023.108750) +[![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cpc.2023.108750-blue)](https://doi.org/10.1016/j.cpc.2023.108750) # pyerrors `pyerrors` is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations. diff --git a/setup.py b/setup.py index 0d9ed3e7..af6a01b7 100644 --- a/setup.py +++ b/setup.py @@ -24,15 +24,14 @@ setup(name='pyerrors', author_email='fabian.joswig@ed.ac.uk', license="MIT", packages=find_packages(), - python_requires='>=3.8.0', - install_requires=['numpy>=1.24,<2', 'autograd>=1.6.2', 'numdifftools>=0.9.41', 'matplotlib>=3.7', 'scipy>=1.10', 'iminuit>=2.21', 'h5py>=3.8', 'lxml>=4.9', 'python-rapidjson>=1.10', 'pandas>=2.0'], + python_requires='>=3.9.0', + install_requires=['numpy>=2.0', 'autograd>=1.7.0', 'numdifftools>=0.9.41', 'matplotlib>=3.9', 'scipy>=1.13', 'iminuit>=2.28', 'h5py>=3.11', 'lxml>=5.0', 'python-rapidjson>=1.20', 'pandas>=2.2'], extras_require={'test': ['pytest', 'pytest-cov', 'pytest-benchmark', 'hypothesis', 'nbmake', 'flake8']}, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', - 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', From 041d53e5ae4bceaa4ac7f31248ec090c771c610f Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Thu, 22 Aug 2024 22:04:54 +0200 Subject: [PATCH 06/30] [Release] Prepare v2.12.0 (#240) * [docs] Changelog updated. * [build] Bump version. --- CHANGELOG.md | 10 ++++++++++ pyerrors/version.py | 2 +- 2 files changed, 11 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index da8b2a66..b59bb577 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,16 @@ All notable changes to this project will be documented in this file. +## [2.12.0] - 2024-08-22 + +### Changed +- Support for numpy 2 was added via a new autograd release +- Support for python<3.9 was dropped and dependencies were updated. + +### Fixed +- Minor bug fixes in input.sfcf + + ## [2.11.1] - 2024-04-25 ### Fixed diff --git a/pyerrors/version.py b/pyerrors/version.py index 5f6c80fd..95a6d3a7 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.12.0-dev" +__version__ = "2.12.0" From 3830e3f777402a678441f5161d3e45981c439b38 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Thu, 22 Aug 2024 22:08:40 +0200 Subject: [PATCH 07/30] [Build] Bump version to 2.13.0-dev --- pyerrors/version.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyerrors/version.py b/pyerrors/version.py index 95a6d3a7..9b9dc340 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.12.0" +__version__ = "2.13.0-dev" From 1d6f7f65c0a3cd7bbff219d4c2e0cae2d1275124 Mon Sep 17 00:00:00 2001 From: Pia Leonie Jones Petrak <73896673+PiaLJP@users.noreply.github.com> Date: Fri, 13 Sep 2024 08:35:10 +0200 Subject: [PATCH 08/30] Feature/corr matrix and inverse cov matrix as input in least squares function for correlated fits (#223) * feat: corr_matrix kwargs as input for least squares fit * feat/tests: inverse covariance matrix and correlation matrix kwargs as input for least squares function * feat/tests/example: reduced new kwargs to 'inv_chol_cov_matrix' and outsourced the inversion & cholesky decomposition of the covariance matrix (function 'invert_corr_cov_cholesky(corr, covdiag)') * tests: added tests for inv_chol_cov_matrix kwarg for the case of combined fits * fix: renamed covdiag to inverrdiag needed for the cholesky decomposition and corrected its documentation * examples: added an example of a correlated combined fit to the least_squares documentation * feat/tests/fix(of typos): added function 'sort_corr()' (and a test of it) to sort correlation matrix according to a list of alphabetically sorted keys * docs: added more elaborate documentation/example of sort_corr(), fixed typos in documentation of invert_corr_cov_cholesky() --- examples/04_fit_example.ipynb | 333 ++++++++++++++++++++++++++++++---- pyerrors/fits.py | 84 +++++++-- pyerrors/obs.py | 86 +++++++++ tests/fits_test.py | 118 ++++++++++++ tests/obs_test.py | 21 +++ 5 files changed, 596 insertions(+), 46 deletions(-) diff --git a/examples/04_fit_example.ipynb b/examples/04_fit_example.ipynb index 628506a5..e8f3e7af 100644 --- a/examples/04_fit_example.ipynb +++ b/examples/04_fit_example.ipynb @@ -9,7 +9,10 @@ "import numpy as np\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", - "import pyerrors as pe" + "import pyerrors as pe\n", + "import scipy.optimize\n", + "from scipy.linalg import cholesky\n", + "from scipy.stats import norm" ] }, { @@ -57,7 +60,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can now define a custom fit function, in this case a single exponential. __Here we need to use the autograd wrapped version of numpy__ (imported as anp) to use automatic differentiation." + "We can now define a custom fit function, in this case a single exponential. __Here we need to use the autograd wrapped version of np__ (imported as anp) to use automatic differentiation." ] }, { @@ -91,7 +94,8 @@ "Fit with 2 parameters\n", "Method: Levenberg-Marquardt\n", "`xtol` termination condition is satisfied.\n", - "chisquare/d.o.f.: 0.0023324250917749687\n", + "chisquare/d.o.f.: 0.0023324250917750268\n", + "fit parameters [ 0.20362603 16.25660947]\n", "\n", " Goodness of fit:\n", "χ²/d.o.f. = 0.002332\n", @@ -104,14 +108,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHJCAYAAABZmIXiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSDElEQVR4nO3deZyVdd3/8dd3BhgQmBkWB5VFGBY3NAXczSXAJUtLQVwqLRPKLLNM9L7vX9Zd3QblmpnQbVl3lghalpUFgluUiWiK5gIDCuOCLMMm+3x/f1xnYFY4s54zM6/n43Eew7mu61znw3g8532+fK/PN8QYkSRJktR8cjJdgCRJktTWGbolSZKkZmboliRJkpqZoVuSJElqZoZuSZIkqZkZuiVJkqRmZuiWJEmSmpmhW5IkSWpmhm5JkiSpmRm6JUmSpGbWIdMFVAghFAIXpO4OBoqBK2KMZXt53HVAxTGFMcapzVSiJEmS1CAhxpjpGgAIIUwDpsQYSyrdL44xjt3DY64DqAjaIYQxwPgY46QWKFmSJElKSzZNLykGxlW6vwQYtZfH3ABMr7gTY5wDTGz60iRJkqSGy5qR7upCCDMBYozj69hfDCyJMYZq2yMwNhXAqz8mD8irtrknsKZJipYkSVJ71B14O+4hWGfNnO7KQgjjgEKg1sCdUlzH9rLUY2tzA3BjQ+uSJEmS6tAPKK1rZ1aF7koXUxYCM/d2EWUd1pCMXtfmJuCWSve7AyuWL19Ofn5+A55KkiRJ7dn69evp378/wIY9HZdVoTsVsqcDhBAmhhDWAoPqGb7rCtzEGLcCWyvuh5DMTMnPzzd0S5IkqdlkxYWUIYTCEMKU1Eh3hTkkI95j6nhYSR3bC/ewT5IkSWpxWRG6SeZnX0fVUerC1M+y2h6Qai1Ylrqgsvq+GhdRSpIkSZmSFaE7xrgQmFrRoztlArCwIkCHEIor+nJXchOVRsJTF2BOR5IkScoi2TSn+6ZqoboQGF3p/hhgErBrxckY49QQwnWpsA1wtAvjSJIkKdtkbZ/ulhBCyAfWrVu3zgspJUmSVG/r16+noKAAoCDGuL6u47JieokkSZLUlhm6JUmSpGZm6JYkSZKamaFbkiRJamaGbkmSJKmZtfvQ/b2P5EE77uAiSZKk5tfuQ/d/fDiPvCe/Y/CWJElSs8mmxXEy4kt/2syP+SnkRDjrB5DT7r+HSJIktYiSkhKmTZvG9OnT6dmzJ5Mm7V7jcMmSJTzwwANMnDiRKVOmZLDKpuHiOLDug6fvpsvsyTDi0/Cx2w3ekiRJLWjkyJGMGjWKadOmVdm+cOFCpk2btmv75MmTKSkpYebMmVWOmz59OhMnTmyxeitLd3Gcdj/SDbD98Ivo0jUfHr4SdmyDc38Muf5qJEmSWkLPnj1r3T5ixAgGDx686/7YsWMpKyurcdzs2bMzFrrTZbKscORF0KETPHgF7NwG502H3I6ZrkqSJKldKyws3PXnMWPG1Ng/ffp0SkpKWrCihjF0Vzb8fMjtBDM/CzMvg3E/T4K4JElSNtr2Aax6PdNVJHoPg077NMmp5syZQ3FxMcXFxbtGsBcuXLhresmSJUt2HTd79mxKSkqYOnUqANddd12T1NDUDN3VHfJxuPA+mPFpmPEpuOCX0LFzpquSJEmqadXrMP2UTFeRmPgEHHBkk5xq5syZTJ48ucq2ESNGMGXKFMaPH79rW8XId0lJSdaG7QqG7toMOwMu+g3cfzH85kK48NdN9s1NkiSpyfQeloTdbNB7WKMevmDBAqZOncrq1at54IEHaoTu1s7QXZcho+GSWfDrCXDfeLj4fsjrnumqJEmSduu0T5ONLmfaqFGjdo1WH3300RmupunZG29PBn0YPv0QvPsi/PJc+GBNpiuSJElq88aMGVNnR5O9ydaLKg3dezPgOLj097BmKdx7Nmx4N9MVSZIktWmFhYVVupbUx8KFC5u2mCZi6E7HAUfBZ/8Mm9fCz86EtW9muiJJkqQ2Y82ahs8mKC4u3jW6XVJSwogRI5qqrCZl6E5X0cHwuUeBCD8/C97PkvY8kiRJrVRFq7+SkhLmzJnD1KlTmTNnTq3HLly4kJtuuqlKe0BgV1vByZMn72o1mI1cBh7WrVu3jvz8/PQetP4d+L9PwKZVyXzv/T/UnCVKkiQpi6W7DLwj3fWVvz9c9ico7A/3fhze+kemK5IkSVKWM3Q3RNde8Jnfw37D4f8+CYsfy3RFkiRJymKG7obqnA+fehAGnpQsoPPK7zNdkSRJkrKUc7rrO6e7uh3b4LcT4ZWH4dwfw5EX7/UhK9dvYeWGrXXuL+qeR1G+S89LkiRlu3TndLsiZWN16ATn35OsVvm7L8LWDXDspD0+5L5n3uL2x96oc//Vo4dyzdjGLaUqSZKk7GHobgo5ufDxOyAvH/58HWx6H077Twih1sMvOXYAYw/tA8DilRv56owXuG3CkQwp6gYkI92SJElqOwzdTSUEOP270HVfmHNjErzPviUJ5NUU5XeuMX1kSFE3hvctaKlqJUlSO+ZU15Zn6G5KIcBJX4WuveH3X0l6eZ9/D3T0RStJkrKHU11bnqG7ORz1KdinF8y8DH51Plz0a+jsKLYkScoOTnVteYbu5nLQWfCZh+HXF8DPz07aC3bvk+mqJEmSnOqaAYbu5jTgOPjso/Cr8+Bnp8Onfws9izNdlSRJUlYoKSlh2rRpTJ06leLiYiZNSjrArV69GoDBgwczceLETJbYZAzdza3PoXD5X5OVK+85PRnx3v9Dma5KkiQp44qLi5kyZQoLFy6kuLiY6667rsr+SZMmMX78eGbOnFmv806fPj3rwrorUraEwgHwub9AQf9kqsnSJwFYumoT985fBsC985exdNWmDBYpSZLam2zPItOmTaOsrIzp06fX63GzZ89upooaztDdUrr2hkv/AP1Gwa/O529/+Bmjb36chxauAOChhSsYffPjzFywPMOFSpKk9uCBBctbRRYZP348kydPTvv46dOnU1JS0owVNYyhuyXldYOLH2Bj8Vkcv+BrXJLzV8pjsqs8JrfJD77Isiz7lilJktqWpas2cf2DL+7KH5C9WeSCCy6grKyMhQsXAlBWVsbUqVOZNWsWkyZN2rUdYM6cOcyePZuSkhKmTp3K1KlTd+3b0+NagnO6W1qHTvy45/X0Lt/OdzreS9+wmik7JhBT339CCMxYsJzJZx6c4UIlSVJb9cCC5YQQIMYa+7ItixQWFgKwYMECRowYwU033cSkSZMoLi5m3LhxDB48mOeee47CwkLGjBkDJBdoVp8fvqfHtQRHujNgRdlWvrfjU3xn+6eYmPsIt3W8i05sByDGyIq1mzNcoSRJastWrN1MrCVwQ/ZnkZKSEubMmbPrfnFxcZX7Tf24puJIdwb069GFEAL37Pwob8de3NbxLoo6ljFp+zVsCt3o16NLpkuUJEltWEUWqWukO5uySFlZGZCEZGBXJ5OysjJKSkpYs2YNa9as2et5Gvq4puJIdwZcMKr/rm+Xfy4/lku23cAhOW8ys9O32T++z4RR/TNcoSRJassqZ5HqYoxZlUUWLFgAwKhRowBYuHAh48eP54EHHqC4uHhXGK9LxUWV9X1cUzN0Z8Cg3l2Zcv4R5ATICbAgHsy47d+ia9jC7PzvMnBH9l1xK0mS2o7qWQTY9ecp5x/BwN5dM1tgJdOmTWPKlCkUFhZSVlbG6NGjueGGG5g4ceKubUCdHUsWLlzYoMc1NUN3howf1Z+5Xz+V80b0A+DIo44lfm4OXXruDz87C5bMzXCFkiSpLaueRc4b0Y+5Xz+V8Vk0yj116lTKysp2XRRZUlJCWVkZI0aM2HVMxRSRim4kxcXFu4J0SUkJI0aMSOtxzS3U9U8L7UEIIR9Yt27dOvLz8zNSw6LSdXzsR0/zyJdPYnjfAti6EWZeCiWPwzl3wpEXZaQuSZLUPtTIIi1oT8vAl5WVMXjw4BpdSCp6do8dOxZIQvbkyZOZMGEC48aNq3JM5WXk03lcQ6xfv56CggKAghjj+rqOM3RnW+gG2LkdHrkGnv8/OO2/4ORrIYSM1CdJktq2TIbutiDd0J1V3UtCCBVfZQYDxBgn7eX4McAkYDZQAowFno0xzmrOOptdbkc450fJsvHzvgvr3oKzb0m2S5IkNdLK9VtYuWErAItXbqzyE6Coex5F+Z0zUltblTWhO4QwJcY4udL9aSGE2THGsXt4WCEwBhhHErqntPrAXSEEOHUyFPSDP3wFyt6C8b+ALoWZrkySJLVy9z3zFrc/9kaVbV+d8cKuP189eijXjB3WwlW1bVkRukMIhcCIEEJhjLEstXka8FwIoTjGuKfLSgdVekzbc9QlUNgfZnwKfnYGXDwDegzMdFWSJKkVu+TYAYw9tE+d+4u657VgNe1DVoTulFFAMVBxCWlF0C7MSDXZZNDJ8PnH4L7x8NPRcNFvoP8xma5KkiS1UkX5nZ0+0sKyomVgjLEsxtgjxli5Z8uY1M+9NU+8IIQwLoQwMYQwZU8HhhDyQgj5FTege2PqblG9hybBu9cQuPdjsOjBTFckSZKkNGXTSHd1NwCT9jJ1ZCFAxfSTVPCeGWMcv4dz3tikVTZAgy9e6NoLLv09PHwVzPocrCmBD9vZRJIkKdtlZcvA1Ij16hjj1Ho+rhBYC/SoLayHEPKAypOUugMrWrpl4K2zX69x8UJle714IUZ4Yio8/j/woYvg47dDB+deSZIktbRW26c7hDAO6BljnJ7OsdW7lYQQIjCy2lSVuh6fkT7dlUe6a5N2m54XZ8LDV0K/o2HCr2Cfnk1YpSRJkvamVYbuVN/twoognRq57llb95JKo9qDK00vqdhW60h3LefI+OI4jfbWP+D+i6FzIVwyE3oNznRFkiRJ7Ua6oTsrLqQECCGMAEYAC0MIxSGEYmAisCa1v7jS4jmkQvXUaoF8IjCrTbcQrG7AcfD5ORBy4H9Hw7KnM12RJEmSqsmKke7UCPVSamkPGGMMqWMmApNjjIOrPW5ipcN7VV5gJ43nbf0j3RU2r4UHLoU3/wYf/SGM+mymK5IkSWrzWuX0kpbWpkI3wM7t8OgN8OxP4ZiJcMZNkJvNDWokSZJat3RDt4msLcntCGf/EPocCn/6Brz/Goy/1wssJUmSMixr5nSrCY36HHz6d/Dui8k87/dfz3RFkiRJ7Zqhu60a9GG4Yh7k5iXB+43Zma5IkiSp3TJ0t2U9B8Hlf4UDT4BfXwDz70wW1pEkSVKLMnS3dZ3z4cJfwwlfgb/+Jzz8JdhR98I8kiRJanpeSNke5OTC2G9D0SHw+y/D6sXJCpbdijJdmSRJUrvgSHd78qEL4bI/wZqlMP00ePv5TFckSZLULhi625v+R8PEx5NR7p+dCf+6P9MVSZIktXmG7vaooC989s8w/Hz47ST48/XJwjqSJElqFs7pbq86doZzfwwHHAWPXg/vLUoW0unaO9OVSZIktTmOdLdnIcAxV8Bnfg/vvwrTTnGetyRJUjMwdAsGnug8b0mSpGZk6FaioF9qnvc453lLkiQ1Med0a7eOneHcO+GAI5N53u++lMzz7rZvpiuTJElq1RzpVlUV87wv/QOseg2mnwqlCzNdlSRJUqtm6FbtDjwBJj4B3fvAz86ABT+HGDNdlSRJUqtk6FbdKvp5H/VpeOSr8LsrYdsHma5KkiSp1TF0a8865MHHboFPToOXfwv3jIXVSzJdlSRJUqti6FZ6PnQhXPEYbN8M00+DV/+Y6YokSZJaDUO30tfnMJg4DwZ9GO6/GOZ8C3buyHRVkiRJWc/QrfrpXAATfgVjvwN/uwP+7xOwcWWmq5IkScpqhm7VXwhw4lfg0t/D+6/BtJPhrX9kuipJkqSsFWI7bgMXQsgH1q1bt478/PxMl9M6bXgXZl4GK56F078Lx34hCeVpWLl+Cys3bK1zf1H3PIryOzdRoZIkSU1v/fr1FBQUABTEGNfXdZwrUqpxuu+XLKQz51vJKpZv/g3OuRO6FO71ofc98xa3P/ZGnfuvHj2Ua8YOa7paJUmSMsSRbke6m86/H4GHr4TOhTD+59B35B4PrzzSvXjlRr464wVum3AkQ4q6AY50S5Kk7OdIt1reIR+D/Q6HWZ+Fe86A07+zx+kmRfmda4TqIUXdGN63oCWqlSRJajFeSKmm1eNA+OyjcMzEZLrJjE/B5rWZrkqSJCmjDN1qeh06wZn/Axf+GpY9lXQ3WfFcpquSJEnKGEO3ms/BZ8Okp6BrEfzsDPj7XdCOryGQJEntl6FbzavHgfDZP8Oxk+AvN8D9lzjdRJIktTuGbjW/Dp3gjO/Bhb9JWgrefTKsWJDpqiRJklqMoVst5+CPwheegu59kukmf7sdystZumoT985fBsC985exdNWmzNYpSZLUxOzTbZ/ulrdzO8z9Dvztdt7tfRznln6a9+lBeYScVHfBKecfwfhR/TNbpyRJ0l6k26fbkW61vNyOMPa/eefc+8l5/1X+1Ol6Tg0LASiPyW3ygy+yzBFvSZLURhi6lTG/fG8QZ2+fwgvlQ/hZpx9yY4dfkMc2AEIIzFiwPMMVSpIkNQ1DtzJmxdrNrI7duXz7tdy4/VIuzp3L7zp9k8GhlBgjK9ZuznSJkiRJTcLQrYzp16MLIQQg8IudZ3Dutu/QgZ080uk/uSh3Lv0KO+/1HJIkSa2BoVsZc8Go/lS+kPfVOICPb/suD+38MN/r8L9c9f5/wwdrMlihJElS0zB0K2MG9e7KlPOPICfs7lqyLeTx/3ZezvyRt9L17flw90mw7OnMFipJktRItgy0ZWDGLVu1iTvnLWbWcysYN7IfV502hIG9u8K6FfDQRHjr73DSNXDK9clCO5IkSVnCloFqNQb27splJwwE4LITBiaBG6CgH1z6BzjtP5KFdO4ZC++/lrlCJUmSGsjQreyWkwsnfwMunw3bNsG0k+GZ6dCO/4VGkiS1PoZutQ59R8CkJ+GoT8OfvwG/Og/Wv5PpqiRJktJi6Fbr0WkfOPuHcMmD8N4r8JPj4eXfZboqSZKkveqQ6QIqCyFcl/rjYIAY46Q0H1OWulsYY5zaPNUpawwdA1f+Hf5wNcy8FF6/CM6aAp0LMl2ZJElSrbJmpDuEMCXGODV1m5TaNnsvj7kOIMY4PcY4HVgYQpjWAuUq0/bpCRf8Ej5xN/z7EfjJSbDsb5muSpIkqVZZEbpDCIXAiNTPCtOAMSGE4j089AZgesWdGOMcYGJz1Kimt3L9FhaVrmNR6ToWr9wIwOKVG3dtW7l+y55PEAIceRF88W9Jp5N7z4bZ34QdW1ugekmSpPRlRZ/uVNheCoyOMS6stG0tMLJiW7XHFANLYoyh2vYIjE0F8OqPyQPyKm3qDqywT3dm3Dr7dW5/7I069189eijXjB2W3snKd8L8H8Hc78K+B8EnfgL7H9FElUqSJNUu3T7dWTGnO8ZYBvSotnlM6mdJHQ+rawS8DCisY98NwI31KE3N6JJjBzD20D517i/qnlfnvhpycuGkr8Lgj8Dvvgg/PQ1OmZwsqpPbsfHFSpIkNUJWhO463ABMSgXy+lgD9Kxj303ALZXudwdW1L80NYWi/M4U5Xdu2pPufwRcMQ+enAqPfx9e/SN88m4oOqRpn0eSJKkesmJOd3UhhCnAjNTFkfVVV+Amxrg1xri+4gZsaHCRyl4dOsFH/gs+Pxu2b04W1Hn61mQKiiRJUgZkXegOIYwjmau9t9Z/dU07KdzDPrUnfUcmC+oc+wWY82342Rmwqu455JIkSc0lq0J3CGEMJC0AU/cL6+peEmMsAcpq21/bRZRqpzp2htO/A5/7C3ywBu4+Cf7+Yygvz3RlkiSpHcma0B1CGAGMIOm1XZwK0xNJ5miT2nZdtYfdxO4LLitGyRsyJUVt3YBj4QtPw8jPwl/+I2kvuMZ/EJEkSS0j21oGFlbfV9ESMIQwEZgcYxxc7bHXsXs6ydExxsn1eN58YJ0tA9uZZU/D766ETe/DmG/D0Z+HnKz5/ilJklqRdFsGZkXozhRDdzu2dWOykM6Ce2DACXDOj6D3kExXJUmSWpl0Q7fDe2qf8rrBx26BSx+BDe/A3SfC07fBzh2ZrkySJLVBhm61b4M+DF+cn0wxeezb8L+j4d1Fma5KkiS1MYZuqdM+cMb34PLZsGMrTD8F5n4v+bMkSVITMHRLFfqNgklPwIe/Dk/fkiyqs/zZTFclSZLaAEO3VFmHPDjtP2DiE9ChM9wzFh79D9i2KdOVSZKkVszQLdVmv+Hw+cdg7LeTDic/OQFKnsh0VZIkqZUydEt1ye0AJ14NX/gbdD8AfnkO/O5LycqWkiRJ9WDolvam9xC47I/wsVvh33+AO4+Gf82AdtzjXpIk1Y+hW0pHTg6M+hxc9c+kzeBvJ8L/fdKl5CVJUloM3VJ9dN8Pxt8LF8+E1UvgruPhqZth5/ZMVyZJkrKYy8C7DLwaatsmmPc/8I+fwL4Hwcdvh/7H1Ps0K9dvYeWGunuCF3XPoyi/c2MqlSRJzSTdZeAN3YZuNdY7/4I/XA1vv5BMQRlzI3QuSPvht85+ndsfe6PO/VePHso1Y4c1QaGSJKmpGbrTYOhWkynfCf+cDnO/C526wVlT4NBzIYS9PrTySPfilRv56owXuG3CkQwp6gY40i1JUjZLN3R3aLmSpDYsJxeO+yIc8nH40zdg5qUw7MwkfPcYuMeHFuV3rhGqhxR1Y3jf9EfLJUlSdvNCSqkpFfSDC38NF/wfvPMi/PhYePIHsKPuOduSJKntM3RLTS0EOPScpL3gMVfA499PVrRcMjfTlUmSpAwxdEvNJa87nP5d+MLT0K1P0td75mWw/u1MVyZJklqYoVtqbkWHJCtafnI6LPtbsqLl/B/Z21uSpHbE0C21hBDgQxPgqmfhyEtg9jfh7g8nIVySJLV5hm6pJXUphI9OhYmPQ143uPej8NAk2LiSpas2ce/8ZQDcO38ZS1dtymSlkiSpCdmn2z7dypTycnjhVzD7RrZt3873Np/Hr8vHsD3mkpNq7z3l/CMYP6p/ZuuUJEl1SrdPtyPdUqbk5MCIz/DmxU8ya+vR3Njhl/y+439wXM4rlEcojzD5wRdZ5oi3JEmtnqFbyrD7X97E/9t5Beds+w4f0Jn7O32XOzveTl/eJ4TAjAXLM12iJElqJEO3lGEr1m4mxsiiWMz5277FV7ddydE5r/FY3rV8OWcW760uy3SJkiSpkVwGXsqwfj26EEKAGIHA78pPYvbWkXypw8N8Mfdhtrw5H17+Phx6btIFRZIktTqOdEsZdsGo/lS/oHkTXZi640LO2j6FjgccBjMvhV98HN57OUNVSpKkxjB0Sxk2qHdXppx/BDmBXV1LKv78xfPOYJ/LHoRLZsGGd+Duk+BP34AP1mS2aEmSVC+2DLRloLLEslWbuHPeYmY9t4JxI/tx1WlDGNi76+4DdmyDf06Dx6dAbkf4yH/CiMsg11likiRlii0DpVZmYO+uXHbCQAAuO2Fg1cAN0KETnPBl+PJzcNBZ8Mevw90nwhtzWr5YSZJUL4ZuqbXp3gc+cVeyquU+veC+8+H/zoP3Xsl0ZZIkqQ6Gbqm1OuAouOyPMOFXsKYkGfV+5BrY+H6mK5MkSdUYuqXWLAQ45OPwpX/C6d+FRQ/CHUfB07fC9i2Zrk6SJKUYuqW2oEMnOP5L8JUX4KhLYO534cdHw6KHUv2/JUlSJhm6pQxbuX4Li0rXsah0HYtXbgRg8cqNu7atXF+PEet9esJZU+DKf0Cf4TDrs3DP6bBiQTNVL0mS0mHLQFsGKsNunf06tz/2Rp37rx49lGvGDmvYyUseh7/8F7z3Egw/Hz7y/6DnoIadS5Ik1ZBuy0BDt6FbGbZy/RZWbtha5/6i7nkU5Xdu+BOU74QXfg3zvgebVsHRl8PJ34CuvRt+TkmSBBi602LoVruy7QN45ifw9G3JPO+TrobjroROXff6UEmSVDtDdxoM3WqXNq2Gp34I//xp0uf71OvhqE+7sqUkSQ3gipSSate1F5x5E3x5AQw6GR75KvzkePj3I3Y6kSSpmRi6pfaqx0A4/6cw6UnI7wszLoGfnQFv/SPTlUmS1OYYuqX2bv8PwWd+B5/+LWzfnATv31wM77+W6cokSWozDN2SEoM/AhOfgPN+mrQYvOs4ePhLUPZWpiuTJKnV80JKL6SUatqxFRb8DJ66Gbasg5GfhQ9/Hbr3yXRlkiRllVbXvSSEUAhcAIyPMY5N4/gxwCRgNlACjAWejTHOqsdzGrqlPdm6EZ65G+bfATu3w7GT4ISvJCtfSpKk1tW9JIQwgiRwFwLpfpoXAmOAaanbkvoEbklpyOsGJ18LV/8LjvsiPDMdbj8SnvgBbN2Q6eokSWo1smakGyCEMA64IcY4Ms1j58QYyxrxfI50S/WxcSU8dQssuAfy8pMpJ6M+Bx0bsWJmSrOvzClJUjNId6Tb1TAkpa9bEZz1fTj+S/DkVPjrf8Hf74RTroMjL4Hcjg0+9X3PvMXtj71R5/6rRw/lmrHDGnx+SZIyqbWPdPcE1qR+Do4xTt7LY/KAvEqbugMrHOmWGmj1Epj3P7BoFvQYBKfeAIePg5zcep+q8kj34pUb+eqMF7htwpEMKeoGONItScpO7WGkeyFAjLEEIIQwMYQwM8Y4fg+PuQG4sSWKk9qFXoNh3D1w0jUw73vw24nw5A/glMkw/Lx6he+i/M41QvWQom4M71vQ1FVLktTisuJCyoaIMZZUBO6UB4BxqS4odbkJKKh069d8FUrtyH7D4aLfwBXzkiD+0OeTPt8vzYLynZmuTpKkjGu1oTs1vWSXShdUFtf1mBjj1hjj+oobYPsFqSn1HQEXz4Ar5ibTTR68HO463vAtSWr3WmXoTo1mzwwhFFfbBknPbkmZ1HckXPIAfH4uFA5IwvdPToBFD0J5eaarkySpxWVb6K61R3cIoTiEcF3F/dSo9tRq00smArMa00JQUhPrNxI+NQs+/xgU9INZn0uF74cM35KkdiUrQnelUD0JGBFCmFJt+kjF6pOV3RRCuK7iBvTay0WUkjKl3yj41INw+RzIPwBmfTYJ3y//tkb4XrpqE/fOXwbAvfOXsXTVpgwULElS08qqloEtzcVxpAxZ/k94/CZYMhf2PThZZOew83jg+Xe4/sEXASiPkBOSw6ecfwTjR/XPYMGSJNUu3ZaBhm5Dt5Q5y/8JT/4Q3vgL2/MP5P+tPp0Hd36Y7dW6meYEmPv1UxnYu2uGCpUkqXbphu6smF4iqZ3qf0xyweWkJynpUMz/dPhfHs+7hs/k/oU8tu06LITAjAXLM1ioJEmNY+iWlHn7f4g7972RM7dP4ZnyQ7ixwy95Ou9qJub+ga5sJsbIirWbM12lJEkNZuiWlBX69ejCEvrzte1Xctq2W5i9cwTXdniAp/Ou5su5DzG4+/ZMlyhJUoM5p9s53VJWWLpqE6NvfpzySm9J+7OaiR0e4aLcuXTqlEfOsVfAcV+CbvtmrlBJkipxTrekVmVQ765MOf8IcsLuriXvhV58Z+el/PX02eQcczn886dw2+Hwx2thzdLMFixJUj040u1It5RVlq3axJ3zFjPruRWMG9mPq04bsrtryQdr4Nn/hWfuhs1r4bBPwolXw/4fymzRkqR2y5FuSa3SwN5dueyEgQBcdsLAqm0C9+kJp1wHX10EZ02FFc/CtJPh/z4JJU9AOx5EkCRlN0O3pNan0z5wzBXw5efh/Htg0/vwy3Pgp6elVrncmekKJUmqwtAtqfXK7QCHj4NJT8GnHoK87jDzMrhzFCz4GWzfkukKJUkCDN2S2oIQYMhouPQPcMVc2O9weORrcNvwZMXLzWWZrlCS1M4ZuiW1LX1HwgW/hC8/Bwd/DJ6YCrceBn++HtYuy3R1kqR2qkOmC5AkgJXrt7Byw1YAFq/cWOUnQFH3PIryO6d/wl6D4eO3wak3wD+nw4J74J/TkiB+/FUw4NimLF+SpD2yZaAtA6WscOvs17n9sTfq3H/16KFcM3ZYw59g2wfwr9/AP+6C1Yuh7yg4/ktwyDnJ3HBJkhog3ZaBhm5Dt5QVKo9016beI911KS+HN/4Kf78Tlj0FBQPguC/AUZ+Gzr4PSJLqx9CdBkO31M698y/4+12waBZ06AIjL4VjJ0HhgExXJklqJQzdaTB0SwJg/duped8/g60b4dBzknnf/UZlujJJUpYzdKfB0C2piq0bd8/7XlOSzPs+dhIc+gno0CnT1UmSspChOw2Gbkm1Kt8Jr/8Fnrkblj4B3frAqM/ByM9C9z6Zrk6SlEUM3WkwdEvaq5X/Tqae/Ot+2LkdDvtkMvrdTFNPWuyCUklSkzB0p8HQLSltm8vg+V/Bsz9NFtnpOxKO/UKTTz1p9taJkqQmZehOg6FbUr2V70xaDj4zDUrmQdeiZOrJqM9C9/0affrqiwR9dcYL3DbhSIYUdQMc6ZakbJNu6HZFCEmqj5xcOOis5Pb+a8nUk/k/gqduhsM+AUdfAf2PgRAadPqi/M41QvWQom4M71vQBMVLkjIlJ9MFSFKrte9BcPbN8LVXYOx/w4oF8LPT4e6T4Nl7YOuGTFcoScoShm5JaqwuhXD8lfDlhfCpB6HwQPjTtXDzIfDI1+C9lzNdoSQpw5xeIklNJScHhoxJbutWwHO/gIW/gAX3QP/j4OjL4dBzoUNepiuVJLUwR7olqTkU9IOP/Cdc8zKM/0XS4eShK+CWQ2D2N2HN0j0+fOmqTdw7fxkA985fxtJVm1qgaElSc7F7id1LJLWU919Plpr/169hy3oYMhpGXQ7Dzkgu0Ex5YMFyrn/wRQDKI+Skrsmccv4RjB/VPxOVS5LqYMvANBi6JWXEtg9g0YPJtJO3n4eC/nDUp+GoS1i6vQejb36c8lremnMCzP36qQzs3bXla5Yk1Srd0O30EklqaZ32gRGfhomPwxXzoPhU+NvtcNvhlP9qHKfnLKADO2o8LITAjAXLW7xcSVLjeSGlJGVS3xHJ7cybYNGDdJj9E+7ueAsrOxQya+fJ3L/zNN6KfQCIMbJi7eYMFyxJaghDtyRlg7zuMPIy7n//OJ58ah7jw1wuyZ3DlR1+z/ydh3L/zo8wm6Pp16NLpiuVJDWAc7qd0y0piyxdtWnXnO48tvHRnGe4sMM8js15lbWxG7lHXkj+iZ+HokMyXaokCS+kTIuhW1I2mrlgOZOrdS8ZFN7mroMXcdC7j8AHq6Df0TDi0mTp+bzumS1YktoxQ3caDN2SstWyVZu4c95iZj23gnEj+3HVaUOSriU7tsFrf4KFv4Qlc6HjPsmCO0deDAeemCzQI0lqMYbuNBi6JWWzRaXr+NiPnuaRL5/E8L4FNQ8oWw7/uh9euA/WLk2Wnz/yYvjQhdBjYIvXK0ntkS0DJamtK+wPp3wDvvI8fPbPMOjDMP9HcPuH4N6PwQu/gW2uZClJ2cDQLUmtXQhw4Alw7o/h2tfhE3cn23/3BfjhMHj4S/DmfGjH/7IpSZlmy0BJaks6dYUjL0pua5ftnn7y/K+gx6DU9JOLklFySVKLcaRbktqqHgPh1OvhK/+CSx+BAcfD07fCbYfDLz6eBPEtdU4/lCQ1IUe6JSmLrFy/hZUbtgKweOXGKj8BirrnUZTfuX4nzclJ5nsP+jB8dCq88nAyAv7wVfDHr8NBH4UjJsCQ0ZDbscn+LpKk3exeYvcSSVnk1tmvc/tjb9S5/+rRQ7lm7LCmebJ1K+ClWfDiDFj5CuzTCw47Lwng/UYlc8UlSXtky8A0GLolZZvKI921adBIdzreXQQv3p+E8A3vQM/iJHwfPh56DW7655OkNqLVhe4QQiFwATA+xjg2zcdcB5Sl7hbGGKfW8zkN3ZJUWflOWPYUvPhAMg1l28Zk9csjJiSj4F17ZbpCScoqrSp0hxBGAKOAQmBCjHFkGo+5DqAiaIcQxpAE9kn1eF5DtyTVZdsH8Pqf4V8zYPGcZLrJkDEwfBwcdBbkdWu2p87YiL8k1VOrCt0VQgjjgBvSDN1rgUExxrJK22KMMe1JiIZuSUrTplWw6KFk/nfpAujQBYadAcPPh6FjoWOXJn26Fp3bLkmN0KZDdwihGFhSPWCHECIwNsY4J83nM3RLUn2tXQYv/xYWPQjvvgSdusPBZycBfPBpTdIBpXoXl6/OeIHbJhzJkKJkdN2RbknZIt3Q3VpbBhbXsb2MZIpKrUIIeUBepU3dm64kSWonegyEk65Jbu+/Di8/lATwF++HLj3gkHOSAD7wJMjJbdBTFOV3rhGqhxR1Y3jfgib4C0hSy2utobsua4Cee9h/A3BjC9UiSW3fvsOSBXhOmQzvLUrC96IHYeEvoFsfOPQTSQDvd3TSL1yS2qm2Frr3FLgBbgJuqXS/O7Ci+cqRpHYiBNjv8OQ2+kYoXZiE75cfgn9Og4L+cNgnk9sBR9kDXFK701pDd0kd2wv3sI8Y41Zg1+XwwTd9SWp6IUC/kcnt9O/CW39PAvgL98H8O6BgABx6TjIK3nfkHkfAl67axL3zlwFw7/xlfOm0IQzq3bVl/h6S1IRa5YWUqWPXAiNjjCWVttm9RJKy1c4d8Obfkv7f//4DbFoJ+X2TOeCHngv9j60SwB9YsJzrH3wRgPIIOal39ynnH8H4Uf0z8TeQpBpaa/eSicCk6qE71a1kXOXFbyoWxokxTk/dH0fSucQ+3ZKU7cp3wlv/SAXw3yerYHbbDw75OBx6Lku7fojRtz5FeS0fUTkB5n79VAY64i0pC7Sq0F0RqoEJwAhgKvBsjHFWav9EYHKMcXC1x13H7ukkR8cYJ9fzeQ3dkpRp5eWw4tkkgL/yMKxfwaYOPXh46wj+uPMYnik/hB2VZkPm5gQmnlzM5DMPzmDRkpRoVaE7UwzdkpRlYoTShcx5cDrD1jzGgPA+a2M3/rpzFI+WH8388sPYHjpx9hEH8KOLjsp0tZLU5vt0S5LaotRFmM8ddA2TnjyHg+NSPpr7DB/NeYYJHR5nY+zME+UfYufOs2HzIOhSmOmKJSktjnQ70i1JWWfpqk2MvvnxSnO6I0NDKafnLOCM3AUckVMCOR1g0MnJapgHfRTyD8hkyZLaKaeXpMHQLUnZa+aC5Uyuq3vJ0ACv/glefQSWPQ1xZ9J+8OCz4eCPwb4HZbBySe2JoTsNhm5Jym7LVm3iznmLmfXcCsaN7MdVpw2p2bVk81p4/a9JAF88B7Z/AL2G7g7ge+kFLkmNYehOg6FbkrLfotJ1fOxHT/PIl09ieN+CPR+8fTOUPJEE8Nf+DB+sSpajP+gsGHYmDDoFOu3TMoVLahe8kFKS1P507AIHnZncynfC8mfg1T/Ca3+C5+6FDp2T4H3QmTD0DCjom+mKJbUThm5JUtuUkwsHnpDcTv8urF4Mrz8Krz0Kf7wW4jWw3xHJCPiwM+GAo5yGIqnZGLolSW1fCNB7aHI74cvJPPDFjyUh/J/T4cmp0LUIhp0Ow86C4lMhr1umq5bUhhi6JUlZZ+X6LazcsBWAxSs3VvkJUNQ9j6L8zg1/gi494PBxyW3njmQayuuPJrfnfwW5eTDow6lR8DOgcECj/j6S5IWUXkgpSVnn1tmvc/tjb9S5/+rRQ7lm7LDmefLVS+CNvyYXYr75NyjfAfseAkPHwJCxMOA46JDXPM8tqdWxe0kaDN2SlJ0qj3TXptEj3enasg6WzIU35iTtCDe+Cx27QvEpMGR0EsJ7HNhsT581vwdJdTJ0p8HQLUlKW4zw7ktJ+F48B976R7IoT+9hMGRMcjvwROjYdCE4oyP+ktJi6E6DoVuS1GBb1iU9wRfPTkbCN7wNHbokc8GHjE2mo/QsbtRTVJ/b/tUZL3DbhCMZUpRc5OlIt5R59umWJKk5dS6AQ89JbjHCyn+nAvhs+Mt/wJ+/kYTuIWOTUfCBJ0Knrns/byVF+Z1rhOohRd32vkiQpKxj6JYkqbFCgD6HJrcTr4atG2Dpk0kAf+1P8M9pkNMxuQiz+FQYfBrsf2TSS1xSu+D0EqeXSJKaU4yw6g0omQdL5sGyp2DbxqRt4aCTofi0JIT3GFjnKZau2sSP5y1m1nMrGDeyH186bQiDetdv1FxS83BOdxoM3ZKkFrdzO6xYkArhc6H0OYjl0GNQEr6LT0vCeJdCAB5YsJzrH3wRgPIIOSE5zZTzj2D8qP4Z+ktIqmDoToOhW5KUcZvLktHvJfOSIL6mBEIOHDCCtQecxBf+ls9z5UPYUW1GaE6AuV8/lYGOeEsZZehOg6FbkpR11r65ayrK5tfn0mXHejbGzvyz/GDmlx/G38sP45U4gJycXCaeXMzkMw/OdMVSu2boToOhW5KUzb7y6wW8uejvnBhe4viclzk65zU6h+2Uxa48U34o6/c/nvHjLoZ9D04u5pTU4gzdaTB0S5Ky2ZRHX2X6kyXsLE8+qzuxnSPDYk7IfZnjc15hVO5icuMO6LovDPxwMhd80MlJq0JDuNQiDN1pMHRLkrLZ0lWbGH3z45TX8lGdE2DeV47hwA9egqVPJS0K334+WSUzv28SviuCeKEXXErNxdCdBkO3JCnbzVywnMnpdi/Zsh7e+nsSwJc+mSxbT0zaEVaE8ANPhIK+Lfp3kNoyQ3caDN2SpNZg2apN3FmpT/dVpw1Jr2vJB2vgzb/tDuHvv5psLzwwCd8DT4QDT0jaFTodRWoQQ3caDN2SpNZiUek6Pvajp3nkyyc1fBn4je8nI+Fvzoc3n4Z3FwERuu+fhO8DT4ADT4J9DzKES2lKN3S7DLwkSe1Ft33h0HOSGyQ9wpc/k4yGvzkfXnkYynfAPr1gwPG7R8P7DHfJeqmRDN2SJGWpleu3sHLDVgAWr9xY5SdAUfc8ivI7N/wJuhTCsDOSG8C2TbD8n6mR8Pkw51uwcyvk5cOA45KR8AEnwAFHQoe8hj+v1A45vcTpJZKkLHXr7Ne5/bE36tx/9eihXDN2WPMVsGNrskx9xUj4W8/A9k2QmwcHHAUDjoX+x0H/Y6Frr2Yro/KXj9o0+suH1AjO6U6DoVuSlM2yLmzu3AHvvphMSXnrH8nPDe8k+3oNrRrCew9tsnnhGf/yIe2BoTsNhm5JkhohRih7q2oIf+9lIEKXnkn4rgjiBxwFHRv2BaH6NJuvzniB2yYcyZCiboAj3cosL6SUJEnNKwTocWByO+KCZNuW9bDi2d1B/IkfpKakdIL9j0yF8NStW1FaT1OU37lGqB5S1K3hXVykDDB0S5KkptM5H4aMTm6QTEl5b9HuEL7oIZj/o2Rf4QDod/Tu236H7/ECzaWrNnHv/GUA3Dt/GV86bQiD0ulXLmUBp5c4vUSSpJZVtjwZDV+xAEoXwNsvJF1ScjvBfkekQvio5FZ4IITAAwuWc326K3NKLcg53WkwdEuSlAV2bIP3XoIVz6XC+LOwdmmyr+u+bCo6ip+8Uchz5UN5sbyYTXTZ9dCcAHO/fmp6K3RKzcDQnQZDtyRJWWrTqqRd4YpnWfavJ+hV9hLdw2bKY+D12I/ny4fwfBzCSwzltJNO4rqzDst0xWqnDN1pMHRLkpT9vvyb5/nTiysYxNsclbOYo8IbHJWzhGFhObkhsjV0Jq//iKRDSt/Uz57FLmWvFmH3EkmS1Cb069EFQi6Ly/uxeGc/ZnIqAF3ZzJG5S/n84DJO67YCXn0E/vHj5EGdC5LwfcBRcEAqiBf0M4grYxzpdqRbkqSstnTVJkbf/DjltUSWGnO6N62Gt59P3RYmPysW8Om67+4AXjEinmbbQqkuTi9Jg6FbkqTWYeaC5UxuaPeS9e/sDuGlqSC+eU2yL78f9K00Ir7/h2Cfns34N1FbY+hOg6FbkqTWY9mqTdw5bzGznlvBuJH9uOq0IQ3rWhIjlL2ZhO+KEP72C7BtQ7K/YADsf0QSwPdL/ey+n1NTVCvndEuSpDah8jLwJw3pzaznVnDSkN5s3LqDRaXr6r8MfAjQY2ByO+yTybbycli9GN59Ed55Ad55Ef7+Y9hSluzvum8SvisH8R4DDeJKmyPdjnRLkpTVbp39Orc/9kad+68ePZRrxg5r+ieOEdYth3f+lbq9mPzc+G6yP68gGRGvCOH7HwG9hkJu84xpVv7yUZt6f/lQk3B6SRoM3ZIkZb+sC5sb3kuNiKfC+Lsvwtplyb4OXaDPYakR8cOhz3Docyh0avziPRn78qE9MnSnwdAtSZKaxOa18O5Lu0fD3/kXrH4DYjkQkr7hfQ7bHcT3Gw4F/es1PaXiy0dp2WYeWLCcx/69ktGHFHHBqP70LeziSHeGtMrQHUK4DihL3S2MMU7dy/FjgEnAbKAEGAs8G2OclebzGbolSVLz2L4Z3n8V3l0E770M7y1KgnnFPPG8glQQH5787HM4FB0Cnfap85QPLFjO9Q3t4qJm0epCdypwUxG0U4F6fIxx0h4eMw74KVBIErqnxBin1+M5Dd2SJKnlxAjr394dwCvC+OrFu0fFew3ePRreJ3Ur6MfS1R+k369cLaY1hu61wKAYY1mlbTHGWOe/u6RC95zKj6nncxq6JUlS5m37IBkVf29RpZHxl2DLumR/5wKWdxzIk2X78mp5P14v789rsR9ldAcgNycw8eRiJp95cAb/Eu1Tq2oZGEIoJplOUlbLvjExxjktX5UkSVIL6bRPskpm3xG7t8UI60tTIfwl3nv274wMrzG+wzw6hZ0ArIyFvFbej8WxH3lLh8PyM6HoYMjrnqG/iOqSFaEbKK5jexnJ1JE9uSCEsAboCQyOMU6u68AQQh6QV2mTr0hJkpSdQoCCfsntoDN57INXmf5kCaF8OwPDuxwUVjAsZznDwgpOyf0XA9/7K9zzw+SxBQOS+eGVb72HQccumf07tWPZErrrUhGm67IQIMZYAhBCmBhCmBljHF/H8TcANzZtiZIkSc3vglH9mfbEEnbSgcUxGd3+Y/lxQDKne97Vx3JgLIWV/4aVryQ/Fz2Y9BoHCDlJF5WiQ6DoUNj3INj3YOg1BDrk7eGZ1RSyYk536qLJ2dXnb6fmeU9O9+LIEEIhsBboUcdUldpGulc4p1uSJLUGMxcsZ3J9u5dsWQ/vv7Y7iK98Jbltej/ZH3KS1TV7HwT7Dkv9PBh6D4XO5qO9aVUXUqbmdC+pJXRHYGxdc7pDCOOqtwdMPWZkjHFhGs/rhZSSJKlVWbZqE3fOW8ys51YwbmQ/rjptSMO6lnywJgnjq16D91/f/XPdW7uP6X5ApSA+LBXGD4KuvevVY7wta1WhG3aNao+smCqS2lZn95JKo9qDK00vqdhW60h3LecwdEuSpFah8sqci1du5KszXuC2CUcypKgb0IQrc27bBKterxTEX0vurymB8h3JMV161BwZ33cY5PeDnJzG19CKtMbQfR1QVjGVJNUOcGxFn+7UaPi4ygvmhBCmVL5wMnWOo/cwp7v6cxq6JUlSq5DxZeB3bIO1S5MQvmuE/DVY9Qbs2Jwc03Ef6Dk46TXee2gyX7zX0OR+l8ImKaPyl4/atPTKnK0udMOu0Fwx0n10tUA9kWR+9+BK2wqBiZVO0WtP3UtqeT5DtyRJahWyLWzuUl6eXKy56vXktnpxEsRXL4YN7+w+ruu+qRCeulWE8h6DoEOntJ8u418+qmmVobulGbolSZKa0daNSfiufFv1BqxeAts2JMeEHCg8sNLIeKVQ3n3/GnPHV67fwn3PvMUdc98gsPuC0kgSuC8+ZoAj3dnG0C1JkpQBMcLG96qOilfc1i7bPXe8Y9dkakqvwUm7w57FvJ17AJ/8zdu8FwuBqoE8J8Dcr5/asAtLG8jQnQZDtyRJUpbZuR3Wvgmr39gdyteUwJqlsH7FrsM+iHm8GfuwLPbhzbgfy2IflrMfJx5zDFd+/MMtdkGnoTsNhm5JkqRWZPtmvnffoyx74yUG8C4Dw3scGN5jYHiXvmEVuSGVa3PzoOegXaPju/7cYxAU9IfcplsfMt3Qne0rUkqSJEmJjl3osN8hzH09j53lVQeOO7KDATmr+MLhMH7Q9tToeAm89mcoe3P3lJWcDskc8opA3mNgpduB0Kl5pqYYuiVJktRqXDCqP9OeWFJj+3Y6sDTux9FjT4Xqc7p37kg6rKxdunuqypoSKHk8CeQ7tuw+tmvR7gBeJZAPTC7szMltUN1OL3F6iSRJUqsyc8FyJj/4IrC7ewnAlPOPYPyo/vU7WcVFnWuXpW5vVvrzMtjw9u5jcztB4YBkpDwVxDf1Opxuh3wEnNNdN0O3JElS61LRr/ztss3MWLCcx/69ktGHFDFhVH8OKOzS9P3Kt2+BsreqBvFKt61HXEznc24GQ3fdDN2SJEmtS1YtjhMj69euoqBXEXghpSRJktqKS44dwNhD+9S5v6h7XssVEwJ0SO/5DN2SJElqNYryO2dmuftGapmu4ZIkSVI7ZuiWJEmSmpmhW5IkSWpmhm5JkiSpmRm6JUmSpGZm6JYkSZKamaFbWWHr1q1861vfYuvWrZkuRVnA14Mq8/Wgynw9qLLW9HpwRUpXpMwK69evp6CgAP9bCHw9qCpfD6rM14Mqy4bXQ0UN7GVFSke6JUmSpGZm6JYkSZKamcvAAytWrPCfqDJsw4YNAJSWlrJ+fZ3/MqN2wteDKvP1oMp8PaiybHg9pPu8rXpOdwihELgAGB9jHNuAx48AnmvquiRJktTujIwxLqxrZ6sd6U4F5lFAIdCzgadZDLB8+XJHuiVJklRv69evp3///pDKlXVptaE79U1iYQhhXGPPlZ+fb+iWJElSs2m1obshQgh5QF6lTd0zVYskSZLaj3YVuoEbgBurb3z//ffZsmVLBsqRJElSa5Wbm0vHjh3TOra9he6bgFsq3e8OrNixYwc7duzIUEmSJElqjWKMhu7axBi3ArvWCQ0hZLAaSZIktRcujiNJkiQ1M0O3JEmS1MzaQuhuaI9uSZIkqUW02tAdQigOIVwHTAJGhBCmNEXPbkmSJKmptdoLKWOMJcDU1E2SJEnKWq12pFuSJElqLRo80h1C+EjFn2OMc0MI+SSLz4wAZscYf9gE9UmSJEmtXmNGui8gCdglqfvPpe5/AXg+hHBtI2uTJEmS2oTGzOl+Lsb4U4AQwmigGBgbY1wGLA0hFDdBfZIkSVKr15iR7tWV/jwWKEkF7gqxEeeWJEmS2ozGhO7K/bHHAXOq7S9sxLklSZKkNqMxoXttCOHuEMJfSQL4ZEimmoQQ/gKUNUF9kiRJUqvX4DndMcYHQwgLSS6eHB9jXB9COIpkhHs6Ti+RJEmSgEYujhNjXAosrXT/eeB5gBDC5xtXmiRJktQ2pB26K/flTkMhyfLs/1vfgiRJkqS2pj4j3bNIwnRZmscX1LcYSZIkqS2qT+heEGM8Pd2DQwh3N6AeSZIkqc2pT+ienM5BqWkoawBDtyRJkkQ9WgamLpJMx3PAOmBMgyqSJEmS2phGdS8JIQwkaRnYs9quQuDoxpxbkiRJaisaHLpTPbmfY/eFlWtSP3sCS4DxjapMkiRJaiMaM9I9ERgcY1yaCuC7pqCEEAbhMvCSJEkS0Lhl4BemFscBKCEJ4cCuRXOqTzmRJEmS2qXGhO5dy7zHGNcBR4cQDqy0f0Qjzi1JkiS1GY0J3SGE8P0QwrOp+98H5oQQTgshnIcXUkqSJElAI+Z0xxh/GkK4guSiSWKMs0IIxcBjJKPgY5umREmSJKl1CzHGvR/VRoUQ8oF1r776Kt27d890OZIkSWpFcnNz6dKlCwUFBQAFMcb1dR3bmOklkiRJktLQbKE7hDCjuc4tSZIktSaNWRznpj3sLsRl4CVJkiSgcYvjTAIWsHtFSkjCdnHqz3MacW5JkiSpzWhM6J4TY7ygth2pFSp7NOLckiRJUpvRmDndV9S1I7UcfHFd+yVJkqT2pMGhO7UKpSRJkqS9aMyFlOftYXcxyYqU/9vQ80uSJEltRWPmdP8vyYWTZbXsexb4QiPOLUmSJLUZjQndC2KMpzdZJZKkXUpKSpgxYwbLly+nf//+TJgwgeJiL5WRpNaqwcvAhxCOSl0w2Wq5DLykbDRjxgyuvfZaQgjEGHf9/OEPf8iECRMyXV6L8suHpGxWn2XgGxy624JMh24/TKSa2vv/FyUlJZxyyimUl5fX2JeTk8OTTz7JoEGDMlBZy/PLh6RslxWhO4TwkxjjF5vl5FWf5zp2zysvjDFOrcdjMxa6/TCRavL/C7jpppv4yU9+ws6dO2vsy83N5Ytf/CI33HBDBiprWX75kOrW3gcnskl9Qnfac7pDCNfWo4ZewAVAs4buVOAmxjg9dX9MCGFajHFScz5vY5WUlHDttdfW+mFy7bXXcswxx/hhonbH/y8Sy5cvp67BkBgjy5cvb+GKMmPGjBmEEGrdF0Lg/vvvbxdfPlSVYbP2wYm77rqrXQ1OtFb1uZDyP4A1VO1WMgIooWYHk2JgSWMKS9MNwK5P4RjjnBDCbJIl6rOWHyZSTf5/kejfv/8efw/9+/dv4Yoywy8fVRk2DZvg4ERrV5/QXWXZ9xDC+cDCGOPS6geGEEY3RXF7EkIoJplOUlbLvjExxjnNXUND+WFSlR8mifb+e/D/i8SECRO46667at0XY+TCCy9s4Yoywy8fuxk2DZsVHJyoqrV9btYndE+udr9HbYEbIMb4WAjh8w0vKy11/VbLSPqH1xBCyAPyKm3qDvDyyy/TtWvXXRsLCgoYMGAAW7Zs4Y033qhxnsMPPxyAxYsXs3nz5ir7+vXrR48ePVi9ejVvv/12lX1du3aluLiYvn371vmXCiGQn5/PSy+9VGX7fvvtx7777ktZWVmN8NG5c2eGDh0KwKJFi2oElyFDhtClSxdWrFjB2rVrq+zr3bs3+++/Pxs3bmTp0qr/OTt06MAhhxwCwL///W927NhRZf+gQYPo1q0b77zzDqtWraqyr0ePHvTr14/NmzezePHiGn/H4cOHA3DHHXcwderUKh8mP/7xj7n55pv5yEc+wrvvvlvlsd27d2fgwIFs376dV199tcbv79BDDyU3N5eSkhI2bdpUZd8BBxxAr169WLt2LStWrKiyr0uXLgwZMgSgxu8eYOjQoXTu3Jm33nqLdeuqLsZaVFREnz592LBhA8uWLauyr1OnThx00EEAvPLKKzXm6RYXF9O1a1emTZvGd77znVp/D+ecc84ef4evv/46W7durbJ/wIABFBQUsHLlSt57770q+/Lz8znwwAPZtm0br732Wo2/62GHHUZOTg5Llizhgw8+qLKvb9++9OzZkzVr1lBaWlpl3z777MPgwYMpLy/n5ZdfrnHegw46iE6dOvHmm2+yfn3VKW99+vTZY4iqCFl7en2XlpayZs2aKvt69erFAQccwKZNmygpKamyLzc3l0MPPRSA1157jW3btlXZP3DgQLp37857773HypUrq+xr7veIqVOn8o1vfKPG3PYpU6YwaNAgli1bxoYNG6o8tq29R+zpy0d5eTkXXngh77//fpt/jwgh1Bk2v/71r3PMMcew3377tfn3iD2FTWBX2Gzr7xH//ve/6xycKC8v58033wRoF+8RL7/8Mtdem8x8rvy5ec0113D55ZdTWFjYIu8ROTk55OXl1ThPrWKMDboB1+5l/3kNPXeazz8mKb/G9iXAxDoe8y0g7u123nnnxdLS0vj000/Xur+0tDSWlpbGESNG1Nh3xx13xNLS0vi9732vxr5TTjkllpaWxkcffbTO587JyYknnnhije3f/OY3Y2lpabz77rtr7Bs+fPiumjp16lRj/9y5c2NpaWm86KKLauy76qqrYmlpaZw5c2aNffvtt9+u8+6333419s+cOTOWlpbGq666qsa+iy66KJaWlsa5c+fW2NepU6dYWloan3rqqT3+Hmo779ixY2NpaWl88cUXa33cq6++GktLS+Mpp5xSY9/3vve9WFpaGu+4444a+0aMGLHr71rbeZ9++ulYWloazzvvvBr7vva1r8XS0tJ433331dg3cODAXeft2bNnjf0PP/zwXn8P99xzT43t3bp123XeYcOG1dj/85//PJaWlsbrr7++xr6zzz47lpaWxmeffbbW5ywpKYmlpaXx+OOPr7HvBz/4QSwtLY0/+MEPauw7/vjjY2lpaSwpKan1vM8++2wsLS2NZ599do19119/fXzqqadiCKHO38PTTz8du3XrVmPfo48+GktLS+Oll15aY98VV1wRS0tL48MPP1xjX8+ePXf9DgcOHFhj/3333RdLS0vj1772tRr7mvs94tVXX631vC+++GIsLS2NY8eOrbGvLb5H3HLLLbX+Hj7zmc/E0tLS+M1vfrPGvrb2HnH++efH3NzcWp8zhBCvuuqqWj9T2tp7xCGHHBJzcnJqfRwQzz333FhaWtrm3yP69+9f5+sBiJdffnm7eI/o2LHjHl8P//3f/93i7xGpW/6esmtj+nTfDXwjxrihjv3fjzFe36CTp/f8Y4DZMcZQbftaYHLFxZXV9tU20r3iwQcfbNGR7p07d3Lbbbdx66231hjJuvnmmzn22GPb/DfU4cOHc9NNN3HXXXfVOoKTm5vLpZdeygUXXFBle1sbxSouLuaOO+7Y4+/h85//PJ/85CerbG9ro1h9+vShqKiIe++9l//6r/+q9f+LCRMmtPlRrMrvEa+88kqN8x588MF07NixXYxiVby+582bx+9//3vee+89+vTpwxlnnMFxxx3XYqNYFTL1HvGjH/2IP//5z7W+P4QQOOecc7j55pvbxUj3L3/5y1q7+uTk5HDllVe2i5HuNWvW8KlPfarO18O8efMYOnRom3+P+PnPf86sWbPqfD187nOf49vf/naLjnSfcsop0FwtA1Nzqv8K3AQ8x+5pHaNIpqKMjzG+0KCTp//8S2oJ3REYm86c7kz36V66dCn333//rrlIF154YbuYk1bhyiuv5A9/+EOdLcE+/vGP1/nPy22Jv4eq2vv/F1JltpBM2EJyN1urZtfnZrO0DKwuxlgSQrgAeIBkfnUEAsn0ji80Z+Cu9PxlIYTiGGNJtX1ZexFlZYMGDWoXb5Z18UKphL+Hqtr7/xdSZV5YmyguLuaHP/xhnWGzvQRuSF4TxxxzTLsenGitn5tNsjhOCGEQSfAuqeviyuZQsTBOpT7d40hGudNqGZjpke72zpGLhL8HSXviyOZu/kuYILs+N7NlRcrzYowPNcvJqz7PdSS9wgGOjjFW77Kyp8caujPMD5OEvwdJe2LYlKrKls/NZgndIYSBwJqKk4UQPrKHwwuBG2KMR6dbdCYYurODHyYJfw+SJKUvGz43myt0ryG5cPHoSvcLqbkaZYWCGGNuPepucYZuSZIkNVRzXUg5nmQZ+AoLYoyn13VwqqWgJEmS1O6lHbpjjI9V27S3ixWn1b8cSZIkqe1pcMtAYFCqawkxxrmpqRo3ACNIFq35YVMUKEmSJLV2OY147AUkAbuic8hzqftfAJ4PIVzbyNokSZKkNqExI93PxRh/ChBCGE3Sp3tsjHEZsDS1YqQkSZLU7jVmpHt1pT+PJVkYZ1mlbc3TAFySJElqZRoTuntW+vM4oPrS64WNOLckSZLUZjQmdK8NIdwdQvgrSQCfDMlUkxDCX6i7f7ckSZLUrjR4TneM8cEQwkKSiyfHxRjXhxCOIhnhnt5E9UmSJEmtXmNGuiGZtz0WeCyE8JEY4/MkI9wxxvhgY4uTJEmS2oIGh+7UqPbC1N3ppOZwpxbReT6EcF6jq5MkSZLagMa0DJwYY9x1MWXlkB1jXBpCGNOoyiRJkqQ2ojHTSxbuZb8tAyVJkiQaF7oLqt0P1e6PasS5JUmSpDajMaH7+RDCsyGET4YQBgI9QggDQwjnhRDeAO5umhIlSZKk1q0xLQMfCyFMAe6h6qh3Gcl87xcaV5okSZLUNjTmQkpijLOAWSGEEcBIkqXgH2uSyiRJkqQ2olGhu0KMcSGpCytDCAXARGC2o92SJElS4xfHqSHGuC7G+APAloGSJEkSDQjdIYSPhBA+H0LI38Mx+cDgRlUmSZIktRH1Ct0hhJ8Ac0hWoFwaQjgwtT0/hHBTCOEvqc4la5u+VEmSJKl1SntOdwhhNDAWmAyUAKcD00MIk0jmcxdWOnxO6jhJkiSp3avPhZQTgbExxqWp+w+GEL4PTAMmxxh/2uTVSZIkSW1AfaaXrK0UuCtMA9YZuCVJkqS61Sd0xxobkhA+u+nKkSRJktqepmgZWCOMA4QQbmqCc0uSJEmtXn3mdBenupWEatsLQwgDqx9L1QsrJUmSpHarPqF7LEnXkuoCMKWW7dMbVJEkSZLUxtQndJeQhOs1aRw7GBjUoIokSZKkNqY+oXtOfbqUpNoJSpIkSe1efS6krO9iN15IKUmSJFGP0B1jXFefE9f3eEmSJKmtaoqWgZIkSZL2oFWH7hBCYQhhYgjBBXokSZKUtepzIWVWCSGMAEaR9APvmdlqJEmSpLq12tAdY1wILAwhjMt0LZIkSdKetOrpJZIkSVJr0GpHuhsihJAH5FXa1B0gNzeX3NzczBQlSZKkVqk++bFdhW7gBuDG6huLiorIz8/PQDmSJElqzdavX5/WcVkRulPzsiekcehNqbncDXUTcEul+92BFY04nyRJkrRXWRG6Y4yzgFkt8Dxbga0V90MIzf2UkiRJkhdSSpIkSc0tK0a6G6nRPbrTnYsjSZIkVZZujgwxxmYupXmEEIqBirngI4CpwLOpqSrpnqMvzumWJElS4/WLMZbWtbPVhu6mEJJJ3QcAGzJdi3Zd1NoP/3vI14Oq8vWgynw9qLJseT10B96OewjWbWF6SYOlfjF1fiNRy6l0UeuGGKPzfdo5Xw+qzNeDKvP1oMqy6PWw1+f2QkpJkiSpmRm6JUmSpGZm6Fa22Ap8m0p91NWu+XpQZb4eVJmvB1XWal4P7fpCSkmSJKklONItSZIkNTNDtyRJktTMDN2SJElSM2vXfbrVskIIhcAFwPgY49ha9l8HlKXuFsYYp7ZcdWppab4eAAYDxBgntVx1aml7ez1UO3b23o5R65bO6yGEMAVYkrq7pj4rUqt1SePzYiJQSJIhBgM3xRjLWq7C9Bi61SJCCCOAUST/U/SsZf91ADHG6an7Y0II0wxabVMar4cpMcbJle5PM2i1XXt7PVQ7dhwwpgXKUoak8f5QCDwGjI4xlqWOfw4I1Y9V65dmfpheEbJTr4+fAuNbrMg0Ob1ELSLGuDAVqEvqOOQGYHql4+cAE1uiNrW8Pb0eUm+YI1I/K0wDxoQQilumQrWkNN4fgF2vjT2GcrV+abwepgAzKkJWjHEh4BfyNiqN18PYyqPaqT8XNn9l9WfoVsalglRhbf8UFEJwRKt9GgVUDtgVb7aFLV+KssgFwAOZLkIZNxGYFUIorviMSA3UqH0qCyHMrhioSWWKPX6BzxRDt7JBXaOXZRiy2p0YY1mMsUdq9KpCxZevrHwjVfNLhSuDVTtX6V+7RpB8PpSkpp85QNN+XUGSI9am5vmPydapqYZuZbM1+E/JStwATMrGC2PUYgpjjH7pUkXoLktNOygBJgMzM1iTMij1uTAFmAVcB4yvNj0xaxi6lc0M3KroUDCj4iJbtT8hhIl2plA1Cyr+UDGH19Hu9in1GVESYxxP0rmkJ8mFtVnH0K1sUNfoVeEe9qkdSHWqWGL7yPYr1blgwV4PVHtR12dCGXVPVVQbVemasDkAMcaSGONIknne4zJbXU22DFTGxRhLQghlIYTi6v987MUx7VelC6Qq2kgWAj2dYtDu9CTpZlMxijkYdrUJK3EEvH1JfV6UkATsytd9FOKXs/aomN3re1Q2rYXrSIuhWy2trikjN5FcLFcRsMZRqYWg2qxaXw+p0c0RpDoUpDb7mmj7arweUl+8d335Tr02JvqvH+1CXZ8Xk4EJpEJ36vNiTrWLr9X21Pr+EEKYHEKo3gFtZDZeTBlijJmuQe1AKjiNI3mjHAFMBZ6tPEpVMXKVunt05cVR1Lbs6fWQGtFeSi2da2KMLn7RBqXz/pA6ruKYcaljZvuvYW1Pmp8XFSsQAvTy86Lt2tvrIfWZcQOwmt1dz6bHLLzw3tAtSZIkNTMvpJQkSZKamaFbkiRJamaGbkmSJKmZGbolSZKkZmboliRJkpqZoVuSJElqZoZuSZIkqZkZuiVJkqRmZuiWJEmSmpmhW5IkSWpmhm5JkiSpmRm6JUmSpGb2/wFQcVvg5ygGRAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHJCAYAAABZmIXiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABX0klEQVR4nO3deXiU5b3/8fckQEAgGxhUFskAikutBHBvXSDa1ta2AqK1Pdqqwbb2uNQSOef82nq6cJJqq7a1JtbW9tRWSLS1tcsxAa1aWwtES9WikgGEuCCESRAxLJnfHw8ZEpJACElmkrxf1zVXMvPMM/NNeJj5zDf3c9+hWCwWQ5IkSVK3SUl0AZIkSVJfZ+iWJEmSupmhW5IkSepmhm5JkiSpmxm6JUmSpG5m6JYkSZK6maFbkiRJ6maGbkmSJKmbGbolSZKkbmboliRJkrrZgEQX0CQajbJ48WIAqquriUQi3HvvvWRmZu53v+Li4vh9otEo8+fP7+ZKJUmSpIMTisVisUQXATBv3jwKCwsJh8Px65FIhIqKinb3KS4uBogH7crKSsrKyigpKen+giVJkqQOSprQnZ+fT35+fjxAFxcXs3DhQrZs2dLuPllZWaxZs6ZFNzwUCpEkP5IkSZIEJFHo3tecOXMAKCsra3N7JBJhwoQJrQJ2KBSioqKCmTNnttqnoaGBhoaG+PXGxkZqa2sZMWIEoVCoC6uXJElSfxCLxdi6dStHHXUUKSntny6ZNGO6mysvLycajbYbuCEI3W3JzMwkGo22uW3hwoXceuutXVGiJEmSFLd+/XrGjBnT7vakCt1NJ1NGo1HmzJlzwJMo25KdnU1tbW2b2xYsWMBNN90Uv15XV8e4ceNYv3496enpnS1bkiRJ/VR9fT1jx45l+PDh+71fUoXuzMxMCgoKACgtLW1zzPaBtBe4AdLS0khLS2t1e3p6uqFbkiRJnXagocpJMU93NBqlsLCwxbCQmTNnEo1GqaysbHOfpllO2nqs9rZJkiRJiZAUoTsSiVBcXNyiS90UwNvrcofDYTIzM9sc293WSZSSJElSoiRF6M7Ly2P+/PktOtSLFi0iLy8vHqCbgnlzCxYsaNEJLy8vjw9PkSRJkpJF0kwZGI1GKS0tjV+vrq6mqKgo3ukuLS2lqKiI6urqFvsVFxfHw/qyZcsoKirq8HPW19eTkZFBXV2dY7olSZJ00DqaJ5MmdCeCoVuSJEmHoqN5MimGl0iSJEl9maFbkiRJ6maGbkmSJKmbGbolSZKkbmboliRJkrpZvw/d3zovDfrvBC6SJEnqAf0+dP/HB9JIe/IbBm9JkiR1mwGJLiDRvviH7fyQeyElBh/+DqT0+88hkiRJPSISiVBSUkJpaSnZ2dnMmzcvvq26uprFixdTUFBwUIsfJisXx8nI4N2n72FIRSHkfQY+eqfBW5IkqQdNnTqVadOmUVJS0uL2qqoqSkpK4rcXFhYSiUQoKytrcb/S0lIKCgp6rN7mOro4Tr/vdAPsfN9lDBmaDo98AXbtgI//EFL91UiSJPWE7OzsNm/Py8tjwoQJ8ev5+flEo9FW96uoqEhY6O4ok2WTky+DAYPgoWtg9w64uBRSBya6KkmSpH4tMzMz/v3MmTNbbS8tLSUSifRgRZ1j6G7uxFmQOgjKPgtlV8LsnwZBXJIkKRnteBc2vZLoKgIjj4FBh3XJQ1VWVhIOhwmHw/EOdlVVVXx4SXV1dfx+FRUVRCIRiouLAZg/f36X1NDVDN37Ou5jcOkDsOgzsOjTcMnPYeDgRFclSZLU2qZXoPTsRFcRKPgzHHVylzxUWVkZhYWFLW7Ly8ujqKiIOXPmxG9r6nxHIpGkDdtNDN1tOeYCuOxX8OCn4FeXwqW/7LJPbpIkSV1m5DFB2E0GI485pN2XL19OcXExmzdvZvHixa1Cd29n6G7PxBlweTn8ci48MAc+9SCkDU90VZIkSXsNOqzLusuJNm3atHi3evr06Qmupus5N97+5H4APvMwvLkSfv5xeLc20RVJkiT1eTNnzmx3RpMDSdaTKg3dBzLuNLjit1C7Bu6/ELa+meiKJEmS+rTMzMwWs5YcjKqqqq4tposYujviqCnw2T/C9i3wkw/BlnWJrkiSJKnPqK3t/GiCcDgc725HIhHy8vK6qqwuZejuqJzJ8Lk/ATH46Yfh7SSZnkeSJKmXaprqLxKJUFlZSXFxMZWVlW3et6qqioULF7aYHhCITytYWFgYn2owGbkMfAeW7Wy50xvwv5+AbZuC8d5Hvr9ba5QkSVLy6mietNN9sNKPhCv/AJlj4f6PwWt/S3RFkiRJSnKG7s4YOgL+7bdwxInwv5+E1UsSXZEkSZKSmKG7swanw6cfgvFnBQvovPTbRFckSZKkJOXiOIdi4BCY+wD8ugDKroCP/xBO/tQBd9tY/x4btza0uz1neBo56S49L0mS1FcYug/VgEEw675gtcrffB4atsKp8/a7ywPPvsadS15td/v1MyZxY/6hLaUqSZKk5GHo7gopqfCxuyAtHf44H7a9Def+J4RCbd798lPHkX/8KABWb3yHGxY9zx1zT2ZizjAg6HRLkiSp7zB0d5VQCM7/Jgw9HCq/FgTvC78bBPJ95KQPbjV8ZGLOME4cndFT1UqSpH7Moa49z9DdlUIhOOsGGDoSfvvvwVzes+6DgR60kiQpeTjUtecZurvDlE/DYSOg7Er4xSy47Jcw2C62JElKDg517XmG7u5y7Ifh3x6BX14CP70wmF5w+KhEVyVJkuRQ1wQwdHencafBZ/8Ev7gYfnI+fObXkB1OdFWSJElJIRKJUFJSQnFxMeFwmHnzghngNm/eDMCECRMoKChIZIldxtDd3UYdD1c9Fqxced/5Qcf7yPcnuipJkqSEC4fDFBUVUVVVRTgcZv78+S22z5s3jzlz5lBWVnZQj1taWpp0Yd0VKXtC5jj43P9BxthgqMmaJwFYs2kb9z+zFoD7n1nLmk3bElikJEnqb5I9i5SUlBCNRiktLT2o/SoqKrqpos4zdPeUoSPhit/BmGnwi1n85Xc/YcbtT/Bw1QYAHq7awIzbn6Bs+foEFypJkvqDxcvX94osMmfOHAoLCzt8/9LSUiKRSDdW1DmG7p6UNgw+tZh3wh/m9OU3cXnKYzTGgk2NseBS+NBK1ibZp0xJktS3rNm0jVseWhnPH5C8WeSSSy4hGo1SVVUFQDQapbi4mPLycubNmxe/HaCyspKKigoikQjFxcUUFxfHt+1vv57gmO6eNmAQP8y+hZGNO/nGwPsZHdpM0a65xPZ8/gmFQixavp7CD01OcKGSJKmvWrx8PaFQCGKxVtuSLYtkZmYCsHz5cvLy8li4cCHz5s0jHA4ze/ZsJkyYwIoVK8jMzGTmzJlAcILmvuPD97dfT7DTnQAbog18a9en+cbOT1OQ+ih3DLybQewEIBaLsWHL9gRXKEmS+rINW7YTayNwQ/JnkUgkQmVlZfx6OBxucb2r9+sqdroTYEzWEEKhEPft/givx0Zwx8C7yRkYZd7OG9kWGsaYrCGJLlGSJPVhTVmkvU53MmWRaDQKBCEZiM9kEo1GiUQi1NbWUltbe8DH6ex+XcVOdwJcMm1s/NPlHxtP5fIdCzguZR1lg27lyNjbzJ02NsEVSpKkvqx5FtlXLBZLqiyyfPlyAKZNmwZAVVUVc+bMYfHixYTD4XgYb0/TSZUHu19XM3QnQO7IoRTNOomUEKSEYHlsMrN3fp2hofeoSP8m43cl3xm3kiSp79g3iwDx74tmncT4kUMTW2AzJSUlFBUVkZmZSTQaZcaMGSxYsICCgoL4bUC7M5ZUVVV1ar+uZuhOkDnTxrL0y+dwcd4YAE6eciqxz1UyJPtI+MmHoXppgiuUJEl92b5Z5OK8MSz98jnMSaIud3FxMdFoNH5SZCQSIRqNkpeXF79P0xCRptlIwuFwPEhHIhHy8vI6tF93C8Xa+9tCP1BfX09GRgZ1dXWkp6cnpIYXaur46Pef5tEvncWJozOg4R0ouwIiT8BFP4CTL0tIXZIkqX9olUV60P6WgY9Go0yYMKHVLCRNc3bn5+cDQcguLCxk7ty5zJ49u8V9mi8j35H9OqOjedLQnWyhG2D3Tnj0Rnjuf+Hc/4IP3gyhUELqkyRJfVsiQ3df0NE8mVSzlzRNYF5dXQ0EY3j2p7KykpKSEvLz8wmHw1RUVDB9+vRD+rSSFFIHwkXfD5aNf/ybUPcaXPjd4HZJkqRDtLH+PTZubQBg9cZ3WnwFyBmeRk764ITU1lclTeguLCykqKgofn3evHnk5+dTUVHR7j7RaJTKykrKy8vjfyLo9YG7SSgE5xRCxhj43b9D9DWY8zMYkpnoyiRJUi/3wLOvceeSV1vcdsOi5+PfXz9jEjfmH9PDVfVtSRG6m5b2jEaj8VWB5s2bx9SpU4lEIvud0mXNmjU9tpJQQky5HDLHwqJPw08ugE8tgqzxia5KkiT1YpefOo7840e1uz1neFoPVtM/JEXohmAOxqYzTGHvBOhN07n0a7kfhKuXwANz4N4ZcNmvYOwpia5KkiT1Ujnpgx0+0sOSInRnZmayZcuWFrc1Lct5oInLFy9eTHZ2NrW1tVRXV7cYorKvhoYGGhoa4tfr6+sPoeoeNnJSELwf/BTc/1H45I/gxFmJrkqSJEkdkBShuy0LFy6kpKRkv0NH9u2Kl5aWMmfOnPgyn2095q233trltR6sTp+8MHQEXPFbeOQ6KP8c1EbgA85sIkmSlOyScsrAwsJCRowY0WpexgOJRqNkZWWxZcuWNsN6W53usWPH9viUgd+reKXVyQvNHfDkhVgM/lwMT3wb3n8ZfOxOGODYK0mSpJ7WK6cMBCgvL28xkfmB7tt8tpKmoN18bHhzaWlppKUlPpwe8skLTTObZIfhkS8EM5vM/QUclt3FlUqSJKkrJFWnu7Kykmg0Gg/S0WiU2traNsd1N3W1q6urW5x0ub9O976SYXGcQ/ba34Jx3oMz4fIyGDEh0RVJkiT1Gx3Nkyk9WNN+VVVVUVVVRV5eHpFIhEgkQmlpKdnZQfc2EonEF8+BoKs9f/78FoG8tLSU2bNn9+0pBPc17jS4uhJCKfDjGbD26URXJEmSpH0kRac7Go2Sm5vb5vSATeWVlpZSVFQUX62yab/S0tL49c2bN+939pJ99YlOd5PtW2DxFbDuL/CR22DaZxNdkSRJUp/X0TyZFKE7UfpU6AbYvRP+tACW3QunFMAFCyE16YbtS5Ik9Rm99kRKHYLUgXDhbTDqePjDV+Dtl2HO/Z5gKUmSlGBJM6ZbXWja5+Azv4E3VwbjvN9+JdEVSZIk9WuG7r4q9wNwzeOQmhYE71crEl2RJElSv2Xo7suyc+Gqx+DoM+CXl8AzPwgW1pEkSVKPMnT3dYPT4dJfwhn/Do/9JzzyRdjVcOD9JEmS1GU8kbI/SEmF/Fsh5zj47Zdg8+pgBcthOYmuTJIkqV+w092fvP9SuPIPULsGSs+F159LdEWSJEn9gqG7vxk7HQqeCLrcP/kQ/OPBRFckSZLU5xm6+6OM0fDZP8KJs+DX8+CPtwQL60iSJKlbOKa7vxo4GD7+QzhqCvzpFnjrhWAhnaEjE12ZJElSn2Onuz8LheCUa+Dffgtvr4KSsx3nLUmS1A0M3YLxZzrOW5IkqRsZuhXIGLNnnPdsx3lLkiR1Mcd0a6+Bg+HjP4CjTg7Geb/5z2Cc97DDE12ZJElSr2anWy01jfO+4new6WUoPQdqqhJdlSRJUq9m6Fbbjj4DCv4Mw0fBTy6A5T+FWCzRVUmSJPVKhm61r2k+7ymfgUdvgN98AXa8m+iqJEmSeh1Dt/ZvQBp89LvwyRJ48ddwXz5srk50VZIkSb2KoVsd8/5L4ZolsHM7lJ4Lq36f6IokSZJ6DUO3Om7UCVDwOOR+AB78FFR+HXbvSnRVkiRJSc/QrYMzOAPm/gLyvwF/uQv+9xPwzsZEVyVJkpTUDN06eKEQnPnvcMVv4e2XoeSD8NrfEl2VJElS0nJxHHXe+LPg2qeg7Eq4/0I4/5tw6rVBKO+AjfXvsXFrQ7vbc4ankZM+uIuKlSRJShxDtw7N8COChXQqvx6sYrnuL3DRD2BI5gF3feDZ17hzyavtbr9+xiRuzD+m62qVJElKkFAs1n9XPKmvrycjI4O6ujrS09MTXU7v969H4ZEvwOBMmPNTGD11v3dv3ulevfEdblj0PHfMPZmJOcMAO92SJCn5dTRP2ulW1znuo3DE+6D8s3DfBXD+N/Y73CQnfXCrUD0xZxgnjs7oiWolSZJ6jCdSqmtlHQ2f/ROcUhAMN1n0adi+JdFVSZIkJZShW11vwCD40Lfh0l/C2qeC2U02rEh0VZIkSQlj6Fb3mXwhzHsKhubATy6Av94N/fcUAkmS1I8ZutW9so6Gz/4RTp0H/7cAHrzc4SaSJKnfMXSr+w0YBBd8Cy79VTCl4D0fhA3LE12VJElSjzF0q+dM/kiwmM7wUcFwk7/cCY2NrNm0jfufWQvA/c+sZc2mbYmtU5IkqYs5T7fzdPe83Tth6TfgL3fy5sjT+HjNZ3ibLBpjkLJndsGiWScxZ9rYxNYpSZJ0AB3Nk3a61fNSB0L+f/PGxx8k5e1V/GHQLZwTqgKgMRZcCh9ayVo73pIkqY8wdCthfv5WLhfuLOL5xon8ZNBtfG3Az0hjBwChUIhFy9cnuEJJkqSuYehWwmzYsp3NseFctfNmvrbzCj6VupTfDPoqE0I1xGIxNmzZnugSJUmSuoShWwkzJmsIoVAICPGz3Rfw8R3fYAC7eXTQf3JZ6lLGZA4+4GNIkiT1BoZuJcwl08bS/DzeVbFxfGzHN3l49wf41oAfc93b/w3v1iawQkmSpK5h6FbC5I4cStGsk0gJ7Z21ZEcojf+3+yqemfo9hr7+DNxzFqx9OrGFSpIkHSJDtxJqzrSxLP3yOVycNwaAi/PGsPTL53DGxz4Hn/8LZI2Hn30Mlvw37NqR2GIlSZI6ydCthBs/cihXnjEegCvPGM/4kUODDRlj4Irfwbn/ESykc18+vP1y4gqVJEnqJEO3kltKKnzwK3BVBezYBiUfhGdLof+u6SRJknohQ7d6h9F5MO9JmPIZ+ONX4BcXQ/0bia5KkiSpQwzd6j0GHQYX3gaXPwRvvQQ/Oh1e/E2iq5IkSTqgAYkuoLni4mIAqqurASgpKenQPpmZmQBEo1Hmz5/fbfUpSUyaCV/4K/zueii7Al65DD5cBIMzEl2ZJElSm5Km011YWMj8+fOZP39+PGzn5+fvd5+mkF5QUEBBQQF5eXnMmzev22tVEjgsGy75OXziHvjXo/Cjs2DtXxJdlSRJUptCsVjiz0iLRqPMmTOHsrKyeNe6qqqKqVOnUl1dTTgcbnO/rKws1qxZE98HIBQK0dEfqb6+noyMDOrq6khPTz/UH0MHaWP9e2zc2gDA6o3vcMOi57lj7slMzBkGQM7wNHLSO7Aq5ZZ18Otr4bW/wpn/Duf+JwxI687SJUmSgI7nyaQZXrJ8+XIikQh5eXkA8aAdjUbbvH8kEiEajbYI3E0qKyuZOXNmq9sbGhpoaGiIX6+vrz/0wtVpDzz7GncuebXFbTcsej7+/fUzJnFj/jEHfqCso+HKR+GZ78PSb8LqJfCJH8GRJ3VxxZIkSZ2TFKE7MzOTLVu2tLitsrISoN0udyQSafex2gvqCxcu5NZbb+18oepSl586jvzjR7W7PWf4QXSrU1LhrBtgwnnwm8/DvefC2YVw1o2QOvDQi5UkSToESRG627Jw4UJKSkra7GTvT3Z2NrW1tW1uW7BgATfddFP8en19PWPHjj2UMnUIctIHd2z4yME48iS45nF4shie+B9Y9Xv45D2Qc1zXPo8kSdJBSJoTKZsrLCxk7ty5FBQUHPS+7QVugLS0NNLT01tc1AcNGATn/RdcXQE7twcL6jz9PWjcnejKJElSP5V0obu8vJwJEyYccOq/9oadRKPRdrepnxk9NVhQ59RrofJW+MkFsOnVA+8nSZLUxZIqdDeN427qcEej0XbHbofDYTIzM9vc3tZJlOqnBg6G878Bn/s/eLcW7jkL/vpDaGxMdGWSJKkfSZrQXVVVRVVVFXl5eUQiESKRCKWlpWRnZwPBiZNN83I3WbBgQTyoQ9Al78yQFPUD406Fa5+GqZ+F//sPuP9CqG37A50kSVJXS5p5unNzc9ucdaSpvNLSUoqKiuKrVTYpLi6ODydZtmwZRUVFHX5e5+nup9Y+Db/5Amx7G2beCtOvhpSk+fwpSZJ6kY7myaQI3Yli6O7HGt6Biq/C8vtg3Blw0fdh5MREVyVJknqZjuZJ23vqn9KGwUe/C1c8ClvfgHvOhKfvgN27El2ZJEnqgwzd6t9yPwCffyYYYrLkVvjxDHjzhURXJUmS+hhDtzToMLjgW3BVBexqgNKzYem3gu8lSZK6gKFbajJmGsz7M3zgy/D0d4NFddYvS3RVkiSpDzB0S80NSINz/wMK/gwDBsN9+fCn/4Ad2xJdmSRJ6sUM3VJbjjgRrl4C+bcGM5z86AyI/DnRVUmSpF7K0C21J3UAnHk9XPsXGH4U/Pwi+M0Xg5UtJUmSDoKhWzqQkRPhyt/DR78H//od/GA6/GMR9N8p7iVJ0kEydEsdkZIC0z4H1/09mGbw1wXwv590KXlJktQhhm7pYAw/AubcD58qg83VcPfp8NTtsHtnoiuTJElJbECiC5B6pWPOh/F/g8e/Hczp/c9y+NidMPaUg36ojfXvsXFr+3OC5wxPIyd98KFUK0mSEszQLXXWoKHBojonXQK/ux7uOz8YgjLzazA4o8MP88Czr3Hnklfb3X79jEncmH9MV1QsSZISJBSL9d+zwerr68nIyKCuro709PREl6PerHE3/L0Uln4TBg2DDxfB8R+HUOiAuzbvdK/e+A43LHqeO+aezMScYYCdbkmSkllH86SdbqkrpKTCaZ+H4z4Gf/gKlF0Bx3woCN9Z4/e7a0764FahemLOME4c3fFuuSRJSm6eSCl1pYwxcOkv4ZL/hTdWwg9PhSe/A7vaH7MtSZL6PkO31NVCITj+omB6wVOugSf+J1jRsnppoiuTJEkJYuiWukvacDj/m3Dt0zBsVDCvd9mVUP96oiuTJEk9zNAtdbec44IVLT9ZCmv/Eqxo+cz3ndtbkqR+xNAt9YRQCN4/F65bBidfDhVfhXs+EIRwSZLU5xm6pZ40JBM+UgwFT0DaMLj/I/DwPHhnI2s2beP+Z9YCcP8za1mzaVsiK5UkSV3Iebqdp1uJ0tgIz/8CKr7Gjp07+db2i/ll40x2xlJJ2TO9d9Gsk5gzbWxi65QkSe3qaJ600y0lSkoK5P0b6z71JOUN0/nagJ/z24H/wWkpL9EYg8YYFD60krV2vCVJ6vUM3VKCPfjiNv7f7mu4aMc3eJfBPDjom/xg4J2M5m1CoRCLlq9PdImSJOkQGbqlBNuwZTuxWIwXYmFm7fg6N+z4AtNTXmZJ2s18KaWctzZHE12iJEk6RC4DLyXYmKwhhEIhiMWAEL9pPIuKhql8ccAjfD71Ed5b9wy8+D9w/MeDWVAkSVKvY6dbSrBLpo1l3/OZtzGE4l2X8uGdRQw86gQouwJ+9jF468UEVSlJkg6FoVtKsNyRQymadRIpIeKzljR9//mLL+CwKx+Cy8th6xtwz1nwh6/Au7WJLVqSJB0Upwx0ykAlibWbtvGDx1dTvmIDs6eO4bpzJzJ+5NC9d9i1A/5eAk8UQepAOO8/Ie9KSHWUmCRJieKUgVIvM37kUK48YzwAV54xvmXgBhgwCM74EnxpBRz7Yfj9l+GeM+HVyp4vVpIkHRRDt9TbDB8Fn7g7WNXysBHwwCz434vhrZcSXZkkSWqHoVvqrY6aAlf+Hub+AmojQdf70RvhnbcTXZkkSdqHoVvqzUIhOO5j8MW/w/nfhBcegrumwNPfg53vJbo6SZK0h6Fb6gsGDILTvwj//jxMuRyWfhN+OB1eeHjP/N+SJCmRDN1Sgm2sf48Xaup4oaaO1RvfAWD1xnfit22sP4iO9WHZ8OEi+MLfYNSJUP5ZuO982LC8m6qXJEkd4ZSBThmoBPtexSvcueTVdrdfP2MSN+Yf07kHjzwB//df8NY/4cRZcN7/g+zczj2WJElqpaN50tBt6FaCbax/j41bG9rdnjM8jZz0wZ1/gsbd8Pwv4fFvwbZNMP0q+OBXYOjIzj+mJEkCDN0dYuhWv7LjXXj2R/D0HcE477Ouh9O+AIOGHnBXSZLUNhfHkdTSoMPgA18OTrbM+0ywsuVdebD8p7B7V6KrkySpTzN0S/3N0BHwoYXwpeWQ+0F49Ab40enwr0ed6USSpG5i6Jb6q6zxMOtemPckpI+GRZfDTy6A1/6W6MokSepzDN1Sf3fk++HffgOf+TXs3B4E7199Ct5+OdGVSZLUZxi6JQUmnAcFf4aL7w2mGLz7NHjkixB9LdGVSZLU6xm6Je2VkgInXQLXLYcLvg2v/B98fyr8YT5sfSvR1UmS1GslTeiORqOUlpaSn5/foftXVlYyZ84cSktLqayspLCwkPLy8m6uUuonBqTBaZ8PZjo5uxBWPgh3nQyVX4d3axNcnCRJvU9ShO6qqioWL15MNBqltrZjb+jRaJTKykrmzZvHvHnzmDBhArNnz+7mSqV+Jm0YfPBmuP4fQQh/thTuPBn+/B1o2Jro6iRJ6jUGJLoAgLy8PPLy8g66U71mzRoyMzO7pyhJew3JghlfhVOvhae+C08Ww7P3BPN+T/scDDyEFTP36PaVOSVJSqCkCN2SeolhOfDh/4HTvxgE78f+C/76Azh7Ppx8OaQO7PRDP/Dsa9y55NV2t18/YxI35h/T6ceXJCmRenXoXrx4MdnZ2dTW1lJdXU1RUdF+79/Q0EBDw95OWn19fXeXKPVNmWPhou/DmTfA49+G310fLC9/zgJ432xIST3oh7z81HHkHz8KgNUb3+GGRc9zx9yTmZgzDAg63ZIk9Va9NnTn5eUBEA6HASgtLWXOnDmUlZW1u8/ChQu59dZbe6Q+qV8YMQFm3wdn3QiPfwt+XQBPfic4+fLEiw8qfOekD241fGRizjBOHJ3R1VVLktTjkuJEys4Ih8PxwA1wySWXUF5eTjQabXefBQsWUFdXF7+sX7++ByqV+oEjToTLfgXXPB4E8YevDub5/mc5NO5OdHWSJCVcrw3d+5502XRCZSQSaXeftLQ00tPTW1wkdaHRefCpRXDNUsjKhYeugrtPN3xLkvq9Xhm6o9Eoc+bMaRGwmzrczbvfkhJk9FS4fDFcvRQyxwXh+0dnwAsPQWNjoquTJKnHJVXobm+O7kgkQnFxcfx6ZmYm8+fPbxGwS0tLmT17tlMISslkzFT4dDlcvQQyxkD55/aE74cN35KkfiUUi8ViiS4iEolQXl7OokWLqKqqYv78+UyfPj2+2E1paSlFRUVUV1fH92lawbLJ5s2bDzh7yb7q6+vJyMigrq7OoSZST1i/DJ5YCNVL4PDj4JxCOO7jwfLze6zZtI0fPr6a8hUbmD11DF88dyK5I4cmsGhJktrX0TyZFKE7UQzdUoKs//ue8L0UDp8cLLJzwsUsfu4NbnloJQCNMUgJBXcvmnUSc6aNTWDBkiS1raN5MqmGl0jqJ8aeAp/5NVxVAZlHw8PXsPPOPKp+fSepsV007mkFNMaCS+FDK1m7aVtia5Yk6RAYuiUlzthTghMu5z1JZECYbw/4MU+k3ci/pf4faeyI3y0UCrFouVN8SpJ6L0O3pMQ78v384PCv8aGdRTzbeBxfG/Bznk67noLU3zGU7cRiMTZs2Z7oKiVJ6jRDt6SkMCZrCNWM5aadX+DcHd+lYnceNw9YzNNp1/Ol1IeZMHxnokuUJKnTPJHSEymlpLBm0zZm3P5EfDw3wJFspmDAo1yWupRBg9JIOfUaOO2LMOzwxBUqSVIznkgpqVfJHTmUolknkRLaO2vJW6ERfGP3FTx2fgUpp1wFf78X7ngf/P5mqF2T2IIlSToIdrrtdEtJZe2mbfyg2Tzd1507kfFN83S/WwvLfgzP3gPbt8AJn4Qzr4cj35/YoiVJ/Zadbkm90viRQ7nyjPEAXHnG+L2BG+CwbDh7PtzwAny4GDYsg5IPwv9+EiJ/hv7bQ5AkJTlDt6TeZ9BhcMo18KXnYNZ9sO1t+PlFcO+58OKvoXF3oiuUJKkFQ7ek3it1ALxvNsx7Cj79MKQNh7Ir4QfTYPlPYOd7ia5QkiTA0C2pLwiFYOIMuOJ3cM1SOOJ98OhNcMeJ8ORtsD2a6AolSf2coVtS3zJ6Klzyc/jSCpj8UfhzMXzvBPjjLbBlbaKrkyT1UwMSXYAkAWysf4+NWxsAWL3xnRZfAXKGp5GTPrjjDzhiAnzsDjhnAfy9FJbfB38vCYL46dfBuFO7snxJkvbLKQOdMlBKCt+reIU7l7za7vbrZ0zixvxjOv8EO96Ff/wK/nY3bF4No6fB6V+E4y4KxoZLktQJHc2Thm5Dt5QUmne623LQne72NDbCq4/BX38Aa5+CjHFw2rUw5TMw2NcBSdLBMXR3gKFb6ufe+Af89W54oRwGDIGpV8Cp8yBzXKIrkyT1EobuDjB0SwKg/vU9475/Ag3vwPEXBeO+x0xLdGWSpCRn6O4AQ7ekFhre2TvuuzYSjPs+dR4c/wkYMCjR1UmSkpDLwEvSwUobFqx0ed1yuPRXMGgoPHxNMN/3E/8DW99KdIWSpF7KTredbkn7s/FfwdCTfzwIu3fCCZ8Mut/dNPSkx04olSR1CYeXdIChW1KHbY/Cc7+AZfcGi+yMngqnXtvlQ0+6fepESVKXMnR3gKFb0kFr3B1MOfhsCUQeh6E5MO1zMO2zMPyIQ374fRcJumHR89wx92Qm5gwD7HRLUrLpaJ50RQhJOhgpqXDsh4PL2y8HQ0+e+T48dTuc8AmYfg2MPQVCoU49fE764FahemLOME4cndEFxUuSEsUTKSWpsw4/Fi68HW56CfL/GzYsh5+cD/ecBcvug4atia5QkpQkDN2SdKiGZMLpX4AvVcGnH4LMo+EPN8Ptx8GjN8FbLya6QklSgjm8RJK6SkoKTJwZXOo2wIqfQdXPYPl9MPY0mH4VHP9xGJCW6EolST3MTrckdYeMMXDef8KNL8KcnwUznDx8DXz3OKj4KtSu2e/uazZt4/5n1gJw/zNrWbNpWw8ULUnqLs5e4uwlknrK268ES83/45fwXj1MnAHTroJjLghO0Nxj8fL13PLQSgAaY5Cy55zMolknMWfa2ERULklqh1MGdoChW1JC7HgXXngoGHby+nOQMRamfAamXM6anVnMuP0JGtt4ZU4JwdIvn8P4kUN7vmZJUptcBl6SktWgwyDvM1DwBFzzOITPgb/cCXe8j8ZfzOb8lOUMYFer3UKhEIuWr+/xciVJh84TKSUpkUbnBZcPLYQXHmJAxY+4Z+B32Tggk/LdH+TB3efyWmwUALFYjA1btie4YElSZxi6JSkZpA2HqVfy4Nun8eRTjzMntJTLUyv5woDf8szu43lw93lUMJ0xWUMSXakkqRMc0+2YbklJZM2mbfEx3Wns4CMpz3LpgMc5NWUVW2LDSD35UtLPvBpyjkt0qZIkPJGyQwzdkpJR2fL1FO4ze0lu6HXunvwCx775KLy7CcZMh7wrgqXn04YntmBJ6scM3R1g6JaUrNZu2sYPHl9N+YoNzJ46huvOnRjMWrJrB7z8B6j6OVQvhYGHBQvunPwpOPrMYIEeSVKP6WiedEy3JCWh8SOHcuUZ4ylfsYErzxi/d5rAAYOC7vYJn4DoevjHg/D8A8Hc35lHB+H7/ZdC1vgEVi9J2pctEUnqrTLHwtlfgX9/Dj77R8j9ADzzfbjz/XD/R+H5X8EOV7KUpGRg6Jak3i4UgqPPgI//EG5+BT5xT3D7b66F246BR74I656B/juaUJISzuElktSXDBoKJ18WXLas3Tv85LlfQFbunuEnlwVdcklSj7HTLUl9VdZ4OOcW+Pd/wBWPwrjT4envwR3vg599LAji79UnukpJ6hfsdEtSEtlY/x4btzYAsHrjOy2+AuQMTyMnffDBPWhKSjDeO/cD8JFieOmRoAP+yHXw+y/DsR+Bk+bCxBmQOrDLfhZJ0l5OGeiUgZKSyPcqXuHOJa+2u/36GZO4Mf+Yrnmyug3wz3JYuQg2vgSHjYATLg4C+JhpwVhxSdJ+OU93Bxi6JSWb5p3utnSq090Rb74AKx8MQvjWNyA7HITv982BERO6/vkkqY/odaE7Go2yePFiysrKqKio6NA+xcXFZGZmxvefP3/+QT2noVuS9tG4G9Y+BSsXB8NQdrwTrH550tygCz50RKIrlKSk0qsWx6mqqmL58uVEo1Fqa2s7tE9xcTEABQUFAFRWVjJv3jxKSkq6rU5J6vNSUiF8TnD5yG3wyh/hH4vgj4Xwp1tg4kw4cTYc+2FIG9ZtZSSs4y9J3SRpOt0A5eXlLFy4kBUrVhzwvllZWaxZsybe6QYIhUIczI9jp1uSOmjbJnjh4WD8d81yGDAEjrkATpwFk/Jh4JAufboeHdsuSYegV3W6D1YkEiEajbYI3E0qKyuZOXNmzxclSX3Z0JFwakFw2bIWXvw1vPAQLP4MDBoOky8MAviEc7tkBpTLTx1H/vGjgGD2lhsWPc8dc09mYk7QXc8ZnnbIzyFJPanXhu62ZGZmEo1G292voaGBhoa9f66sr3d+Wkk6aFnj4awbg8vbr8CLDwcBfOWDMCQLjrsoCODjzwqGq3RCTvrgVsNHJuYM48TRGV3wA0hSz+uVobs92dnZ+x0TvnDhQm699dYerEiS+rjDjwkW4Dm7EN56IQjfLzwEVT+DYaPg+E8EAXzM9GC+cEnqp/rUK+CBTsJcsGABdXV18cv69et7qDJJ6uNCITjifTDz63D9Srh6aXDC5b9+Cz85H+48CR77f1BTBclzKpEk9Zhe2ekOh8Nt3h6NRtvdBpCWlkZamuMAJalbhUIwZmpwOf+b8Npfg+738w/AM3dBxjg4/qKgCz566n474Gs2beP+Z9YCcP8za/niuRPJHTm0Z34OSepCvTZ0Z2ZmEolEWoVsT6KUpCSSkgLjzwwuHy6GdX8J5v9euRj++gNIHx2MAT/+4zD21BYBfPHy9dzy0Mr49YerNvBw1QaKZp3EnGljE/HTSFKnJdXwkvaGh0Qikfi83E0WLFhAZWVl/Hp5eXl8zm5JUhJKHQDhs+Gj34Uvr4Ir/wCTPwov/QZ++iH47nHw+5thzVOs2VjPLQ+tpDEGjXtGozR9X/jQStZu2pbQH0WSDlZSzNMdiUQoLy9n0aJFVFVVMX/+fKZPn87s2bMBKC0tpaioiOrq6hb7FRcXxzvdy5Yto6io6KCe13m6JSkJNDbChmVBB/ylR6B+A9sGZPFIQx6/330KzzYex65mf5hNTQlR8MEwhR+anMCiJSnQ65aBTwRDtyQlmVgMaqqofKiUY2qXMC70Nltiw3hs9zT+1DidZxpPYGdoEBeedBTfv2xKoquVpL69OI4kqY/acxLmimNvZN6TFzE5toaPpD7LR1KeZe6AJ3gnNpg/N76f3bsvhO25MCQz0RVLUofY6bbTLUlJZ82mbcy4/Yn4eG6IMSlUw/kpy7kgdTknpUQgZQDkfjBYDfPYj0D6UYksWVI/5fCSDjB0S1LyKlu+nsI9s5c0xiAlFNxeNOsk5kwKwao/wKpHYe3TENsdTD84+cLg5MzDj01g5ZL6E0N3Bxi6JSm5rd20jR88vpryFRuYPXUM1507kfH7ztO9fQu88lgQwFdXws53YcSkvQH8AHOBS9KhMHR3gKFbkpLfCzV1fPT7T/Pol87ixNEZ+7/zzu0Q+XMQwF/+I7y7KViO/tgPwzEfgtyzYdBhPVO4pH7BEyklSf3PwCFw7IeCS+NuWP8srPo9vPwHWHE/DBgcBO9jPwSTLoCM0YmuWFI/YeiWJPVNKalw9BnB5fxvwubV8Mqf4OU/BYvwxG6EI04KOuDHfAiOmuIwFEndxtAtSer7QiEYOSm4nPGlYBz46iVBCP97KTxZDENz4Jjz4ZgPQ/gcSBuW6Kol9SGGbklS0tlY/x4btzYAsHrjOy2+AuQMTyMnfXDnn2BIFrxvdnDZvSsYhvLKn4LLc7+A1DTI/cCeLvgFkDnukH4eSfJESk+klKSk872KV7hzyavtbr9+xiRuzD+me558czW8+lhwIua6v0DjLjj8OJg0Eybmw7jTYEBa9zy3pF7H2Us6wNAtScmpeae7LYfc6e6o9+qgeim8WhlMR/jOmzBwKITPhokzghCedXS3PX3S/B4ktcvQ3QGGbklSh8Vi8OY/g/C9uhJe+1uwKM/IY2DizOBy9JkwsOtCcEI7/pI6xNDdAYZuSVKnvVcXzAm+uiLohG99HQYMCcaCT8wPhqNkhw/pKfYd237Doue5Y+7JTMwJTvK00y0lnvN0S5LUnQZnwPEXBZdYDDb+a08Ar4D/+w/441eC0D0xP+iCjz8TBg098OM2k5M+uFWonpgz7MCLBElKOoZuSZIOVSgEo44PLmdeDw1bYc2TQQB/+Q/w9xJIGRichBk+ByacC0eeHMwlLqlfMHRLktTV0obD5AuDSywGm16FyONQ/Tg8/T1Y+o1g2sLcD0L43CCEZ41v9+HWbNrG/c+sBeD+Z9byxXMnkjvy4LrmkhLLMd2O6ZYk9aTdO2HD8j0hfCnUrIBYI2TlBuE7fG4QxodkArB4+XpueWglAI0xSAkFD1M06yTmTBuboB9CUhNPpOwAQ7ckKeG2R2HtU0EXPPI41EYglAJH5bHlqLO49i/prGicyK59/jidEoKlXz6H8Xa8pYTyREpJknqDIZlw3MeCC8CWdfGhKIOf+wmLBtXzTmwwf2+czDONJ/DXxhN4KTaOUCiVRcvXU/ihyQktX1LHGLolSUomWUfD1Cth6pUU/nI56174K2eG/snpKS9y84DFDA7tJBobyrONx1MfOR02fgoOnxyczCkpaRm6JUlKUqOzh/F7JvCP3WHu3v1xBrGTk0OrOSP1RU5PeYmZb98Nd98FQw+H8R8IxoLnfjCYqtAQLiUVx3Q7pluSlKTWbNrGjNufoLGNd+qUEDz+76dw9Lv/hDVPBVMUvv5csEpm+uggfDcF8UxPuJS6i2O6JUnq5XJHDqVo1kkUtjN7ydFHHg6cBxPOC258rx5e+2sQwNc8Cf94EIgF0xE2hfCjz4SM0Yn4caR+zU63nW5JUpJbu2kbP3h8NeUrNjB76hiuO3dix2YtebcW1v1lbwh/e1Vwe+bRQfgefyYcfUYwXaHDUaROsdMtSVIfMX7kUK48YzzlKzZw5RnjOz5N4GHZLWdGeeftoBO+7hlY9zT841dADIYfGYTvo8+Ao8+Cw481hEtdzNAtSVJ/MexwOP6i4ALBHOHrnw264euegZcegcZdcNgIGHf63m74qBNdsl46RIZuSZKS1Mb699i4tQGA1RvfafEVIGd4Gjnpgzv/BEMy4ZgLggvAjm2w/u97OuHPQOXXYXcDpKXDuNOCTvi4M+Cok2FAWuefV+qHHNPtmG5JUpL6XsUr3Lnk1Xa3Xz9jEjfmH9N9BexqCJapb+qEv/Ys7NwGqWlw1BQYdyqMPQ3GngpDR3RbGc0/fLTlkD98SIfAZeA7wNAtSUpmSRc2d++CN1cGQ1Je+1vwdesbwbYRk1qG8JGTumxceMI/fEj7YejuAEO3JEmHIBaD6GstQ/hbLwIxGJIdhO+mIH7UFBjYuQ8I+w6zuWHR89wx92Qm5gwD7HQrsZy9RJIkda9QKFi2PutoOOmS4Lb36mHDsr1B/M/f2TMkZRAcefKeEL7nMiynQ0+Tkz64VaiemDOME0dndPEPJHUfQ7ckSeo6g9Nh4ozgAsGQlLde2BvCX3gYnvl+sC1zHIyZvvdyxPv2e4Lmmk3buP+ZtQDc/8xavnjuRHI7On2ilGAOL3F4iSRJPSu6PuiGb1gONcvh9eeDWVJSB8ERJ+0J4dOCS+bREAqxePl6bmlnZc4501zmXonjmO4OMHRLkpQEdu2At/4JG1bsCePLYMuaYNvQw9mWM4UfvZrJisZJrGwMs40h8V1TQrD0y+d0fMEgqYsZujvA0C1JUpLatimYrnDDMtb+48+MiP6T4aHtNMZCvBIbw3ONE3kuNpF/MolzzzqL+R8+IdEVq5/yREpJktR7DR0ZX7jn9rcu5A8bN5DL60xJWc2U0KtMSanmktATpIZiNPx9MLyRF8yQMnrP1+ywS9krqRi6JUlSUhuTNQRCqaxuHMPq3WMo4xwAhrKdk1PXcPWEKOcO2wCrHoW//TDYaXBGEL6PmgJH7QniGWMM4koYh5c4vESSpKS2ZtM2Ztz+BI1tJJZWY7q3bYbXn9tzqQq+Ni3gM/TwvQG8qSPewWkLpfY4prsDDN2SJPUOZcvXU9jZ2Uvq39gbwmv2BPHttcG29DEwullH/Mj3w2HZ3fiTqK8xdHeAoVuSpN5j7aZt/ODx1ZSv2MDsqWO47tyJnZu1JBaD6LogfDeF8Nefhx1bg+0Z4+DIk4IAfsSer8OPcGiK2uSJlJIkqU9ovgz8WRNHUr5iA2dNHMk7Dbt4oabu4JeBD4Uga3xwOeGTwW2NjbB5Nby5Et54Ht5YCX/9IbwXDbYPPTwI382DeNZ4g7g6zE63nW5JkpLa9ype4c4lr7a7/foZk7gx/5iuf+JYDOrWwxv/2HNZGXx9581ge1pG0BFvCuFHngQjJkFq9/Q0m3/4aMtBf/hQl3B4SQcYuiVJSn5JFza3vrWnI74njL+5ErasDbYNGAKjTtjTEX8fjDoRRh0Pgw598Z6EffjQfhm6O8DQLUmSusT2LfDmP/d2w9/4B2x+FWKNQCiYN3zUCXuD+BEnQsbYgxqe0vThoya6ncXL17PkXxuZcVwOl0wby+jMIXa6E6RXhu7i4mIyMzMBiEajzJ8/f7/3r6yspKSkhPz8fMLhMBUVFUyfPp3Zs2d36PkM3ZIkqdvs3A5vr4I3X4C3XoS3XgiCedM48bSMPUH8xODrqPdBznEw6LB2H3Lx8vXc0tlZXNQtet2JlMXFxQAUFBQAQaCeN28eJSUl7e4TjUaprKykvLyccDhMYWFhhwO3JElStxo4ZO8CPU1iMah/fW8Af+tFiDwBy368tys+YsLebvioPZeMMazZ/C63PLSyxXzlTd8XPrSS6eOzOzebi3pE0nS6s7KyWLNmTbzTDRAKhdhfeeXl5cycObPFPgfDTrckSUoKO94NuuJvvdCsM/5PeK8u2D44g/UDx/Nk9HBWNY7hlcaxvBwbQ5ThAKSmhCj4YJjCD01O4A/RP/WqTnckEiEajbYZnisrK5k5c2bPFyVJktRTBh0WrJI5Om/vbbEY1NfsCeH/5K1lf2Vq6GXmDHicQaHdAGyMZfJy4xhWx8aQtuZEWP8hyJkMacMT9IOoPUkTutuSmZlJNBrd776LFy8mOzub2tpaqqurKSoqave+DQ0NNDTsPfu5vr6+U/VKkiR1u1AIMsYEl2M/xJJ3V1H6ZIRQ407Gh97k2NAGjklZzzGhDZyd+g/Gv/UY3HdbsG/GuGB8ePPLyGOCIS9KiKQI3e1pCtPtycsLPg2Gw2EASktLmTNnDmVlZW3ef+HChdx6661dX6gkSVI3u2TaWEr+XM1uBrA6FnS3f994GhCcUPn49adydKwGNv4LNr4UfH3hoWCucYBQSjCLSs5xkHM8HH4sHD4ZRkyEAWkJ/Mn6h6QY011ZWUl+fn6r8dtZWVkUFRXFT648kGg0SlZWFlu2bGlzqEpbne6xY8c6pluSJPUKZcvXU3iws5e8Vw9vv7w3iG98KbhsezvYHkoJVtcceSwcfsyer5Nh5CQYbD46kF41prupU72vaDTa7jYITqRsPltJU9CORCLxLnhzaWlppKX5SU6SJPVOc6aNZfr4bH7w+GrKV2zg4rwxXHfuxP3PWjI4HcZODy7NvVsbhPFNL8PbrwRfX/g11L229z7Dj2oWxI/ZE8aPhaEjD2qOcSVJpxuCrvaKFStahOz9zV7S1NWurq6O73OgTve+nL1EkiT1Fs1X5ly98R1uWPQ8d8w9mYk5w4AuXJlzxzbY9MreIP72y8H12gg07gruMySrdWf88GMgfQykpBx6Db1Ir+p0AyxYsIDKysr4UJLy8vIWw0oikQjl5eXxBXMyMzOZP39+i5BeWlrK7NmzOz2FoCRJUrJ64NnXWi0Df8Oi5+Pfd9ky8IOGtp5fHGDXDtiyJgjhTR3y15+HlWWwa3twn4GHQfaEYK7xkZOC8eIjJgXXh2Qeem20/PDRlmRdmTNpOt0QLJDTFKKXLVvWYiaS0tJSioqKqK6ujt8WjUYpLS2NX9+8efN+Zy/Zl51uSZLUWyRt2GxsDE7W3PRKcNm8Gja9Gnzd+sbe+w09fE8I33NpCuVZuTBgUIef7nsVr7T68NFcl3346KBeuQx8TzN0S5IkdaOGd4Lw3fyy6VXYXA07tgb3CaVA5tHNOuPNQvnwI1uNHd9Y/x4PPPsady19lRB7TyiNEQTuT50yrkc/fPS64SWSJEnqY9KGwVEnB5fmYjF4562WXfHNq+HVx+DvpXvHjg8cGgxNGTEhmO4wO8yu1KN4cOnrxGKZxAgCeeOeFvJdS17lEyeP7rEf72AYuiVJktSzQiEYfkRwGX9Wy227d8KWdbD51b2hvDYC65dB/QaOAp5Ng3djaayLjWJtbBTrYkewNjaK9RzBH/4yjC987ANJd0KnoVuSJEnJI3UgjJwYXPa1czvfeuBPrH31n4zjTcaH3uLo0Ft8JOVvjA5tIjUUg+eAlWmQnRvvjrf4Pn0MpPZ8BDZ0S5IkqXcYOIQBRxzH0lfS2N3Y8rTEgexiXMomrn0fzMndGXTHayPw8h8hum7vkJWUgZB1dBDAs3KDhYHil6OD2Vu6gaFbkiRJvcYl08ZS8ufqVrfvZABrYkcwPf8c2HexoN27ghlWtqzZE8b3fI08EQTyXe/tve/Qw1sG8cyj936ffhSkpHaqbkO3JEmSeo3ckUMpmnUShQ+tBPbOXgJQNOuktlfnTB2wZ4hJLkw4r+W2ppM6t6yDLWtbXtY9A/U1e++bMhAyx7YI5QPSRnWobqcMdMpASZKkXqNpvvLXo9tZtHw9S/61kRnH5TB32liOyhzS9fOV73xvT5d87T6XdUHnfMc7hG6td57u/TF0S5Ik9S5JtThOLMbWjetIPyLXebolSZLUd1x+6jjyj29/SEfO8LSeKyYUIjYku0N3NXRLkiSp18hJH5yY5e4PUXLNGi5JkiT1QYZuSZIkqZsZuiVJkqRuZuiWJEmSupmhW5IkSepmhm5JkiSpmxm6lRQaGhr4+te/TkNDQ6JLURLweFBzHg9qzuNBzfWm48EVKV2RMin4b6HmPB7UnMeDmvN4UHPJcDx0tAY73ZIkSVI3M3RLkiRJ3axfLwO/e/duADZs2OCfqBJs69atANTU1FBfX5/gapRoHg9qzuNBzXk8qLlkOB6anrcpV7anV4/pjkajLF68mLKyMioqKg56/2XLlnHKKad0Q2WSJEnqT/7+978zffr0drf32k53VVUVy5cvJxqNUltb26nHmDhxIgDr16+30y1JkqSDVl9fz9ixY+O5sj29NnTn5eWRl5dHeXl5px8jNTUVgPT0dEO3JEmSOq0pV7an14buzmhoaGgxj6NjwSRJktQT+lXoXrhwIbfeemur299++23ee++9BFQkSZKk3qzpZM4D6Vehe8GCBdx0003x601jcHbt2sWuXbsSWJkkSZJ6o45myH4VutPS0khLS0t0GZIkSepnXBxHkiRJ6maGbkmSJKmb9frQ3dk5uiVJkqSe0mtDdyQSobi4mJKSEqqqqigsLDykObslSZKk7tKrl4E/VPX19WRkZLBq1SqGDx+e6HIkSZLUy2zdupXJkydTV1e338UWe22nW5IkSeotOj1l4NKlS+Pfn3feedTX17Nw4UKqqqrIz8/n5ptv7pICJUmSpN6u053uxYsXU1VVRTgcBmDq1KlUVVVxzz33MGXKFG677bYuK1KSJEnqzTrd6Z46dSrXXHMNAEuWLCESiVBRUcH48ePJzc0lEol0WZGSJElSb9bpTveIESPi31dUVBAOhxk/fnz8tlAodEiFSZIkSX1Fp0N38/mxy8vLmTlzZovt0Wi000VJkiRJfUmnQ3dWVhbXXnst559/PrW1tRQVFQHBUJMLLriAzMzMrqpRkiRJ6tU6PaZ71qxZ5OXlUVVVRVlZGenp6Tz33HNEo1EKCgocXiJJkiTt0enQDZCbm0tubm78+pQpU5gyZQoAP/7xjw+tMkmSJKmP6HDobj4v94FEo1FKSkq4+uqrO1WUJEmS1Jd0OHTPnj2baDTa4bHadXV1na1JkiRJ6lM6HLqnTZvGY4891uEHvvbaaztVkCRJktTXdDh0N81OciBLly4lOzvb0C1JkiTt0eEpA5tOkDyQqVOnkpGRQWVlZaeLkiRJkvqSQ5q9ZO3atVRVVbVYKAeCEymXLVt2SIVJkiRJfUWnQ/dzzz3H1KlT4ydWZmdnA8FKlRMmTKCsrKxLCpQkSZJ6u06H7tLSUqqrq8nNzeW5554D9g5BWbNmjcvAS5IkSXt0ehn4vLy8+MI44XCY0tLS+Lbc3NxWQ04kSZKk/qrTobv5Mu8ZGRksW7aMdevWxW+rqqo6tMokSZKkPqLToTsWi3HLLbcwffp0AG655RZmzpzJ448/zsMPP+yJlJIkSdIenR7Tfc0113DvvfcyYcIEIFixMhKJMGPGDEKhEBUVFV1WpCRJktSbhWKxWCzRRSRKfX09GRkZrFq1iuHDhye6HEmSJPUyW7duZfLkydTV1ZGent7u/To9vESSJElSx3Rb6J47d253PbQkSZLUq3R6TPeCBQva3RaNRl0GXpIkSdqj06G7pKSEadOmxVekhCBsRyIRAGbOnHnIxUmSJEl9QadD98yZM1m8eHGb25577jm2bNnS6aIkSZKkvqTTY7rvvffedrdNmTIl3vGWJEmS+rtOh+6MjIyurEOSJEnqszo9vOThhx9ud1skEmHZsmVcffXVnX14SZIkqc/odOi++uqriUajLU6kbDJ9+nTuueeeQ6lLkiRJ6jM6HbqnTZvGY4891pW1SJL2iEQiLFq0iPXr1zN27Fjmzp1LOBxOdFmSpE7qdOguKirqyjokSXssWrSIm2++mVAoRCwWIxQKcffdd3Pbbbf1u4XH/PAhqa8IxWKxWKKLSJT6+noyMjJYtWoVw4cP7/Hn981Eaq2//7+IRCKcffbZNDY2ttqWkpLCk08+SW5ubgIq63ltffiIxWL98sOHpOS1detWJk+eTF1dHenp6e3er9tC9+c//3l+9KMfdcdDt1BcXBwfVx6NRpk/f36H901k6PbNRGrN/xewcOFCfvSjH7F79+5W21JTU/n85z+/3xWB+wo/fEjt6+/NiWTT0dDd4eElt912W4effPPmzSxevLjbQ3dxcTEABQUFAFRWVjJv3jxKSkq69XkPVSQS4eabb27zzeTmm2/mlFNO8c1E/Y7/LwLr16+nvV5ILBZj/fr1PVxRYixatIhQKNTmtlAoxIMPPtgvPnyoJcOmw896sw6H7m9/+9tkZ2e3mK2kqqqKcDjcagaTSCTChAkTuqrGdi1cuJA1a9bEr8+cOZP8/PykD92+mUit+f8iMHbs2P3+HsaOHdvDFSWGHz5aMmwaNsHmRG/X4dC977LvDz30EHl5eW3+4y5ZsqRrqtuPSCTS7pSFlZWVzJw5s9tr6CzfTFryzSTQ338P/r8IzJ07l7vvvrvNbbFYjEsvvbSHK0oMP3zsZdg0bDaxOdFSb3vf7HDo3ne2ki1btrR7gM+YMYMf//jHh1bZAbS3zHxmZibRaLTNbQ0NDTQ0NMSv19fXA/Diiy8ydOjQ+O0ZGRmMGzeO9957j1dffbXV47zvfe8DYPXq1Wzfvr3FtjFjxpCVlcXmzZt5/fXXW2wbOnQo4XCY0aNHt/tzhUIh0tPT+ec//9ni9iOOOILDDz+caDTaKnwMHjyYSZMmAfDCCy+0Ci4TJ05kyJAhbNiwgS1btrTYNnLkSI488kjeeeedFn81ABgwYADHHXccAP/617/YtWtXi+25ubkMGzaMN954g02bNrXYlpWVxZgxY9i+fTurV69u9TOeeOKJANx1110UFxe3eDP54Q9/yO233855553Hm2++2WLf4cOHM378eHbu3MmqVata/f6OP/54UlNTiUQibNu2rcW2o446ihEjRrBlyxY2bNjQYtuQIUOYOHEiQKvfPcCkSZMYPHgwr732GnV1dS225eTkMGrUKLZu3cratWtbbBs0aBDHHnssAC+99FKrcbrhcJihQ4dSUlLCN77xjTZ/DxdddNF+f4evvPJKi+MaYNy4cWRkZLBx40beeuutFtvS09M5+uij2bFjBy+//HKrn/WEE04gJSWF6upq3n333RbbRo8eTXZ2NrW1tdTU1LTYdthhhzFhwgQaGxt58cUXWz3usccey6BBg1i3bl38/16TUaNG7TdENYWs/R3fNTU11NbWttg2YsQIjjrqKLZt29bqNSM1NZXjjz8egJdffpkdO3a02D5+/HiGDx/OW2+9xcaNG1ts6+7XiOLiYr7yla+0GtteVFREbm4ua9euZevWrS327WuvEfv78NHY2Mill17K22+/3edfI0KhULth88tf/jKnnHIKRxxxRJ9/jdhf2ATiYbOvv0b861//arc50djYyLp16wD6xWvEiy++yM033wzQ4n3zxhtv5KqrriIzM7PHXiP2vV+7Yp30ne98Z7/bH3rooc4+dIdUVFTE2io/HA7HSkpK2tzna1/7Wgw44OXiiy+O1dTUxJ5++uk2t9fU1MRqampieXl5rbbdddddsZqamti3vvWtVtvOPvvsWE1NTexPf/pTu8+dkpISO/PMM1vd/tWvfjVWU1MTu+eee1ptO/HEE+M1DRo0qNX2pUuXxmpqamKXXXZZq23XXXddrKamJlZWVtZq2xFHHBF/3COOOKLV9rKyslhNTU3suuuua7Xtsssui9XU1MSWLl3aatugQYNiNTU1saeeemq/v4e2Hjc/Pz9WU1MTW7lyZZv7rVq1KlZTUxM7++yzW2371re+FaupqYndddddrbbl5eXFf9a2Hvfpp5+O1dTUxC6++OJW22666aZYTU1N7IEHHmi1bfz48fHHzc7ObrX9kUceOeDv4b777mt1+7Bhw+KPe8wxx7Ta/tOf/jRWU1MTu+WWW1ptu/DCC2M1NTWxZcuWtfmckUgkVlNTEzv99NNbbfvOd74Tq6mpiX3nO99pte3000+P1dTUxCKRSJuPu2zZslhNTU3swgsvbLXtlltuiT311FOxUCjU7u/h6aefjg0bNqzVtj/96U+xmpqa2BVXXNFq2zXXXBOrqamJPfLII622ZWdnx3+H48ePb7X9gQceiNXU1MRuuummVtu6+zVi1apVbT7uypUrYzU1NbH8/PxW2/ria8R3v/vdNn8P//Zv/xarqamJffWrX221ra+9RsyaNSuWmpra5nOGQqHYdddd1+Z7Sl97jTjuuONiKSkpbe4HxD7+8Y/Hampq+vxrxNixY9s9HoDYVVdd1S9eIwYOHLjf4+G///u/e/w1AojV1dXtN7t2evaSa6+9lu985zvtzvpxyy238D//8z+deegOqaysJD8/v9WnsaysLIqKiuInVzbXVqd77NixPPTQQz3a6d69ezd33HEH3/ve91p1sm6//XZOPfXUPv8J9cQTT2ThwoXcfffdbXZwUlNTueKKK7jkkkta3N7XuljhcJi77rprv7+Hq6++mk9+8pMtbu9rXaxRo0aRk5PD/fffz3/913+1+f9i7ty5fb6L1fw14qWXXmr1uJMnT2bgwIH9oovVdHw//vjj/Pa3v+Wtt95i1KhRXHDBBZx22mk92sWCxL1GfP/73+ePf/xjm68PoVCIiy66iNtvv71fdLp//vOftzmrT0pKCl/4whf6Rae7traWT3/60+0eD48//jiTJk3q868RP/3pTykvL2/3ePjc5z7Hrbfe2qOd7lmzZnXflIGRSITzzz+fBQsWMHXq1PiwjuXLl1NUVERZWRknn3xyZx66w88/YcKEVgdGKBSioqKiQ2O6Ez1P95o1a3jwwQfjY5EuvfTSfjEmrckXvvAFfve737U7JdjHPvaxdv+83Jf4e2ipv/+/kJpzCsmAU0ju5dSqyfe+2eVTBu4rHA6zePFiLrnkEiKRSPwffcKECdxzzz3dGribnj8zM5NIJNJq0Hwyn0TZXG5ubr94sWyPJ0oF/D201N//X0jNeWJtIBwOc9ttt7UbNvtL4IbgmDjllFP6dXOit75vdsniOGvWrImH3578R29aGKdpKEl5eTkVFRUdnjIw0Z3u/s7ORcDfg6T9sbO5l38JEyTf+2bCV6R8+OGHufjii7vjoVsoLi6Od7qXLVvWapaV/TF0J55vJgF/D5L2x7AptZRM75tdHrrXrl1LdnZ2/MGWLl3a7n2j0SgLFy5k2bJlB1l2zzJ0JwffTAL+HiRJ6rhked/s8tCdnZ3NhAkT4kE6Ozu73cVpAOrq6to88SOZGLolSZJ0KLr8RMqysjKys7Pj16dNm8Zjjz3W7v2vvfbajj60JEmS1Kd1OHTPmDGjxfUDnaw4b968zlUkSZIk9TGdnjJwzZo18UnQzzvvPOrr61m4cCFVVVXk5+fHl+aUJEmS+ruUzu64ePFiqqqq4jOHTJ06laqqKu655x6mTJnCbbfd1mVFSpIkSb1ZpzvdU6dO5ZprrgFgyZIlRCIRKioqGD9+PLm5ua2WU5UkSZL6q053ukeMGBH/vqKignA4zPjx4+O3tbdSkCRJktTfdDp019bWxr8vLy9vtfR6NBrtdFGSJElSX9Lp0J2VlcW1117L+eefT21tbXwlyCVLlnDBBRe0O3+3JEmS1N90ekz3rFmzyMvLo6qqivLyctLT03nuueeIRqMUFBR0ZY2SJElSr9bpTjcE47YrKiqYMWMGS5cuZcqUKWRmZhIKhZg1a1ZX1ShJkiT1ap0O3c899xx5eXkAFBQUxMdwz5gxgylTpvDwww93SYGSJElSb9fp4SWlpaUtTqZsHrJzc3OprKw8tMokSZKkPqLTne6mLnd7nDJQkiRJCnQ6dNfV1bW4HovFWlxfvnx5Zx9akiRJ6lM6HbqnTJnC9OnT+fWvf83atWvZsmULa9eu5eGHH2bSpElce+21XVmnJEmS1Gt1ekz3jBkzKCws5KqrrmrR9c7MzKS0tJSTTz65K+qTJEmSer1QbN9xIZ1QVVXFihUrCIfDzJgxoyvq6hH19fVkZGSwatUqhg8fnuhyJEmS1Mts3bqVyZMnU1dXR3p6erv363Snu7m8vLz4iZV1dXWUlpaSn59vt1uSJEniEBfHaUtGRgZf+cpXnDJQkiRJ2uOgQ/fSpUv58Y9/TH19fbv3qa+vp7q6+pAKkyRJkvqKgwrdn//855k5cyYFBQXk5uaybt06IAjZCxYs4IILLmDSpElkZWV1S7GSJElSb9ThMd1LliyhoqKCoqIiwuEwjz32GAUFBZSUlJCXlxdfBh5g5syZFBUVdUe9kiRJUq/T4dBdWlpKRUUFubm5AMyaNYtbbrmFefPmUVRUxDXXXNNtRUqSJEm9WYeHl2RlZcUDd5N58+aRkZFh4JYkSZL2o8OhOxQKtbotNzeX/Pz8Li1IkiRJ6msOecrAtsI4wIIFCw71oSVJkqQ+ocNjuiORCOvWrWPfBSyj0Shr165tdd/mJ1ZKkiRJ/VmHQ3dFRQXhcLjV7bFYjMLCwla3FxQUHFplkiRJUh/R4dAdDocpLCwkOzv7gPetrq5mzZo1h1SYJEmS1Fd0OHTPnDnzoGYpueWWWzpVkCRJktTXhGL7DtJuR11dHRkZGR1+4IO9fyLU19eTkZHBqlWrGD58eKLLkSRJUi+zdetWJk+eTF1dHenp6e3er8OzlxxsgE72wC1JkiT1lEOeMlCSJEnS/vXq0B2NRiktLXWBHkmSJCW1Dp9ImWyqqqpYvnw50WiU2traRJcjSZIktavXhu68vDzy8vIoLy9PdCmSJEnSfvXq4SWSJElSb9BrO92d0dDQQENDQ/x6fX09AKmpqaSmpiaqLEmSJPVSHc2Q/Sp0L1y4kFtvvbXV7Tk5OfudV1GSJElqy5AhQzp0v6QI3eXl5SxatOiA91uwYAF5eXmdfp4FCxZw0003xa/X19czduzYTj+eJEmS1BFJEbpnz57N7Nmzu/150tLSSEtL6/bnkSRJkprzREpJkiSpmyVFp/tQHMoc3bFYDNh7QqUkSZJ0MJpyZFOubE+vDd2RSCQ+FryqqorCwkKmT59+UMNUtm7dCuC4bkmSJB2SrVu3kpGR0e72UOxAsbwPa2xs5PXXX2f48OGEQqFEl9OvNZ3Uun79emeSkceDWvB4UHMeD2ouGY6HWCzG1q1bOeqoo0hJaX/kdq/tdHeFlJQUxowZk+gy1Ex6erovoorzeFBzHg9qzuNBzSX6eNhfh7uJJ1JKkiRJ3czQLUmSJHUzQ7eSQlpaGl/72tecR12Ax4Na8nhQcx4Paq43HQ/9+kRKSZIkqSfY6ZYkSZK6maFbkiRJ6maGbkmSJKmb9et5utWzotEoixcvpqysjIqKilbbi4uLyczMjN93/vz5PVyhelJHjgeA6upqAEpKSnq0PvWsAx0PzeXn5x/wPurdOnI8FBYWMmHCBACys7MPakVq9S4HOh5KS0uJRqNkZmZSXV3NggUL4nkimRi61SOqqqpYvnw50WiU2traVtubAlZBQQEAlZWVzJs3z6DVRx3oeCgsLKSoqCh+fd68eQatPuxAx0Nz5eXlVFZW9lBlSoQDHQ/RaJQZM2awZMkSMjMzqaqqYurUqTgvRN/UkfxQUFDQoml3zTXXUFZW1sOVHpjDS9Qj8vLyKCgoIBwOt7l94cKF8cANMHPmTEpLS3uqPPWw/R0P0WiUqqoqotFo/LZ58+ZRWVlJJBLpwSrVUw70+tCkI6Fcvd+BjofCwkLmzp0bD1l5eXl+IO/DDnQ8VFRUtOhqZ2Zmtnj/SCaGbiVcJBKJ/1loX3a0+qfly5e3CNhNL7bJ+kKqnrF48WIuueSSRJehBCstLWX27NlEIpH4e8TMmTMTXJUSJTMzk/z8/Pj7QyQSOeAH+EQxdCvh2uteJvOnVXWfzMxMtmzZQl5eXvy2pjfWZH0hVferrKw0WCn+ftH017BwOBz/S5j6p3vvvZdIJEJWVhaFhYVUVlYm7dBUQ7eSVnZ2tn9KFhAMPyopKUnKE2PUM5oClvq3ptCdmZlJXl4e4XCYoqIi5syZk+DKlCiZmZkUFhYye/ZsiouLKSsrS9qGnaFbScvALdg7frP5mH/1L03DCaQm06ZNi3/f9FdRu939U2FhIeFwmLKyMqqrq6mtrWXq1KmJLqtNhm4lXHvdKztbKi8vZ8KECU4f2Y9VVVW1CFjq39p7T8jMzPRE636o6ZywpqFn4XCYFStWkJmZSXl5eYKra80pA5Vw4XA4/oK57wuqYzj7r6auVVOHu2nmCj+I9S+1tbVUVVXFj4emeduLi4sJh8N2wPuZcDhMOBwmEom0OO8jGo364awfikQibQ47nDdvXs8X0wF2utWj2hsysmDBghZ/GiwvL3c4QT/Q3vFQVVVFVVUVeXl5RCIRIpEIpaWlZGdn93CF6kltHQ8zZ85k/vz58UvTm+n8+fMN3H1ce68PRUVFLFq0KH69vLycmTNntgjh6nvae33Yd4pZgBUrViTl60Mo5mzy6gGRSITy8nIWLVpEVVUV8+fPZ/r06S3+UzR1rgCWLVvWYnEU9S37Ox6i0Si5ubltngjjy1Xf1JHXByB+n/LycubPn09+fr5/DeuDOnI8NK1ACLB582bfL/qwAx0P0WiUhQsXMmLEiPj4/uaL5SQTQ7ckSZLUzRxeIkmSJHUzQ7ckSZLUzQzdkiRJUjczdEuSJEndzNAtSZIkdTNDtyRJktTNDN2SJElSNzN0S5IkSd3M0C1JkiR1M0O3JEmS1M0M3ZIkSVI3M3RLkiRJ3ez/A1bJxLtQe+NNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -140,8 +142,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Covariance: 0.009831165592706342\n", - "Normalized covariance: 0.8384671239654656\n" + "Covariance: 0.009831165600263978\n", + "Normalized covariance: 0.8384671240792649\n" ] } ], @@ -191,10 +193,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fit with 1 parameters\n", + "Fit with 1 parameter\n", "Method: Levenberg-Marquardt\n", "`ftol` termination condition is satisfied.\n", - "chisquare/d.o.f.: 0.13241808096937788\n", + "chisquare/d.o.f.: 0.13241808096938082\n", + "fit parameters [0.20567587]\n", "\n", "Effective mass:\t 0.2057(68)\n", "Fitted mass:\t 0.2036(92)\n" @@ -224,14 +227,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAGLCAYAAADqL7dNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9J0lEQVR4nO3de3Bc12Hn+d8BHwAfAJqgDJESxYgNSZE4XK3cIqVREsfrqOHI6yge7YDizEi1u07KQDT2lu1JFbD0H8vRbpU5YE05cU1UHkCVeFIlzQ5JZBWPEltltKzEduKxCMIqDUPJltBUZFqgIQnoBkAS4ANn/+i+zduNftxu3NvoRn8/VSjyvk4f9OP2D+ece66x1goAAAD+aFrtCgAAAKwlhCsAAAAfEa4AAAB8RLgCAADwEeEKAADAR4QrAAAAHxGuAAAAfLR+tSuwGowxRtItkuZWuy4AAKCutEp6zxaZKLQhw5VSwer8alcCAADUpV2SflFoY6OGqzlJ+vnPf662trbVrgsAAKgDs7Ozuu2226QSPV+NGq4kSW1tbYQrAADgKwa0AwAA+IhwBQAA4CPCFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICPCFcAAAA+IlwBAAD4iHAFAADgI8IVAACAjwhXAAAAPiJcAQAA+IhwhbqTSCRqqhwAANwIV6grAwMDCoVCvpQ1PDyseDzuS1kAADiMtXa161B1xpg2SclkMqm2trbVrk7VHTt2LBNQEomE+vv7PR0jSRMTE5KkoaEhz2UmEgmdOHEic3w8Htezzz67LCQNDAyoq6tLktTR0aGenp6s7cPDw4pGowqHw8vqJUkffvihBgcHy6p3X1/fsnUAAOQzOzur9vZ2SWq31s4W3NFa23A/ktok2WQyaRvN4OCgHRwczCyPjo7a3t7eosf09/dnLff29tpoNOq5zN7eXjsxMVHw+JmZGRuJROzMzIy11trTp0/b1FvzhomJiWX17OnpsUNDQ5nloaGhrLqWqrdTV3fdAQAoJJlMWklWUpstljOKbVyrP40crkKhUCbEOHKDjNvMzIyNRqNZxzjhxwlMpcqMRqNZAWZwcNCGQqHMcm9v77KAMzo6mrXc39+fFdAmJiaspKzHnZmZyazzUm9HJBIp+PsDAODwGq7WB9V0tpbFYjGNjo6W3G/37t36/Oc/n7XumWee0bPPPqvf/u3fLnpsd3e3otFoZnlhYUFHjhwpuN2LeDyuRCKRd8xSLBYrWN7Y2Jji8bgikYgkZbrlEomEpzJzn6tTp05lPdbw8HCmuzAejysajS6rSywWy+ryc8ZKuR/X+f/Y2Jj2799ftN5u4XBY4+Pjmf0AAFgJwlUFLl++7OlKs46OjmXr5ufn9eCDD5Y8/vLly8vWuY/Jt72UQoO3Q6FQwfqEQiHNzMxkrYvFYpJSoWRsbKysMkdGRpRIJHTy5MmsOo2PjyscDiscDquvr08HDx7MBKx4PL7suXQHpdxg5wS0YvV26+7uViwWI1wBAHxBuKrApk2bPF2xtnXr1rzrvBy7adOmZevcx+XbXqmOjg5NT0973v/o0aMaGhoq+nvklukMak8kEjp48GDmWHcLlBNuBgcHtWfPnkw4SiQSywJROBxWNBpVLBbLDHx3wlO59e7o6MgMeAcAYKUIVxXI123lVW43oVctLS3LroTzSznBamBgQIcOHVJvb29ZZYZCocwxw8PD2rZtm86dO5fZvn///qx9E4lEplsxHo/nDXKjo6MaGBjQ9PS0Ojo6MgEsN4iVqnc4HNbx48eL/j4AAHhFuGog+UKHlL9lKJ+RkRF1dXVlBZRSZSYSCR09elSHDx/OBKRoNJoJT4W64kKhkKc5qNyB0+mGdAe1QvV2c8IZAAB+YBLRBhIOhwuGllItcU6XmxNQnMHspcqMx+M6duzYsi5CKRWgnHFWuccnEolMSMq3XUqN08qtY09PT1YrV6F65z6WM78WAKA8U7MLOvOLZMmfqdmF1a5q1dBy1WAOHz6sWCyWCRsjIyNZLTrxeFwjIyNZk4COj49rfHxcPT09mWDiPq5YmZFIRP39/VktXMePH1ckEskEusHBwcw65/hoNJp1lV++cHXw4EENDQ1lyhkaGsqaELRUvd2/s1+zvgNAo3n+x+/q6y+/VXK/Lz58p77cfVcVarT6mKG9QWdod8LOqVOnsrrWRkZGNDAwkBngnUgktGfPnrxX/rnfO8XKTCQSGh4ezixPTExocHAwK9AMDw9nHiPfTOvd3d3LpnSIxWIaHx9XKBTSxMSE+vr6sq4i9FJvKRXS8s0YDwAobWp2QVNzi5Kk60tW3z17Qc+8MqHPf6JLn9y7Q+uajCSps7VZnW0tq1nVFfM6QzvhqgHDVT06duxYVmuXnw4ePJiZGgIAUJmXzkzq6RfPajJ5o/tvZ3uLjjy6V4/s27mKNfOP13DFmCvUhf7+/kDuAXjs2DH19fX5Xi4ANJKXzkzqqefGs4KVJF1ILuip58b10pnJVarZ6iBcoW4cOnRIIyMjvpWXSCT04YcfBtIaBgCN4vqS1dMvnlW+fjBn3dMvntX1pcbpKSNcoW44k4V6maLBi+Hh4cDmDgOARvHquellLVZuVtJkckGvnvM+p2K9q8rVgsaYfkmJ9GLIWnusxP4hSY+nF7skhSV9zlqbcO1TVplYG5yA5Qf3FZEAgMpMzXmbYsHrfmtB4C1X6RAka+2wtXZY0rgxptTgmUFJsfQxA5KmJWVGHFdYJgAA8Flnq7crAL3utxZUo1vwsKTMdfjW2pik4vdOSbVUuZsoJiS5p92upEwAAOCzB/Z0aGd7i0yB7UapqwYf2NM4d8IINFwZY8JKddkl8mwrOIrYWtud0813QFKs0jKNMc3GmDbnR1JrWb8IAADIa12T0ZFH90rSsoDlLB95dG9mvqtGEPSYq0I3rEtICnkpwBjTk9734ArKPCzpiJfH85t7crVi1sLkagCAxjM1u6Bd2zbr8Kfu1vAP4vpg/kpm2/atG9X7sbB2bdusqdmFhvmeW63b30xLKto+6BrUHpJ0Ml9LVRllHpX0Nddyq6TzHuq5YtwWAACwlhX7nvtg/oq++p03JTXW99xqhauSHa/pMDUsScaYXmPMjKQ9lZRprV2UlGk+MqZ6TZNPPLhb3Xtvziy/PTWvLx1/TX986D7d0bk1s76ztblqdQIAwC+533OFNNL3XNDhqtCERKFC29ItVoclHXW1VsXSx0QljZdb5mrqbGvJ2wx6R+dW7bu1fRVqBACAfwp9zzWyQMOVtTZujEkYY8LW2njOtliBw8KS+iUNyTWPVfrfRIVl1oTrS1avn09Ikl4/n9A9O9uqOsAvHo9raGhIw8PD6ujoyLrty8TEhGKxmMLhcNYNkp1jDhw4ICl1U2ZJ6urq0ujoKPfkW0WxWCzz/Hd3dxedA8zLvs5r7dyE23l/TExMaHp6WocOHfJ1njEAWKsCv3GzM9lnej4qZ4B6t7W2L70cltTjvjrQGDOYnt8qsywpaq2930uZHupU9Rs319INLe+//37t379/2b36EomEDh48mBWuurq6dPr0aYVCocxyX1+f+vv7NTAwsKIZzoeHh9Xbmz2DxsDAgOLxOKHNA2OMZmZmNDY2JklFb+NTzr7d3d0Kh8PL3h/u1x4AGlHN3Lg5HZpCxpiedAg6kBOCopJyQ9FRY0y/86NUy9XDZZRZU2rthpYdHfmHp4VCIXV3d2eWY7GYQqFQJlg5+zhfzCu9dYw7xDm6u7t16NChFZXbCMbHxxUOhzOvR7GwVM6+xfT19WlgYKD0jgDQ4KoyoD1nzqqRnG3Dck0Iml6XkFT0djbFyqwlpW5oaZS6oWX33h2rNgdIIpHQ9PS0wuGwIpGIEolEJlAVCmIrNTw8nPcegdxE2Tt36PVz31JluN8fAIDlVutqwYZRzg0tH+raXr2KubhDjhNuYrGYhoaGNDY2pmPHjmXtOzQ0pK6uLvX29ioUCmXG6MTjcYXD4axxOcPDWblZvb29isViGh0dVTwez5Td39+v8fHxTLfgxMSEJGlkZERHjx7NdBVGo1HF4/GsrqtwODX1WbF6uMVisUwLzLPPPqt4PK7p6WmdPn06a0za8ePHdfjwYUUikcyxiURCw8PDmbFpfX19WdudbYlEQvF4XKFQSL29vQXXF+P8Ps7z7nTHjY+Pa2hoKPP8Fftdy9m3lNOnTysSiRCsAKAUa23D/Uhqk2STyaQN2l/+5Lz9lYG/Kvnzlz85H3hdHNFo1EYiETs4OGj7+/ttOBy2p0+fXrbf6OiojUQiWesikYgdHR3NLPf09NiTJ09mle2U5ZTvOHnyZGbffGVba+3p06dtOBxeVo/cdYODg1nLxeqRj1Om+3cJh8PL6ptbx/7+fjsxMZF1zMzMTGb/oaGhzLaJiQk7NDRUcH0xPT09WXWbmJiw0Wg0s5zveSqknH2tTT13vb29meWZmRk7ODhoI5FI5ncFgEaUTCatUu0ibbZIzqjGvQUbWq3e0HL//v3q7+/X4OBgxS0Z8XhcIyMjWccfPHhQQ0NDSiQSGhgY0OHDhzPbjh8/nrcrsJRoNKrp6WmNj9+YhcPdelKsHoV0dHQoHo9ndUM6rUSOSCSyrL7xeFyxWCzrGPfyyZMnlUgkMtv2799fdH0+4+PjisViy+o2PT2d9VhBGhsb0/DwsIaHh3XixAlFo9GsCxsAAIXRLRgw54aWF5ILecddGUk7VvmGln19fZkvfin15e7u6irEGfDu/sKfmJhQPB7X2NjYssHwK7kCsLe3V0NDQxoaGlIsFtPjjz/uqR7F5IapUCikrq6uosc4v4PTvTc9Pa3p6WlJUk9Pj4aGhrRt2zZFIhEdOnRI/f39ikQiedcXMjY2tqxuTn1HR0erMi5t//79JbstAQD5Ea4C5tzQ8qnnxmWkrIBVKze0zP0iHxsb8xSuEomEwuFw1pe98/+RkfKuMXDGSRXS19en+++/PzN+yP2Yxerht/HxcR09elTd3d16/PHHl9V5dHQ00/LktJz19/cXXJ+PO+gCAOoP3YJV8Mi+nfrGkxHtaM/u+tvR3qJvPBmp+jxXxTiX7XuRr9tMSoUD56rDfNsKPW4x4XBYHR0dGhkZWXYFY7F6+CmRSOjhhx/W4cOHM4P5nceIx+OZwfuRSET9/f06ffq0jh8/XnB9Ic6g/VzxeDwzmSsAoHYRrqrkkX079cOB39JXH9snSfrqY/v0w4HfWpVg5XRj5TMwMOA5XEWjUe3fv39ZK9WJEycyV6W5rzRMJBI6ceKEJGWu6pNSocFLS1lfX58+97nPLWuVKlaPcpQKY/F4PBMcHc5zOT4+nrmS0M25QjDf+kIikYii0WhWN6cTPpkhHQBqH92CVbSuyejeXSFJ0r27QlXvCnSmUXCCgDv4OLe/cbrnYrGYBgcHM5fw9/f369ixY4rH45n1vb29Gh0d1cDAgKanpzMtSs5YnZMnT2pgYCAzBcD09HRmWzgcVm9vrwYGBjLTOjhdbu7HdOvt7dXExETeQdXF6pEr3+McO3YsM3u500p29OjRrIH5TsvTwMBAZrJV53c8dOhQpl5OyIvH43r22WczIS93fTFOuU4AnZiY0OnTp5fV33nsQuG00L75bl4+MTGhkZERjY2NZZ4bp4UOAOBd4Le/qUXVvP3N1OyCpuYWM8tvT83rS8df0x8fuk93dG7NrO9sbebGlwAA1DCvt7+h5Spgz//4XX395beWrf/S8deylr/48J36cvddVaoVAAAICuEqYE88uFvde28uuV9na3MVagMAAIJGuApYZ1sL3X0AADQQrhYEAADwEeEKAADAR4QrAAAAHxGuAAAAfES4AgAA8BHhCgAAwEeEKwAAAB8RrgAAAHxEuAIAAPAR4QoAAMBHhCsAAAAfEa4AAAB8RLgCAADwEeEKAADAR+ur8SDGmH5JifRiyFp7zOMxktQlSdbaPte2qKQ+SaOS4pK6JZ2y1o74WG0AAICyBR6unJBkrR1OL0eNMUPusJTnmEFr7YBrecgYM2qt7U6vCkmKSupRKlwNEqwAAEAtqEbL1WFJe5wFa23MGDOqVMvTMsaYkKSIMSZkrU2kVw9JOm2MCVtr4+l1e1zbAQAAakKgY66MMWGlugETebZFixy6X1LYtewEqlCF9Wg2xrQ5P5JaKykHAACglKBbrsIF1idUICilg9i2nNVOEIu71j1ujJmW1CGpy92NmMdhSUdK1BUAAGDFVutqQScUeXVYUp+rBWxcUsxaO5IeyzVhjDlZ5PijktpdP7vKrzIAAEBpVblaMA/PwcoYMyjpuDMgXpJc464cJyQN5YzTkmv/RUmLrjLLrjAAAIAXQbdc5YYgR6jItgxjTI+kidypG9LrM1yBqlA3JAAAQFUEGq7SLUyJ9MD23G2xYsc6A95dUziEjDHh9NWEJ91lptdJHgIbAABAkKox5uqobgxId1qdhl3LYdeEoc66iKSIpPH09rCkXknT6VaqYzldg72SRpiaAQAArDZjrQ3+QVLhyQlDB3ImCO2VNGCt7UovhySdU56rCa21xrVPr2vT9hJXC+bWp01SMplMqq2trazfBQAANKbZ2Vm1t7dLUru1drbQflUJV7WGcAUAAMrlNVyt1tWCAACgiqZmFzQ1t1hyv87WZnW2tVShRmsX4QoAgAbw/I/f1ddffqvkfl98+E59ufuuKtRo7SJcAQDQAJ54cLe6994sSbq+ZPXdsxf0zCsT+vwnuvTJvTu0rik1B2Rna/NqVnNNYMwVY64AAA3kpTOTevrFs5pMLmTW7Wxv0ZFH9+qRfTtXsWa1z+uYq9W6/Q0AAKiyl85M6qnnxrOClSRdSC7oqefG9dKZyVWq2dpCuAIAoAFcX7J6+sWzytdf5ax7+sWzur7UeD1afmPMFQAANSSoq/pePTe9rMXKzUqaTC7o1XPTeqhru+dysRzhCgCAGhLUVX1Tc4WDVSX7oTDCFQAANcR9VZ8kvT01ry8df01/fOg+3dG5NbO+3Kv6Olu9tXJ53Q+FEa4AAKghnW0tme6+60tWr59PSJIuXbmme3a2ZaZMKNcDezq0s71FF5ILecddGUk72lv0wJ6OyiqODAa0AwBQg146M6nfGPyevvLCGUnSV144o98Y/F7FV/StazI68uheSakg5eYsH3l0b8XhDTcQrgAAqDFBTZnwyL6d+saTEe1oz+7629Heom88GWGeK58wiSiTiAJYZUFdHca95OrT9SWr3xj8XsEr+5zuux8O/FZZrUzu90OpGdp5P+THjZsBoE4EdXUY95JLqbeQGdSUCYXeD8+8MqFnXpnILK/190M1EK4AlFRvX071Jqirw4Iqt97UW8gMasqE3PdDIWv9/VANhCsAJdXbl1O9cV8d5nZH51btu7W95sqtN0GFzKD+6AhqyoRC7wf4j3AFrCFBnezr7csJcAsqZAb1RwdTJtQ/whWwhgR1sq+3Lycs554v6fXziRXNl1TP/Hwegvqjw5ky4annxmWkrIDFlAn1gXAFrCH1Nsam3upbry1tL52Z1NMvns0Mkv7KC2f0H773to48urehLr33+3kIarJP6caUCe76SqkWq0Z73epRQ4erubk5GUPyx9qxyUi/0nZj+rqLF1Pv751bTNZ66arm5q5W9BjXl6xeffuCJOnVty9o11ZT8ZdIUPV9f25R789fKbnfR7Zu1EfKCG7f/ME7+sYP3i2531Mf261//Zu3ey4318WLFzP/zs2tbDrC2Jsf6N/8xdll3UvOfElf++d7Fb37prLKDOr5DapcKZjnwV32v/vu2/rlXKruX3nhjL4e+5n+z0/eUXGZkvTrv7JV3/nXB/T/vTap//s7b+v/+tQd+l/u26l1TUZzc3MVl4vKeX3eG3qeqz/90z/V5s2bV7s6aECzV43mrpYOJK0brNo2VPYZXbLSqQ/X64Xzm/TYrss6sP2aVtqLcCaxXi/+olnJqze+8Ns3LOnRWxe1L3RtZYVL+sWlJv2Hn23R/3HXRd26eanickYnN+rlX5b+8n345kV17yz9Ze7Ifd2mFpp0/N1NOrT7sjpbbtS3Vl63JSsNnt2i5FWj5XNyS5JV+wargb0Xy3qMoJ7foMoN6nmQUp+J595xWindB6de/ydvXyj7s1GN9xkqc+nSJf3+7/++xDxXhW3cuJFJRLEqvv+O1bdLN4Dof94t/c7t5X+z/uQDq5NvS4n0988L5zfplSnp4B3SR2+q7Jv6Jx9YPffO8vXJq0167p1N+tzeyst2JEzqi2LLli1qa628rGiz1YFbbixfuCT9p59K//uvSjtcf0+1b2xWW7P37rvcs8WWOSu9K+3Zvkm7V1Bfh9+v288SVsmiDX5GyatGU7ZVd7V7Lz+o5zeocoN6Hpas1V+dLVymJP315Cb909ukpjJ6SQqdH46/uylrudLzAyp37Zq3oNzQ4aqlpYWWK6yKT4aX9MCtqSCxZK3Gf3ldf3Xumn5nz3pFbl6XORGHmo02t5TXLTR24ZqePbt8XFDiivTsWekL923U/h3lffSXrNXIxGUp77VLKX8RN3rotk1lfYnkPsbkB1clXdXk4gbd1bmh4rI2b5bcI1JaktclLej2jhbd3r6uojLzabmaKjd1LllZuUG8bguJa5JKjxFbULM2b/ZedlDPb1DlBvU8vPHhdSWuFJ9ramZR+vlCi+7Z7r3+7vNDMZWcH7Ayly5d8rRfQ4crYLWEWpoUakl9oT7/xhXNLKZOpH917pr+7r3reuKe8r9IpVRAef6N4t0l//nNK1kBzoufTi9l6ljI9ILVT6eXyvoSceQ+D39+9qr+68S1ip+HehPU69be7G1fr/tV05K1Ope8Lkk6l7yu3W1NFYftoJ6HZInPRLn7OZzzA+oXkRdYJWMXrulPXltcFlpmFq3+5LVFjV0ofwxTOSGoHEF9iUjBPA/1JqjX7Vc7mrStRGDoaDH61Y7KvwpyQ9CSD+N4xy5c0x/+zWX9+dlUX96fn72qP/ybyxW/F4J6Huo5vCJYVfmT0BjTLymRXgxZa495PEaSuiTJWtu30jKBciUWlpTwEBhCzUahMprng2qpCCoEBfUlEtTzUG+Cet2ajNET92zUn7xWuEvsX929seLnNogWRyds53LC9hfuU9llB/U8OKGtWDBeaXhFfQr8akEnJDnhxxgTlXQwNyzlHDNorR1wLQ9JCltruystM6f8NknJ3/3d3y055qqzs1OPPfZY1roXXnhBU1NTJR9n//79uv/++zPLV65c0Te/+U0vVdRnPvMZ7dixI7M8MTGhWCxW8rgNGzbo937v97LW/e3f/q3efPPNkseGw2F1d3dnrXvuuecyl4UX85u/+Zu65557MsvT09M6efJkyeMk6YknntDWrTfmNHr99df1ox/9qORx27Zt0+OPP5617q//+q91/vz5ksfee++9euihh7LWDQ0NLdvvrZnreiuR3Vqw9d5PakPHrZnlq9O/0M53Y7pzW+nusL6+1Fv0jQ+va/BU6fuC7b0wqvbFX2rXrl369Kc/nbXtxIkTmpmZyVqXbL5ZZ3dkv4bFyi3l4MGD6ujo0JK1+sO/uayZxSXlvdrKWm28fkmRX/yljKy2bNmiJ598MmuX0dFRxePxiup77wff05aL75XcLxqNqqurK7N84cIF/eW3/qsmmz6if5jbqH/SekU7l96XyTN27LOf/aw2btyYWT59+rTGxsYKPpaV0WTTR/TmtZv0B59+UB+/7cYYsXLPEeW+H6TyzhEfbrpN73Ts15X1WzLrOlqM/tXdqRBUyTkiE4KsldyhJP2dctf739f2yz/PrPZyjrAyGr/1n+nKus3ZZbp0tBj9r9ve1o//W/nniLEL1/SnP0nqsrnR57bx2kXdPj2WVVfJ+zniw0236Wcf+c3UQp46f+G+Zt18dVLf/va3S9ZXunGOcPzoRz/S66+/XvI4r+eIfB566CHde++9meX5+Xk9//zznurrnCMcb7zxhr7//e+XPM7rOSKfu+++Wx//+Mez1v3Zn/2Zrl4tPV1LvnPEt771rZLHSalzxOzsrA4ePCjVwNWChyXtcRastTFjzKikvEHIGBOSFDHGhKy1ifTqIUmnjTFha2283DILuXTpkpaWijez57uacGFhQfPz8yXLX1xc/leSl+MkLavXtWvXPB3r/nJweK3v5cuXl627ePGip2Nzr6BYWlry/LvmBvyrV696Ora5efkl25cvX/b1tdneZLU1PQG5lVGyZYc+WL8xa+D5L95dp++fv6T5ef9bmOauGq2bn8/72ly6dGlZnZvmL2rD9nldXb+l4JdTaKNV04dxzRcZnO5w3oc3/vJfKPhluuO9H+rifOE5YPK9NnNNOwrsnW3uapNsBe/D12eadPqWz+jqhq3aKukfJb13dV47J/9O7XPnipa1uLhY8L2UbN2jyZ2/rqsbtmqTlrfYlHuOKNkCYq02XJ3Pet3KOUc0z7+hu95/U+9v3KGJhS36/KFPZYXBcs8RWS2Oue8zYyRrdS4U0cb338wEWS/niPnNt2QFwHymF6z+8dKGis4R+3es17mLr2hs8orevtSiOzYv6CNXLsjIKrc0r+eI5vk3tHthIfN+cLjD67lz3s7f+RR7H7p5PUfkkxtKrLWBf1fl4/X8vbCw/A+Rixcv6sqV0tNzrOS7qhyBhitjTFipLrtEnm1Ra22hppj9ksKSxtPLTpQNraDMZTZv3lyy5aqlZfmowpaWlqyWlkLyffl7OU6Smpqym5HXr1/v6dgNGzYsW+e1vps2bVq2bsuW4ic6d/3cmpqaPP+uuRO5btiwwdOx+V67TZs2BfLauP/yX6/sgee7QxvV0d5a8jHdvHaftW6w2rp1a97XZvPmzXm/APbMnE79JZ0bgtJ6wtI/vOXtdXW/D/fvWK9/9pEP9O3JzVlfgBuvX0r95W/fl9LPYb73Tb7X5rrHOXpaNyxpi4fX1f0+HLtwTf/5HzcvO8tdXb9F7972yWUtK7mam5vzvic+3HSb3nVaKlzc3VblniOyuq0KhNc9iXG1br3xvFZyjlhanNVPE3Pa057dzVruOaLkGDFjdHVjq5a2hzMtbV7OEQubvd0rb9Hkf21yOecId/f+ZbWo+cr7ujYzreb167S04cZ5pGWd1Lw+9byUc47Yat/XLe99K9NC+i//p4/qsY/uzDzHXs/f+RR6H+Yq5xyRK/d7wxgT+HeV13NEPvm+l7ds2ZK3cSHXSr6ryhFot2C6u27UWmty1s9I+py1dsRjOT2STkraplTwKqtMY0yzJPcnpVXS+ZMnT+qmmyqfPReNodAYEMcX7muuaGqDVDdb8bEa//7jlU1tkDsWxinP+Ut6JZas1d/+/Kr+/OxV/W97N2S1gFRSVhDPQ72V6wjydZOkd5LX9W9/tKB/+9DKpjb4b+9d0398vfSX9h/c26x/ekt5Uxt46R4dOFDe1AYvvHVF35oo3WX0ma4NeuzO0l/Qjtwxme/NL2n4v19R7/+wUbdsvRE6yh2Tidr1wQcf1Ey3YD7Tksq5nfdhSX3W2kSR29UUK/OwpCNlPB4gKbgB10EPNN6/I9Vt6VcIcmsyRnva10m6uqwFpJKygngegpo6IugpKfx+3fJ9+bv/dZT75R/UBQ5BDRD/xG3r9dHO0q9HqMz6vvLza3lD2/B/zz5nlBvaUP9WK1x5DlbGmEFJx621wyso86ikr7mWWyWVHvWMhhfkl+n+Hev1hfsUWEuFnyEoSEE8D0FdfRfklBQOP1+3oL78gwpBQYXtoOaNCiq0of4FHa4KDfsPFdmWke4OnMgJVmWXaa1dlGt6Xm7WDK+C/jKtl5aKoPn9PATVslJv8xoF9eUfZMtr0H90+InJPlFIoO9Sa23cGJNwXeXn3lZ04Hl6vJacYJW+irBjJWXmWlhY8DyVPRpTi4cr6lL7LerSJe83kk0uWiVdu5vrzr9X9bOpGy0N7RvL+6L+boF7kuW2VJR7T7Lc+l5If2zemV6Q+8Kdcuuba2ezTf97VQuXK5889LYWq9DGG/foy2dbs3Rby4IuXfJe36DKzbWwYNP/LujShsrL2Sipc/k1LsstSeWeCve2SZ/bq6x7IUqp37+nS9rbdqWsz0Ru2f/PA1Z/Nyn9v29L//IO6dd3WjWZyssE/JDvSsV8qvEnwFFJUUlOSOpx/p9eDkvqcU8CaoyJSIpIGklvlyT3cUXL9OrKlSuanS04Hg1Qp5HaN2xR8qpR3vmdZNW+warTXFQ5b6XY5Ea9/MvlVyP9p59mLz9886K6d3r/Mrmv1ajrrtJfxq0brGZnvbe2BVXfXBcvNUnaoosXL2rWljcbea7fuWW9nnvHaVZwPyep3/vTOxc0P1d+gAuqXDc/n4cgdW2U+u+RTn24Xi+c36THdl3Wge3X1GRU1uehkJuaUs/DTU0XNT9Xu88DGoeX6R6kKkwiKmUm/XRamQ7kTBDaK2nAWtuVXg5JOqdUN18W9xWCxcr0UJ82Scnz58/nnccKcIu9+YH+zV+clZR922Lnzfi1f75X0bvLu+r0/blFvT9f+kP6ka0b9ZHW5aGm2qpV37OTczr0Zz/R8d/7qPbuLG96i3xib36gf/fdt/XLuRt139HWrIHurrJfs2qU6/D7eQhaUPWtt+cBa9/s7Kx27dol1cLVgjm3phnJ2TYsV6tTev6qbSsp06vW1la1tvKBRXGPHWjVpk0tevrFs5pM3mgS3tHeoiOP7tUj+3aWXWZra6vCpXerGUHVd2p2QVNzN8btTF60mX+3zN5oqehsbVZnW/mDWx470Krfvf92HT/1rr7ywhl99bF9OnRgt9Y1rWxMlN/lBv08BM2p45YtW1Z0Tq335wFrn9cGqdoZGQjUIOdkv2vbZv3HJ+/Xd89e0DOvTOjzn+jSJ/fu0LomozO/SHKyr9DzP35XX3/5rWXrv3T8tazlLz58p77cfVdFj7GuyejeXSFJ0r27QisOVkGUW43nwU+5Iejtqfmsfx3lfi7q7XkACiFcAUUUOtk/88qEnnllIrPMyb4yTzy4W917by65X2cNdI0Gqd6eh6BCUL09D0AhhCugCE72wepsa6HFT/X3PAT1uai35wEohHAFFMHJvj4F1W2FFD4XQHGEKwBrTlDdVoQ2AF5UZSqGWuNMxZBMJpmKAViDckNQIeWGoD8a/Vne0JaLMXjA2jQ7O6v29napxFQMhCvCFQCPggptAOqD13BFtyAAeMRYIwBe1M6dWwEAANYAwhUAAICPCFcAAAA+IlwBAAD4iAHtWBO4igsAUCsIV1gTCk0amYv5hwAAQSNcYU3IvdfZ21Pz+tLx1/THh+7THZ1bM+u5ByAAIGiEK6wJ7vmHri9ZvX4+IUm6dOWa7tnZpnVNZhVrBwBoJMzQzgzta8pLZyb19ItnNZlcyKzb2d6iI4/u1SP7dq5izQAA9c7rDO1cLYg146Uzk3rqufGsYCVJF5ILeuq5cb10ZnKVagYAaCSEK6wJ15esnn7xrPK1wzrrnn7xrK4vNV5LLQCgughXWBNePTe9rMXKzUqaTC7o1XPT1asUAKAhEa6wJkzNFQ5WlewHAEClCFdYEzpbvU0M6nU/AAAqRbjCmvDAng7tbG9RoQkXjFJXDT6wp6Oa1QIANCDCFdaEdU1GRx7dK0nLApazfOTRvcx3BQAIHOEKa8Yj+3bqG09GtKM9u+tvR3uLvvFkhHmuAABVwSSiTCK65lxfsjp+6l195YUz+upj+3TowG5arAAAK+Z1EtGq3P7GGNMvKZFeDFlrj3k4JiTpcUkHrbXdOduikvokjUqKS+qWdMpaO+JjtVFHpmYXNDW3mFnevHF95t83Jm+8/ztbmzO3yQEAIAiBh6t0sJK1dji9HDXGDFlr+4ocE5G0X1JIUr4RyCFJUUk9SoWrQYJVY3v+x+/q6y+/tWz9l46/lrX8xYfv1Je776pSrQAAjSjwbkFjzIykPdbahGudtdaW7KcxxvRIOmytvT/P+pi7zDLrRLfgGpPbclUILVcAgErVRLegMSasVDdgIs+2qLU2FuTjo3F0trUQmgAANSHobsFwgfUJpbr2VuJxY8y0Ut2GXdbagUI7GmOaJTW7VrWu8LEBAADyqsqA9jycUFSpcUmy1sYlyRjTa4w5aa09WGD/w5KOrODxAAAAPFmtcLWiabKdUOVyQtKQMSZvF6Sko5K+5lpulXR+JXVAZRgbBQBY64IOV7khyBEqsq0kY0yP++pAa23CGCOluiHHc/e31i5KWnQdX+lDY4UKXdWXi6v6AAD1KtBwZa2NG2MSxphwbmtTpYPZ0/NfnTTGdLm6BUPpzRUHNlTHEw/uVvfemyWlJvv87tkLeuaVCX3+E1365N4dmck+O1ubixUDAEDNqsbtb44qNSeVpMw0CsOu5bAzF1Yey7oP091+x3LCWq+kkUqnZkD1dLa1aN+t7To/c0l/8NxpPfPKhCTpmVcm9AfPndb5mUvad2s7XYIAgLpVldvfpMOTE4YOuK/sM8b0Shqw1na51oWVmiD0kKSIpGNyzcCebqnqdT3E9mJXC+apD/NcraKXzkzqqefGlfvOczpruQ8gAKAWeZ3ninsLEq6q6vqS1W8Mfk+TyYW8241SN1r+4cBvcT9AAEBN8RquqtEtCGS8em66YLCSJCtpMrmgV89NV69SAAD4iHCFqpqaKxysKtkPAIBaQ7hCVXW2ehuo7nU/AABqDeEKVfXAng7tbG9RodFURtLO9hY9sGdF88wCALBqCFeoqnVNRkce3StJywKWs3zk0b0MZgcA1C3CFarukX079Y0nI9rRnt31t6O9hWkYAAB1j6kYmIph1Vxfsjp+6l195YUz+upj+3TowG5arAAANcvrVAyrdeNmNKjcGzdv3rg+8+8bkzfep9y4GQBQrwhXqKpCN27+0vHXspa5cTMAoF4RrlBV7hs3F8ONmwEA9YpwharqbGuhuw8AsKZxtSAAAICPCFcAAAA+IlwBAAD4iHAFAADgI8IVAACAjwhXAAAAPiJcAQAA+IhwBQAA4CPCFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICPCFcAAAA+IlwBAAD4aH01HsQY0y8pkV4MWWuPeTgmJOlxSQettd1+lAkAABC0wMNVOgTJWjucXo4aY4astX1FjolI2i8pJKnDjzJRnqnZBU3NLZbcr7O1WZ1tLVWoEQAA9cFYa4N9AGNmJO2x1iZc66y11ng4tkfSYWvt/X6Vmd63TVIymUyqra3N2y/SYP5o9Gf6+stvldzviw/fqS9331WFGgEAsLpmZ2fV3t4uSe3W2tlC+wXacmWMCSvVZZfIsy1qrY1Vo0xjTLOkZteq1nIft9E88eBude+9WX//9gca/kFcH8xfyWy7aetG9X4srF+74yZ1tjYXKQUAgMYT9ID2cIH1CaW6/KpV5mFJSdfP+Qofu2F0trXo/MwlHf3Om1nBSpI+nL+io995U+dnLtElCABAjtW6WnBaecZSBVjmUUntrp9dPj/2mnN9yerpF88qX6exs+7pF8/q+lKw3coAANSb1QpXfgeromVaaxettbPOj6S5AB5/TXn13LQmkwsFt1tJk8kFvXpuunqVAgCgDgQdruIF1oeKbFuNMpFjaq5wsKpkPwAAGkWg4cpaG5eUSA9Cz91W9mD2oMrEcp2t3sZSed0PAIBGUY1uwaOSos5CenqFYddy2Jm3Ko9iY6gKlomVe2BPh3a2t6jQ3BZG0s72Fj2wJ4geXgAA6lfg4So9c3rIGNOTDkEHcib7jErKmvzTFbj6JEWMMYPpY72WiRVa12R05NG9krQsYDnLRx7dq3VNnqYWAwCgYQQ+iWgtYhJR7146M6mnXzybNbh9Z3uLjjy6V4/s27mKNQMAoLq8TiJKuCJc5eW+/c31Javvnr2gZ16Z0Oc/0aVP7t2RabHi9jcAgEZBuCqCcFUat78BACBbTdz+BvXLuf1NKdz+BgCAbIQr5NXZ1kJ3HwAAFVitGdoBAADWJMIVAACAjwhXAAAAPiJcAQAA+IhwBQAA4CPCFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICPCFcAAAA+IlwBAAD4iHAFAADgI8IVAACAjwhXAAAAPiJcAQAA+IhwBQAA4CPCFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICP1lfjQYwx/ZIS6cWQtfbYSo4xxkQl9UkalRSX1C3plLV2xMdqAwAAlC3wcJUOSbLWDqeXo8aYIWtt3wqOCUmKSupRKlwNNmqwmppd0NTcoiTp+pLVP7yX1Mylq9q2eYP+yS3tWtdkJEmdrc3qbGtZzaoCANAQjLU22AcwZkbSHmttwrXOWmtNpccYY3okxdzby6xTm6RkMplUW1tbJUXUjD8a/Zm+/vJbJff74sN36svdd1WhRgAArE2zs7Nqb2+XpHZr7Wyh/QIdc2WMCSvVpZfIsy3q1zEe6tFsjGlzfiS1VlJOLXriwd36yqfuLrrPVz51t554cHeVagQAQGMLekB7uMD6hFJdeys55nFjTI8xptcYM1iiHoclJV0/50vsXze2b23WN//+nYLbjaRv/v072r61uWp1AgCgka3W1YLTkjpWcMy4Ut2CI+lxWRPGmJNFjj0qqd31s6vMx65Zr56b1mRyoeB2K2kyuaBXz01Xr1IAADSwqlwtmEe5wSrrGGttPGfbCUlDxpi83YnW2kVJi86yMQWHe9WdqbnCwaqS/QAAwMoE3XKVG4IcoSLbSh6THtCe4QpUhboU16zOVm9XAHrdDwAArEyg4SrdwpRID1LP3Rar5BhjTEjSSff29DqpcDBbsx7Y06Gd7S0q1BZnJO1sb9EDeyppLAQAAOWqxpiro0rNSSUp0+o07FoOO/NaeTkm3Up1LKdrsFfSSKVTM9SzD+cX9dlfu12FJtSwkj77a7frw/nFAnsAAAA/BT7PlZSZFNQJQwestQOubb2SBqy1XWUcE1IqUDm2u7d7qA/zXAEAgLJ4neeqKuGq1qylcMUM7QAAVIfXcLVaVwvCJ51tLVmh6X+8LbR6lQEAAKs2zxUAAMCaRLgCAADwEeEKAADAR4QrAAAAHxGuAAAAfES4AgAA8BHhCgAAwEeEKwAAAB8RrgAAAHxEuAIAAPAR4QoAAMBHhCsAAAAfEa4AAAB8RLgCAADwEeEKAADAR4QrAAAAHxGuAAAAfES4AgAA8BHhCgAAwEeEKwAAAB8RrgAAAHxEuAIAAPAR4QoAAMBHhCsAAAAfEa4AAAB8tL4aD2KM6ZeUSC+GrLXHVnpMJWUCAAAELfCWq3QIkrV22Fo7LGncGDO0kmMqKRMAAKAajLU22AcwZkbSHmttwrXOWmtNpcdUUmZO+W2SkslkUm1tbWX+RgAAoBHNzs6qvb1dktqttbOF9gu05coYE1aqyy6RZ1u0kmMqLLPZGNPm/EhqLesXAQAA8CjobsFwgfUJSaEKj6mkzMOSkq6f8wX2AwAAWJHVulpwWlKHz8cU235UUrvrZ1eZjw0AAOBJVa4WzKPcYOXlmILbrbWLkhadZWM8Dc0CAAAoW9AtV/EC60NFtpU6ppIyAQAAqiLQcGWtjUtKpAeh526LVXJMJWUCAABUSzXGXB2VlLmKzxjTI2nYtRx25q3yeoyH7QAAAKsi8HmupMykn06X3QFr7YBrW6+kAWttl9djvGwvUR/muQIAAGXxOs9VVcJVrSFcAQCActXEJKIAAACNhnAFAADgI8IVAACAjwhXAAAAPiJcAQAA+IhwBQAA4CPCFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICPCFcAAAA+IlwBAAD4iHAFAADgI8IVAACAjwhXAAAAPiJcAQAA+IhwBQAA4CPCFQAAgI/Wr3YFGtH1JatXz01ram5Bna0temBPh9Y1mdWuFgAA8AHhqkqmZhc0Nbeov3/7Aw3/IK4P5q9ktt20daN6PxbWr91xkzpbm9XZ1rKKNQUAACtBuKqS53/8rr7+8lt5t30wf0Vf/c6bkqQvPnynvtx9VzWrBgAAfMSYqyr5Fwdu001bNxbd56atG/UvDtxWpRoBAIAgEK6q5J0PL2V1BebzwfwVvfPhpSrVCAAABIFwVSVTcwu+7gcAAGpT4GOujDH9khLpxZC19thKjjHGRCX1SRqVFJfULemUtXbEx2r7rrPV2yB1r/sBAIDaFGjLVTokyVo7bK0dljRujBla4TEhSVFJQ+mfiVoPVpJ0+/bNnsZc3b59c5VqBAAAghB0t+BhScPOgrU2JqnXh2P2WGuNtbYrHcBq3n859XNPY67+y6mfV6lGAAAgCIF1Cxpjwkp16SXybIumQ9OKj6kXTzy4W917b/Y0zxUAAKhfQY65ChdYn1Cqa28lxzxujJmW1CGpy1o7UKwixphmSe7U0lps/yB0trWos61F+25t1+9/LMwM7QAArFGrMYmoE4oqPWZckqy1cUkyxvQaY05aaw8WOf6wpCPlVjQo65qMHuravtrVAAAAAfAcrowxPZIOedj1qLV2vMj2coNV1jFOqHI5IWnIGJO3O9Gpk6SvuZZbJZ2voB4AAABFeQ5X6SvyyrkqLzcEOUJFtpU8xhjT47460FqbMMZIqS7FvKHOWrsoadFZTu8PAADgu8CuFky3MCXSg9Rzt+UdmF7qGGNMSNJJ9/b0OqlwMAMAAKiaoKdiOKrUnFSSMl2Lw67lsDOvlZdj0t1+x3K6BnsljRTpEgQAAKgaY60N9gFS4ckJQwfcV/YZY3olDVhru8o4JqTsea+2l7paME+d2iQlk8mk2trayjkUAAA0qNnZWbW3t0tSu7V2ttB+gYerWkS4AgAA5fIarrhxMwAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICPCFcAAAA+IlwBAAD4iHAFAADgI8IVAACAjwhXAAAAPiJcAQAA+IhwBQAA4CPCFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOAjwhUAAICP1q92BVbT7OzsalcBAADUCa+5wVhrA65K7THG3Crp/GrXAwAA1KVd1tpfFNrYqOHKSLpF0pyH3VuVCmK7PO6P2sDrVp943eoTr1t94nWrTKuk92yRANWQ3YLpJ6Rg4nRL5TBJ0py1ln7EOsHrVp943eoTr1t94nWrWMnnigHtAAAAPiJcAQAA+IhwVdqipKfT/6J+8LrVJ163+sTrVp943QLSkAPaAQAAgkLLFQAAgI8IVwAAAD4iXAEAAPiIcAUAAOCjhpxE1AtjTL+kRHoxZK09torVgQfGmKikPkmjkuKSuiWdstaOrGrFkMUYE5L0uKSD1truPNv57NWgYq8bn73alv5MSVKXJFlr+/JsT6QX+cz5gHCVh/NGtNYOp5ejxpih3Dckak5IUlRSj1In+EFO7rXFGBORtF+p16ojz3Y+ezWo1OsmPns1yxgzaK0dcC0PGWNGnYDMZy4YTMWQhzFmRtIea23Ctc5aa03ho7DajDE9kmLu1w21Kf1aHbbW3p+zns9eDSvyuvHZq0Hp1saTSrU2JtLrIpJOS+qy1sb5zAWDMVc5jDFhpZpFE3m2RatfI6Ax8NkDArFfUti1HE//G+IzFxy6BZcLF1ifUKrpG7XtcWPMtFJdF13u5nDUPD579Y3PXo1Jh6ZtOaud0BRXKnjlkxCfuRUhXHnnnDRQu8YlyVoblyRjTK8x5qS19uDqVgsrxGev9vHZqx+HJfVZaxPGFOz54zO3QnQLescbrcZZa+POyT3thKSe9LgD1C8+ezWOz159MMYMSjruDF4vgs/cChGulosXWB8qsg01ID2oNsM1jqBQdxNqC5+9OsVnr/alX6OJnGkW+MwFhHCVI/3XVyI90C93W2wVqgQPnKti3K+b669mThJ1gM9efeKzV/ucwemu6RZCxpgwn7ngEK7yO6obg/6cxF+qGRWrKP2X8rGcroleSSNcHl6TCnU78NmrbcteNz57tS099UJE0rgxJpwOUr1KjauS+MwFgnmuCkhPrOacLA5w5UvtS/+13OtatZ3XrbakT+w9kg4pdcI/ppyZvPns1Z5SrxufvdqUfl3OKc+Vf+55rPjM+Y9wBQAA4CO6BQEAAHxEuAIAAPAR4QoAAMBHhCsAAAAfEa4AAAB8RLgCAADwEeEKAADAR4QrAPAofduQ0GrXA0BtI1wBgHeHxc2IAZRAuAIA7yLW2vHVrgSA2ka4AgAPjDFRSaOrXQ8AtY9wBQDeHJQ0UnIvAA2PcAUA3oSttfHVrgSA2rd+tSsAAH4yxkQk7ZfUJemUpJik3vTmhLV2uIIyeySdLLLtgKQJSfH0z7S1NlF25QGsCbRcAVgz0tMkRK21w9baAUnPSjpsrT2W3mWgwqIPSTqR5/F6JXVbawfSoS2kVMjaX+HjAFgDaLkCsJb0uoKUYyL977ikvgrLDeW2RBljwpIGJe1xrU5IkrU2VuHjAFgDCFcA1pLMgPN0+Akp3eKUG3jS23uU6sY7IGko35iqdOvUUJ7HGpIUywld3UqFOAANjHAFYM3ICUdRSfEiY59OWmvvlyRjTEzSy5Luz7PfQWttd571UaWuIHSLKDXGC0ADY8wVgLWqWzlTJzi3rkkPes9IB7BQujUrd/9EbsGu/XJbqZgLCwDhCsDake7Cc/QodbVgZpurFavQgPNIznKhLkFJ2S1l6UlGZa2NGWMiuQEOQOMgXAFYE9LBajD9/x65uufy3Gw5JGk6Z11CUkfOuu58g9PToSruBKh0+X1Kjd+SUlcsMvYKaFCMuQKwVsQkDadD1phSYWfAGCNJHTnzWyW0PEiF5Apc6a6/YpOGHpTUZ4w5LUnW2oPGmJPpxydYAQ3MWGtXuw4AUFXpFqdnnQHt6XUzku53uvqMMYOSjtMCBaBcdAsCaDjpwBRyltPdevGcqw0jBCsAlaBbEECjOphunTql1DxXmWkV0i1bBCsAFaFbEAByGGOGJA1yo2YAlaBbEACW6yBYAagULVcAAAA+ouUKAADAR4QrAAAAHxGuAAAAfES4AgAA8BHhCgAAwEeEKwAAAB8RrgAAAHxEuAIAAPDR/w/ayL41LOgQlgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAGLCAYAAADqL7dNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/gUlEQVR4nO3dfXAj52Hn+R84L+S8kRhIpmdkzcQDyoo8O6dToBkpytrJOQId+RIlq1tyZnelurskZSBeJ2VbqQKO/uO0c1dlLlhXm7gSlRdQJd5UyXs1Q+QUr5xYZUBW4jjxWiRhlTIZK5bQVCRZMx5pwCY4L+S8sO8PunsAECBe2A0S5PdTxZrpRveDh3jp/vHp53naZ1mWJQAAALiia60rAAAAsJEQrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABw0da1rsBaWFxc1Lvvvqs9e/bI5/OtdXUAAEAHsCxLc3NzuuOOO9TVVbt9alOGq3fffVcHDhxY62oAAIAO9Pbbb+vOO++s+fimDFd79uyRtPTi9Pb2rnFtAABAJygWizpw4ICTI2rZlOHKvhTY29tLuAIAAE2p16WIDu0AAAAuIlwBAAC4iHAFAADgIsIVAACAiwhXAAAALiJcAQAAuIhwBQAA4CLCFQAAgIsIVwAAAC4iXAEAALiIcAUAAOAiwhUAAICLCFcAAAAuIlyh45imua7KAQCgFOEKHSUej8vv97tSViqVkmEYrpQFAIDNZ1mWtdaVaLdisai+vj7Nzs6qt7d3ravTdmNjY05AMU1TsVisoX0kKZ/PS5KSyWTDZZqmqdOnTzv7G4ahZ555ZllIisfjGhgYkCQFAgENDQ2VPZ5KpRQOhxUMBpfVS5IuXryoRCLRVL2j0eiydQAAVNNwfrA2odnZWUuSNTs7u9ZVabtEImElEglnOZPJWJFIZMV9YrFY2XIkErHC4XDDZUYiESufz9fcf2ZmxgqFQtbMzIxlWZY1NTVlVX408/n8snoODQ1ZyWTSWU4mk2V1rVdvu66ldQcAoJZG8wPhapPx+/1OiLGtlLFnZmascDhcto8dfuzAVK/McDhcFmASiYTl9/ud5UgksizgZDKZsuVYLFYW0PL5vCWp7HlnZmacdY3U2xYKhWr+/gAA2BrND1s9bkHbkLLZrDKZTN3tDh48qM9+9rNl655++mk988wz+pVf+ZUV9x0cHFQ4HHaW5+fn9dRTT9V8vBGGYcg0zap9lrLZbM3yJicnZRiGQqGQJDmX5UzTbKjMytdqYmKi7LlSqZRzudAwDIXD4WV1yWazZZf87L5Spc9r/39yclJHjx5dsd6lgsGgcrmcsx0AAKtBuGrB1atXGxppFggElq27dOmSHnzwwbr7X716ddm60n2qPV5Prc7bfr+/Zn38fr9mZmbK1mWzWUlLoWRycrKpMtPptEzT1Pj4eFmdcrmcgsGggsGgotGohoeHnYBlGMay17I0KFUGOzugrVTvUoODg8pms4QrAIArCFct2LFjR0Mj1nbv3l11XSP77tixY9m60v2qPd6qQCCgQqHQ8Pajo6NKJpMr/h6VZdqd2k3T1PDwsLNvaQuUHW4SiYQOHTrkhCPTNJcFomAwqHA4rGw263R8t8NTs/UOBAJOh3cAAFaLcNWCapetGlV5mbBRPT09y0bCuaWZYBWPx3XixAlFIpGmyvT7/c4+qVRKe/fu1fT0tPP40aNHy7Y1TdO5rGgYRtUgl8lkFI/HVSgUFAgEnABWGcTq1TsYDOrUqVMr/j4AADSKcLWJVAsdUvWWoWrS6bQGBgbKAkq9Mk3T1OjoqEZGRpyAFA6HnfBU61Kc3+9vaA6q0sBpX4YsDWq16l3KDmcAALiBSUQ3kWAwWDO01GuJsy+52QHF7sxer0zDMDQ2NrbsEqG0FKDsflaV+5um6YSkao9LS/20Kus4NDRU1spVq96Vz2XPrwUAaM6F4rzO/Hi27s+F4vxaV7VtaLnaZEZGRpTNZp2wkU6ny1p0DMNQOp0umwQ0l8spl8tpaGjICSal+61UZigUUiwWK2vhOnXqlEKhkBPoEomEs87ePxwOl43yqxauhoeHlUwmnXKSyWTZhKD16l36O7s16zsAbDZf+/5b+vKLr9fd7nMPf0RfGLy7DTVae8zQvklnaLfDzsTERNmltXQ6rXg87nTwNk1Thw4dqjryr/Sjs1KZpmkqlUo5y/l8XolEoizQpFIp5zmqzbQ+ODi4bEqHbDarXC4nv9+vfD6vaDRaNoqwkXpLSyGt2ozxAID6LhTndWFuQZJ0c9HSt86e19Mv5fXZTwzok4f3aUuXT5LUv6db/b09a1nVVWs0PxCuNmG46kRjY2NlrV1uGh4edqaGAAC05oUz53Ty+bM6N3vr8t/+vh499ehhPXJk/xrWzD2N5gf6XKEjxGIxT+4BODY2pmg06nq5ALCZvHDmnD7zbK4sWEnS+dl5febZnF44c26NarY2CFfoGCdOnFA6nXatPNM0dfHiRU9awwBgs7i5aOnk82dV7TKYve7k82d1c3HzXCgjXKFj2JOFNjJFQyNSqZRnc4cBwGbx8nRhWYtVKUvSudl5vTzd+JyKna4towXHxsaczsKmaZaNRKvGns1bknPPucoOx82WiY3BDlhu4DMDAKt3Ya6xKRYa3W4j8LzlamxsTNLSPEORSEShUKhuH5d4PK5wOKxIJKJEIqFAIKDh4eFVlQkAANzXv6exEYCNbrcReD5a0L7NSWmrk8/nWzYcvtTg4KAGBwedloWxsTGNjo4695prpcxSjBYEAMAdNxctfSzxbZ2fna/a78onaV9fj74b/2VnWoZOtS5GCxqGIdM0q84ftNJNdjOZTNklm4mJCafTcStlLiwsqFgslv0AAIDV29Ll01OPHpa0FKRK2ctPPXq444NVMzztc1Wr47F9Y95GpNNpmabpzEPUSpmjo6M6efJkQ8/nttLJ1VayESZXAwBsPheK87pz706NfOoepf7W0PuXrjmP3bZ7uyIfD+rOvTt1oTi/ac5za3L7m0AgUHavuWrsTu2maWp4eLju7NkrlTkyMqInn3zSWS4Wizpw4EDT9W4FtwUAAGxkK53n3r90TV/65muSNtd5bk3CVb1gJS21RNn3gEulUk4/q1bK7O7uVnd3d/MVdcHjDx7U4OEPOstvXLikz596RX944j7d1b/bWd+/Z23qBwDAalSe52rZTOc5T8NV6c16S5mmueJjo6OjGhkZcVqrwuGwTNNUNpt1bubbTJlrqb+3p2oz6F39u3XkQ31rUCMAANxT6zy3mXkervx+vwzDWBZ8as2KbRiGc0uS0nmspKXWrFbKXC9uLlp69R1TkvTqO6Y+ur+3rR38DMNQMplUKpVSIBAom74in88rm80qGAyW3SDZ3ufYsWOSlgYXSNLAwIAymQz35FtD2WzWef0HBwdXnAOskW3t99q+Cbf9+cjn8yoUCjpx4oSr84wBwIZleSyRSFjJZNJZHh8ftyKRiLOcz+etRCJRtk8sFlu2HAqFGi6zntnZWUuSNTs72/A+q/XNf3jX+vkvZa2fiX/D+fn5L2Wtb/7Du22rgy0UClV9vWZmZqxwOFy2LhgMWjMzM2XL9vtV+T41q/Q9tMViMWtoaGhV5W4WkqyZmRkrk8lYmUzGtW3D4XDVz0fpew8Am1Gj+cHzPlexWExjY2POPeEmJibKbsCbzWaVTCbLpl4YGRlxJgqVllquXnzxxYbLXG/sG1pWzv9h39DyK0+E2nrH8EAgUHW93+/X4OCgs5zNZuX3+8sGE/j9fqeFcLW3jslkMk6/Otvg4GDDI0k3s1wu57Ti1muxbWbblUSjUcXjcWa2B4A62tKhvfRgXHlZwZ5lvZTf7697AF+pzPWk3g0tfVq6oeXg4X1rNgeIaZoqFAoKBoMKhUJl84jVCmKrlUqlqk6rsd4v7a4n9UbQtrptvTJqzTMHAFiyJqMFN5Nmbmj50MBt7atYidKQY4cbu0VxcnKyrBXR7pczMDCgSCQiv9/v9NGx+8GVht1UKlX2XJFIRNlsVplMxulfJy2F5Vwup3g8LsMwlM/nJS3NczY6OirDMDQ+Pq5wOCzDMDQ4OKhgMKhkMun0vVupHqWy2azi8bgk6ZlnnpFhGCoUCpqamirrk3bq1CmNjIyUDaIwTVOpVMrpmxaNRssetx8zTVOGYTijXmutX4n9+9ivu/0HRS6XUzKZdF6/lX7XZratZ2pqSqFQiGAFAPW06TLlutLOPld/8YN3yvpZ1fr5ix+843ldbOFw2AqFQlYikbBisZgVDAatqampZdtlMpmyvm6WtdRfq7TPztDQkDU+Pl5Wtl2WXb5tfHzc2bZa2ZZlWVNTU1YwGFxWj8p1lX1/VqpHNXaZpb9LMBhcVt/KOsZiMSufz5ftY/dJGx8fL+tHls/nrWQyWXP9SoaGhsrqls/ny/rDVXudamlmW8ta3udqZmbGSiQSVigUKut/BwCbTaP5wfMbN2926/WGlkePHlUsFlMikWi5JcMwDKXT6bL9h4eHlUwmZZqm4vG4RkZGnMdOnTpVc4b9lYTDYRUKBeVyOWddaevJSvWoJRAIyDCMssuQlaNPQ6HQsvoahlF2m6VgMFi2PD4+7vQZCwaDOnr06Irrq8nlcspms8vqVigUVrxtlJsmJyeVSqWUSqV0+vRphcNhTU1N0WoFAA3gsqDHHjgU0P6+nro3tHzgkDd9mxoRjUbLOpHncrma84mVsju8l57w8/m8DMPQ5OTkss7wq5m2IRKJKJlMKplMKpvN6vjx4w3VYyWVYcrv92tgYGDFfezfwb68VygUnAlsh4aGlEwmtXfvXoVCIZ04cUKxWEyhUKjq+lomJyerztlmX4psR7+0o0eP1r1sCQCojnDlMfuGlp95NiefVBaw1ssNLStP5JOTkw2FK3vi1tKTvf1/eyRno6rNW1YqGo3q/vvvd/oPlT7nSvVwWy6X0+joqAYHB3X8+PFldc5kMk7Lk91yFovFaq6vhtGSANDZuCzYBo8c2a+vPBHSvr7yS3/7+nraPg1DPfaw/UZUu2wmLYUDe9RhtcdqPe9KgsGgAoGA0un0shGMK9XDTaZp6uGHH9bIyIjTmd9+DsMwnM77oVBIsVhMU1NTOnXqVM31tdid9isZhuFM5goAWL8IV23yyJH9+m78l/Wlx45Ikr702BF9N/7LaxKsVroPYzwebzhchcNhHT16dFkr1enTp51RaZXzlZ0+fVqSnFF90lJoaKSlLBqN6tOf/vSyVqmV6tGMemHMMAwnONrs1zKXyzkjCUvZIwSrra8lFAopHA6XXea0w+d6nnYEALCEy4JttKXLp3vv9EuS7r3T3/ZLgfY0CnYQKA0+9u1v7Mtz2WxWiUTCGcJvT9xqGIazPhKJKJPJKB6Pq1AoOC1Kdl+d8fFxxeNxZwqAQqHgPBYMBhWJRBSPx51pHexLbqXPWSoSiSifz1ftVL1SPSpVe56xsTFNTk46dQsEAhodHS3rmG+3PMXjcWeyVft3PHHihFMvO+QZhqFnnnnGCXmV61dil2sH0Hw+r6mpqWX1t5+7Vjitta3Pt/yzl8/nlU6nNTk56bw2dgsdAKBxPsuyqvWz3tCKxaL6+vo0Ozur3t5eT5/rQnFeF+YWnOU3LlzS50+9oj88cZ/u6t/trO/f082NLwEAWMcazQ+0XHnsa99/S19+8fVl6z9/6pWy5c89/BF9YfDuNtUKAAB4hXDlsccfPKjBwx+su13/nu421AYAAHiNcOWx/t4eLvcBALCJMFoQAADARYQrAAAAFxGuAAAAXES4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABwEeEKAADARYQrAAAAF21tx5OMjY3J7/dLkkzTVCwWa2gfScrn85KkZDLpPJbNZpVMJjU4OKhgMKhMJqNjx45paGjI/coDAAA0wfNwZYekSCQiaSkYRaPRsrBUKR6PK5FIOMvRaFSDg4PKZDKSlgJaNptVOp1WMBhUPB4nWAEAgHXBZ1mW5eUT7N27V9PT007LlST5fD7VelrTNDU8PKzx8XFnn1wup/vvv1/5fF7BYFDpdFrhcLiszGYUi0X19fVpdnZWvb29LZUBAAA2l0bzg6d9rgzDkGmaVUNQNputud/k5KQMw3CWg8GgpKXg1YqFhQUVi8WyHwAAAC94elmwNCCV8vv9NYOS3+/XzMxM2To7iNkhS5JOnz6tQCCgQqGgfD5fdhmx0ujoqE6ePNlk7QEAAJq3JqMF7VDUqNHRUSWTSacFLBQKKRwOa2hoSJFIRAMDAxoeHq65/8jIiGZnZ52ft99+e7W/AgAAQFVtGS1YqZlgFY/HdeLECadDvFTegiVJx48fVzQarXkJsru7W93d3S3XFwAAoFGetlxVhiCbaZo1HyuVTqc1MDCwbOqGdDpdtmwHqlqXIQEAANrF83Dl9/urhp5wOLzivnY/K7vFyjRNp4P88PBwWZl2/61GAhsAAICXPO9zNTIyUjYyMJ1Ol13iMwzDmQvLlsvllMvlFAqFZBiGDMNQKpVSIBCQ3+9XLBYrC1KpVEpDQ0MtT80AAADgFs/nuZKWJhK1w9DExETZyL5UKqVEIuHMxG6apg4dOlR1NKFdVdM0lUqlnPUXL15ccbRgJea5AgAAzWo0P7QlXK03hCsAANCsRvPDmowWBAAA7XWhOK8Lcwt1t+vf063+3p421GjjIlwBALAJfO37b+nLL75ed7vPPfwRfWHw7jbUaOMiXAEAsAk8/uBBDR7+oCTp5qKlb509r6dfyuuznxjQJw/v05Yun6SlliusDn2u6HMFANhEXjhzTiefP6tzs/POuv19PXrq0cN65Mj+NazZ+rcubtwMAADWjxfOnNNnns2VBStJOj87r888m9MLZ86tUc02FsIVAACbwM1FSyefP6tql6vsdSefP6ubi5vugpbr6HMFAMA64tWovpenC8tarEpZks7Nzuvl6YIeGrit4XKxHOEKAIB1xKtRfRfmagerVrZDbYQrAADWkdJRfZL0xoVL+vypV/SHJ+7TXf27nfXNjurr39NYK1ej26E2whUAAOtIf2+Pc7nv5qKlV98xJUlXrt3QR/f3OlMmNOuBQwHt7+vR+dn5qv2ufJL29fXogUOB1ioOBx3aAQBYh144c04fS3xbX3zujCTpi8+d0ccS3255RN+WLp+eevSwpKUgVcpefurRwy2HN9xCuAIAYJ3xasqER47s11eeCGlfX/mlv319PfrKEyHmuXIJk4gyiSiANebV6DDuJdeZbi5a+lji2zVH9tmX774b/+WmWplKPw/1Zmjn81AdN24GgA7h1egw7iW3pNNCpldTJtT6PDz9Ul5Pv5R3ljf656EdCFcA6uq0k1On8Wp0mFfldppOC5leTZlQ+XmoZaN/HtqBcAWgrk47OXWa0tFhpe7q360jH+pbd+V2Gq9Cpld/dHg1ZUKtzwPcR7gCNhCvDvaddnICSnkVMr36o4MpEzof4QrYQLw62HfayQnLlc6X9Oo75qrmS+pkbr4OXv3RYU+Z8Jlnc/JJZQGLKRM6A+EK2EA6rY9Np9W3U1vaXjhzTiefP+t0kv7ic2f0R99+Q089enhTDb13+3XwarJP6daUCaX1lZZarDbb+9aJNnW4mpubk89H8sfGscMn/UzvrenrLl9e+nzv3+UrWy9d19zc9Zae4+aipZffOC9JevmN87pzt6/lk4hX9X1vbkHvXbpWd7sP7N6uDzQR3L76t2/qK3/7Vt3tPvPxg/r3v/jhhsutdPnyZeffubnVTUeYfe19PfnnZ5ddXrLnS/pP//qwwvfc3lSZXr2+XpUrefM6lJb9H7/1hn4yt1T3Lz53Rl/O/kj/xyfvarlMSfqXP7Nb3/z3x/T/vXJO/9c339D/+am79L/ct19bunyam5truVy0rtHXfVPPc/Unf/In2rlz51pXB5tQ8bpPc9frB5I92yz1bmvtK7poSRMXt+q5d3bosTuv6thtN7TaqwhnzK16/sfdmr1+64Tft21Rj35oQUf8N1ZXuKQfX+nSH/1ol37v7sv60M7FlsvJnNuuF39S/+T78AcXNLi//sncVvm+XZjv0qm3dujEwavq77lV3/Xyvi1aUuLsLs1e92n5nNySZKlvm6X44ctNPYdXr69X5Xr1OkhL34ln37RbKUt3Xnr/n/jwfNPfjXZ8ztCaK1eu6Ld/+7eZ52ol27dvZxJRrInvvGnpr+o3gOh/Pij92oebP7P+4H1L429I5k/PP8+9s0MvXZCG75J+7vbWztQ/eN/Ss28uXz97vUvPvrlDnz7cetk207d0oti1a5d697ReVrjb0rE7bi2fvyL9l3+S/veflfaV/D3Vt71bvd2NX76rPFrsmrOkt6RDt+3QwVXU1+b2+/Yj09Lsig1+Ps1e9+mCtUd39zVevlevr1flevU6LFqWvnG2dpmS9JfndujnD0hdTVwlqXV8OPXWjrLlVo8PaN2NG40F5U0drnp6emi5wpr4ZHBRD3xoKUgsWpZyP7mpb0zf0K8d2qrQB7c4B2J/t087e5q7LDR5/oaeObu8X5B5TXrmrPS7923X0X3NffUXLUvp/FWp6tilJX9u+PTQgR1NnUQqn+Pc+9clXde5hW26u39by2Xt3CmV9kjpmb0paV4fDvTow31bWiqzmp7rS+UuHUtWV64X79u8eUNS/T5i8+rWzp2Nl+3V6+tVuV69Dj+8eFPmtZXnmppZkN6e79FHb2u8/qXHh5W0cnzA6ly5cqWh7TZ1uALWir+nS/6epRPq1354TTMLSwfSb0zf0N+9e1OPf7T5E6m0FFC+9sOVL5f819eulQW4RvxTYdGpYy2FeUv/VFhs6iRiq3wd/uzsdf23/I2WX4dO49X71tfd2LaNbtdOi5al6dmbkqTp2Zs62NvVctj26nWYrfOdaHY7m318QOci8gJrZPL8Df3xKwvLQsvMgqU/fmVBk+eb78PUTAhqhlcnEcmb16HTePW+/WygS3vrBIZAj08/G2j9VFAZghZd6MY7ef6Gfv+vr+rPzi5dy/uzs9f1+399teXPglevQyeHV3irLX8Sjo2Nye/3S5JM01QsFmtoH0nK55fud5RMJlddJtAsc35RZgOBwd/tk7+J5nmvWiq8CkFenUS8eh06jVfvW5fPp8c/ul1//ErtS2L/7p7tLb+2XrQ42mG7kh22f/c+NV22V6+DHdpWCsarDa/oTJ6PFrRDkh1+stmsxsfHl4WlUvF4XIlEwlmORqMyDEOZTKblMkvZowV//dd/vW6fq/7+fj322GNl65577jlduHCh7vMcPXpU999/v7N87do1ffWrX22ojr/xG7+hffv2Ocv5fF7ZbLbuftu2bdNv/dZvla37m7/5G7322mt19w0GgxocHCxb9+yzzzrDwlfyi7/4i/roRz/qLBcKBY2Pj9fdT5Ief/xx7d59a06jV199Vd/73vfq7rd3714dP368bN1f/uVf6p133qm777333quHHnqobF21z8/rMzf1ulneWrD73k9qW+BDzvL1wo+1/62sPrK3/uWwaDQqaamvRmKi/n3BDp/PqG/hJ7rzzjv1q7/6q2WPnT59WjMzM2XrZrs/qLP7yt/DlcqtZ3h4WIFAQIuWpd//66uaWVhU1dFWlqXtN68o9OO/kE+Wdu3apSeeeKJsk0wmI8MwWqrvve9/W7suv1t3u3A4rIGBAWf5/Pnz+ouv/zed6/qA/nFuu/7Fnmvav/iefFX6jv3mb/6mtm/f7ixPTU1pcnKy5nNZ8ulc1wf02o3b9Tu/+qB+6cCtPmLNHiOa/TxIzR0jLu44oDcDR3Vt6y5nXaDHp393z1IIauUY4YQgy5JKQ8lPTyl3v/cd3Xb1bWd1I8cISz7lPvSvdG3LzvIySwR6fPpf976h7//35o8Rk+dv6E9+MKurvlvX3LbfuKwPFybL6io1foy4uOOAfvSBX1xaqFLn372vWx+8fk5/9Vd/Vbe+0q1jhO173/ueXn311br7NXqMqOahhx7Svffe6yxfunRJX/va1xqqr32MsP3whz/Ud77znbr7NXqMqOaee+7RL/3SL5Wt+9M//VNdv15/upZqx4ivf/3rdfeTlo4RxWJRw8PDaz9acHR0VNPT085yOBzW4OBgzSBkmqZyuZxM03RapqLRqO6//34ZhqFgMNh0mbVcuXJFi4srN7NXe/Hm5+d16dKluuUvLCz/K6mR/SQtq9eNGzca2rf05GBrtL5Xr15dtu7y5csN7Vs5gmJxcbHh37Uy31+/fr2hfbu7lw/Zvnr1qqvvzW1dlnb/dAJySz7N9uzT+1u3l3U8//FbW/Sdd67o0iX3W5jmrvu05dKlqu/NlStXltW569Jlbbvtkq5v3VXz5OTfbqnroqFLK3ROt9mfw1t/+c/XPJnue/e7unyp9hww1d6bua59NbYuN3e9S1YLn8NXZ7o0dcdv6Pq23dot6Z8lvXv9kvaf+zv1zU1XLcO2sLBQ87M0u+eQzu3/l7q+bbd2aHmLTbPHiLotIJalbdcvlb1vzRwjui/9UHe/95re275P+fld+uyJT5WFwWaPEWUtjpWfM59PsixN+0Pa/t5rTpBt5BhxaecdZQGwmsK8pX++sq2lY8TRfVs1ffklTZ67pjeu9OiunfP6wLXz8slSZWmNHiO6L/1QB+fnnc+DrTS8Tk83dvyuZqXPYalGjxHVVIYSy7I8P1dV0+jxe35++R8ily9f1rVr9afnWM25qhmehivDMMpCUqlsNqtwOFx1v8nJSRmGoVAoJGnpryVpKXi1WmY1O3furNty1dOzvFdhT09PWUtLLdVO/o3sJ0ldXeXNyFu3bm1o323bti1b12h9d+zYsWzdrl0rH+hK61eqq6ur4d+1ciLXbdu2NbRvtfdux44dnrw3pX/5b1V5x/OD/u0K9O2p+5ylGr18tmebpd27d1d9b3bu3Fn1BHBoZmrpL+nKEPRTQ0HpH19v7H0t/Rwe3bdV/+oD7+uvzu0sOwFuv3ll6S9/6z3pp69htc9NtffmZoNz9OzZtqhdDbyvpZ/DyfM39F//eeeyo9z1rbv01oFPLmtZqdTd3V31M3FxxwG9ZbdUlCi9bNXsMaLsslWN8HrIzGnP7luvayvHiMWFov7JnNOhvvLLrM0eI+r2EfP5dH37Hi3eFnRa2ho5RszvbOxeeQu+6u9NJfsYUXp5/6p61H3tPd2YKah76xYtbrt1HOnZInVvXXpdmjlG7Lbe0x3vft1pIf23/9PP6bGf2++8xo0ev6up9Tms1MwxolLlecPn83l+rmr0GFFNtfPyrl27qjYuVFrNuaoZnl4WzGazGhwcXNYysXfvXj3zzDMaGhpqqJx0Oq3h4WHNzMxocnKy6TIXFhbKPmDFYlEHDhzQ+Pi4br+99dlzsTnU6gNi+937ulua2mDpMtvKfTX+n19qbWqDyr4wdnn2X9KrsWhZ+pu3r+vPzl7X/3Z4W1kLSCtlefE6dFq5Ni/fN0l6c/am/sP35vUfHlrd1Ab//d0b+s+v1j9p/8693fr5O5qb2qCRy6PxY81NbfDc69f09Xz9S0a/MbBNj32k/gnaVtkn891Li0r9wzVF/oftumP3rdDRbJ9MrF/vv//++rgsWE0gEFChUGh4+9HRUSWTyaqtVY2UOTo6qpMnTzZbTcCzDtdedzQ+um/psqVbIahUl8+nQ31bJF1f1gLSSllevA5eTR3h9ZQUbr9v1U7+pf/amj35ezXAwasO4p84sFU/11///fA3Wd+X3r5RNbSl/qH8mNFsaEPnW5Nw1UywisfjOnHihCKRSMtljoyM6Mknn3SW7ZYroB4vT6ZH923V794nz1oq3AxBXvLidfBq9J2XU1LY3HzfvDr5exWCvArbXs0b5VVoQ+fzNFzZfaUqmaZZ87FS6XRaAwMDZcGqlTK7u7urXj8H6vH6ZNopLRVec/t18KplpdPmNfLq5O9ly6vXf3S4ick+UYvn4crv9zuj/ErV63huDym2g5VpmioUCqsqs9L8/HzDU9ljc+ppYETd0nYLunKl8RvJzi5Ymi3Z3HfT/ve6fnThVktD3/bmTtTfqnFPssqWimbvSVZZ3/M//dq8WZhX6cCdZutbaX+39dN/r2v+auuThx7oseTffusefdXs7ZYO9MzrypXG6+tVuZXm562f/juvK9taL2e7pP7lY1yWW5SaPRQe7pU+fVhl90KUln7/oQHpcO+1pr4TlWX/3w9Y+rtz0v/7hvRv75L+5X5LXb7WywTcUG2kYjWe/wkwMjKibDbrhKR0Ol3WEmUYhtLpdNkkoLlcTrlcTkNDQ86cF6X71SuzUdeuXVOxWGz5d8PG1++T+rbt0ux1n6rO7yRLfdss9fsuq5mPUvbcdr34k+Wtqf/ln8qXH/7gggb3N34yuW+PTwN31z8Z79lmqVhsvLXNq/pWunylS9IuXb58WUWrudnIK/3aHVv17Jt2s0Lpa7L0e//q/nldmms+wHlVbik3XwcvDWyXYh+VJi5u1XPv7NBjd17VsdtuqMunpr4PtdzetfQ63N51WZfm1u/rgM2jkekepDZMIiotTfpptzJNTEyUTRCaSqWUSCScmdhN09ShQ4dkmuayckqrulKZ9diTiL7zzjsr9vYHJCn72vt68s/PSiq/bbF9Wv1P//qwwvc0N+r0vbkFvXep/pf0A7u36wN71v6Sdrvqe/bcnE786Q906rd+Tof3Nze9RTXZ197Xf/zWG/rJ3K267+vtVnxwoOn3rB3l2tx+HbzmVX077XXAxlcsFnXnnXfWHS3YlnC13tjhqt6LA9heOHNOJ58/q3Ozt5qE9/f16KlHD+uRI/vXsGad7UJxXhfmbvXbeePCJX3+1Cv6wxP36a7+W3PP9O/pVn9va51bbi5aOjXxlr743Bl96bEjOnHsoLZ0rb5PlJvltuN18NKZH8/q1/7ou/rG731MRz7U13I5nf46YONrND+sn56BwDpkH+zv3LtT//mJ+/Wts+f19Et5ffYTA/rk4X3a0uXTmR/PcrBv0de+/5a+/OLry9Z//tQrZcufe/gj+sLg3S09x5Yun+690y9JuvdOvyvByu1y2/E6uKlaCCr919bs96LTXgegFsIVsIJaB/unX8rr6ZfyzjIH+9Y8/uBBDR7+YN3t+tfBpVEvddrr4FUI6rTXAaiFcAWsgIO9t/p7e2jxU+e9Dl59LzrtdQBqIVwBK+Bg35m8umyFJXwvgJURrgBsOF5dtiK0AWgEowUZLQhsOJUhqJZmQ9AfZH5UNbRVog8esDExWhDApuXVZSv64AFoBOEKABpEXyMAjVg/d24FAADYAAhXAAAALiJcAQAAuIhwBQAA4CI6tGND8GroPQAAzSJcYUOoNWlkJeYfAgB4jXCFDaFy/qE3LlzS50+9oj88cZ/u6t/trGf+IQCA1whX2BBK5x+6uWjp1XdMSdKVazf00f292tLlW8PaAQA2E25/w+1vNpQXzpzTyefP6tzsvLNuf1+Pnnr0sB45sn8NawYA6HSN5gdGC2LDeOHMOX3m2VxZsJKk87Pz+syzOb1w5twa1QwAsJkQrrAh3Fy0dPL5s6rWDGuvO/n8Wd1c3HQNtQCANiNcYUN4ebqwrMWqlCXp3Oy8Xp4utK9SAIBNiXCFDeHCXO1g1cp2AAC0inCFDaF/T2MTgza6HQAArSJcYUN44FBA+/t6VGvCBZ+WRg0+cCjQzmoBADYhwhU2hC1dPj316GFJWhaw7OWnHj3MfFcAAM8RrrBhPHJkv77yREj7+sov/e3r69FXnggxzxUAoC2YoR0byiNH9mvw8D6dmnhLX3zujL702BGdOHaQFisAQNu0JVyNjY3J7/dLkkzTVCwWq7uPaZo6ffq0xsfHlclkyh7LZrNKJpMaHBxUMBhUJpPRsWPHNDQ05EX10QEuFOd1YW7BWd65favz7w/PFZ31/Xu6ndvkAADgBc/D1djYmCQpEolIWgpG0WhUyWSy5j65XE6Tk5MyTVOFwvJ5iUzTVDabVTqdVjAYVDweJ1htcl/7/lv68ouvL1v/+VOvlC1/7uGP6AuDd7epVgCAzcjzewvu3btX09PTTsuVJPl8PjXytOl0WqOjo5qamlq2PhwOl5XZDO4tuPFUtlzVQssVAKBVjeYHT1uuDMOQaZpVQ1A2m1U4HPby6bGJ9Pf2EJoAAOuC5+GqGr/fL9M0V1X26dOnFQgEVCgUlM/nlUgkam67sLCghYVbrRrFYrHmtgAAAKuxJqMF7VDUqlAoJEkKBoOSpFQqpeHhYY2Pj1fdfnR0VCdPnmz5+QAAABq1JuFqNcFKuhWqbMePH1c0Gq15CXJkZERPPvmks1wsFnXgwIFV1QGtoW8UAGCj8zRcVYYgm2maNR9rRDqdLhsdaAcqwzCcVq1S3d3d6u7ubvn54J5ao/oqMaoPANCpPA9Xfr9fhmEsC1OtdmY3TVPDw8PK5/NOmXb/rdUENrTH4w8e1ODhD0qSbi5a+tbZ83r6pbw++4kBffLwPmeyz/49hGEAQGfy/PY3IyMjymazznI6nXbmvJKWWpvsubAqVbt86Pf7FYvFyoJUKpXS0NBQy1MzoH36e3t05EN9emfmin7n2Sk9/VJekvT0S3n9zrNTemfmio58qI9LggCAjuX5PFfS0kSidhiamJgoG9mXSqWUSCSUz+eddYZhKJ1O69SpU8rlcorFYmUzsJumqVQq5Wx/8eLFFUcLVmKeq7X1wplz+syzOVV+8Owb1HAfQADAetRofmhLuFpvCFdr5+aipY8lvq1zs/NVH/dp6UbL343/MvcDBACsK43mB88vCwKlXp4u1AxWkmRJOjc7r5enVzeiFACAtUK4QltdmKsdrFrZDgCA9YZwhbbq39NYR/VGtwMAYL0hXKGtHjgU0P6+HtXqTeWTtL+vRw8cCrSzWgAAuIZwhbba0uXTU48elqRlActefurRw3RmBwB0LMIV2u6RI/v1lSdC2tdXfulvX18P0zAAADremtxbEHjkyH4NHt6nUxNv6YvPndGXHjuiE8cO0mIFAOh4hCu0VeWNm3du3+r8+8NzRWc9N24GAHQqwhXaqtaNmz9/6pWyZW7cDADoVIQrtFXpjZtXwo2bAQCdinCFturv7eFyHwBgQ2O0IAAAgIsIVwAAAC4iXAEAALiIcAUAAOAiwhUAAICLCFcAAAAuIlwBAAC4iHAFAADgIsIVAACAiwhXAAAALiJcAQAAuIhwBQAA4CLCFQAAgIsIVwAAAC4iXAEAALhoazueZGxsTH6/X5JkmqZisVjdfUzT1OnTpzU+Pq5MJuNKmQAAAF7zPFyNjY1JkiKRiCQpm80qGo0qmUzW3CeXy2lyclKmaapQKLhSJppzoTivC3MLdbfr39Ot/t6eNtQIAIDO4LMsy/LyCfbu3avp6WmnlUmSfD6fGnnadDqt0dFRTU1NuVamJBWLRfX19Wl2dla9vb0N7bPZ/EHmR/ryi6/X3e5zD39EXxi8uw01AgBgbTWaHzxtuTIMQ6ZploUgWzabVTgcbkuZCwsLWli41QpTLBabft7N5vEHD2rw8Af192+8r9TfGnr/0jXnsdt3b1fk40H9wl23q39P9xrWEgCA9cfTDu2GYVRd7/f7ZZpm28ocHR1VX1+f83PgwIGWnnsz6e/t0TszVzT6zdfKgpUkXbx0TaPffE3vzFzhkiAAABXWZLRgIBCo2pfKqzJHRkY0Ozvr/Lz99tuuPvdGdHPR0snnz6rahVZ73cnnz+rmoqdXlQEA6DhtGS1Yye1gVa/M7u5udXdz+aoZL08XdG52vubjlqRzs/N6ebqghwZua1/FAABY5zxtuQoGg1XXm6ZZ87G1KBPLXZirHaxa2Q4AgM3C83Dl9/ur9pNqpTO7V2Viuf49jfWlanQ7AAA2C8/7XI2MjCibzTrL6XTamZ9KWuqgbs9bVWmlPlQrlYnVe+BQQPv7euSr8bhP0v6+Hj1wKNDOagEAsO55Hq5isZhM01Q6nVY6ndbExETZZJ/ZbHbZ5J924Eomk8rlcorH40qn0w2XidXb0uXTU48elqRlActefurRw9rSVSt+AQCwOXk+ieh6xCSijXvhzDmdfP5sWef2/X09eurRw3rkyP41rBkAAO3VaH4gXBGuqiq9/c3NRUvfOnteT7+U12c/MaBPHt7ntFhx+xsAwGZBuFoB4ao+bn8DAEC5dXH7G3Qu+/Y39XD7GwAAyhGuUFV/bw+X+wAAaMGa3P4GAABgoyJcAQAAuIhwBQAA4CLCFQAAgIsIVwAAAC4iXAEAALiIcAUAAOAiwhUAAICLCFcAAAAuIlwBAAC4iHAFAADgIsIVAACAiwhXAAAALiJcAQAAuIhwBQAA4CLCFQAAgIsIVwAAAC4iXAEAALiIcAUAAOAiwhUAAICLCFcAAAAuIlwBAAC4aGs7nmRsbEx+v1+SZJqmYrHYqvbJZrNKJpMaHBxUMBhUJpPRsWPHNDQ05EX1AQAAGuZ5uBobG5MkRSIRSUvBKBqNKplMtryPaZrKZrNKp9MKBoOKx+ObNlhdKM7rwtyCJOnmoqV/fHdWM1eua+/ObfoXd/RpS5dPktS/p1v9vT1rWVUAADYFn2VZlpdPsHfvXk1PTzutUJLk8/m00tPW2yedTiscDpc93oxisai+vj7Nzs6qt7e3pTLWiz/I/EhffvH1utt97uGP6AuDd7ehRgAAbEyN5gdP+1wZhiHTNKuGoGw269o+9SwsLKhYLJb9bBSPP3hQX/zUPStu88VP3aPHHzzYphoBALC5eXpZ0DCMquv9fr9M01zVPqdPn1YgEFChUFA+n1cikahZj9HRUZ08ebLheneS23Z366t//2bNx32Svvr3b+q3Px5sW50AANjM1mS0oB2KWt0nFAopHA5raGhIkUhEAwMDGh4errnvyMiIZmdnnZ+33357VfVfT16eLujc7HzNxy1J52bn9fJ0c683AABoTVtGC1ZqNlhV7hMMlrfCHD9+XNFotOblxO7ubnV3dzf9nJ3gwlztYNXKdgAAYHU8bbmqDEE20zRrPtbIPul0uuwxO1DVuqS4kfXvaWwEYKPbAQCA1fE8XPn9/qqhJxwOt7SPaZoaHh4ue9zui1UrmG1kDxwKaH9fj3w1HvdJ2t/XowcOBdpZLQAANi3P+1yNjIyUjfJLp9PO/FXSUmuTPa9VI/v4/X7FYrGyIJVKpTQ0NNTy1Ayd7OKlBf3mL3xYtSa2sCT95i98WBcvLbSzWgAAbFqez3MlLU0KaoehiYmJspF9qVRKiURC+Xy+4X1M01QqlXKWL168uOJowUrMcwUAAJrVaH5oS7habzZSuGKGdgAA2qPR/LAmowXhnv7enrLQ9D8e8K9dZQAAwNrMcwUAALBREa4AAABcRLgCAABwEeEKAADARYQrAAAAFxGuAAAAXES4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABwEeEKAADARYQrAAAAFxGuAAAAXES4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXbW3Hk4yNjcnv90uSTNNULBZb9T6tlAkAAOA1z1uuxsbGJEmRSESRSEShUEjRaHRV+7RSJgAAQDv4LMuyvHyCvXv3anp62mllkiSfz6eVnrbePq2UWapYLKqvr0+zs7Pq7e1t6vcBAACbU6P5wdOWK8MwZJpmWQiyZbPZlvZppcyFhQUVi8WyHwAAAC94Hq6q8fv9Mk2zpX1aKXN0dFR9fX3Oz4EDB+rWHQAAoBVrMlowEAioUCi4us9Kj4+MjGh2dtb5efvtt5t6bgAAgEa1ZbRgpWaDVSP7rPR4d3e3uru7m35OAACAZnnachUMBquuN02z5mP19mmlTAAAgHZpy2jBqampsuDTyGjBlfZppcxSjBYEAADNWhejBaWl/k6lo/jS6bQikYizbBiGM29Vo/vUexwAAGCteN5yJS1N+mm3Mk1MTCiRSDiPpVIpJRIJ5fP5hvdp5PGV0HIFAACa1Wh+aEu4Wm8IVwAAoFnr5rIgAADAZkK4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABwEeEKAADARYQrAAAAFxGuAAAAXES4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFW9e6ApvRzUVLL08XdGFuXv17evTAoYC2dPnWuloAAMAFhKs2uVCc14W5Bf39G+8r9beG3r90zXns9t3bFfl4UL9w1+3q39Ot/t6eNawpAABYDcJVm3zt+2/pyy++XvWx9y9d05e++Zok6XMPf0RfGLy7nVUDAAAuos9Vm/ybYwd0++7tK25z++7t+jfHDrSpRgAAwAuEqzZ58+KVskuB1bx/6ZrevHilTTUCAABeIFy1yYW5eVe3AwAA65Pnfa7Gxsbk9/slSaZpKhaLrWqfbDarZDKpwcFBBYNBZTIZHTt2TENDQ15U3zX9exrrpN7odgAAYH3ytOVqbGxMkhSJRBSJRBQKhRSNRle1j2maymazikajikajGhgYWPfBSpI+fNvOhvpcffi2nW2qEQAA8ILPsizLq8L37t2r6elppxVKknw+n1Z6ynr7pNNphcPhssebVSwW1dfXp9nZWfX29rZcTjP+IPOjmqMFSzFaEACA9anR/OBZy5VhGDJNs2oIymazru3TKR5/8KC+8Xsf0xc/dc+yFqzbd2/XFz91j77xex/T4w8eXKMaAgAAN3jW58owjKrr/X6/TNNc1T6nT59WIBBQoVBQPp9XIpFYsS4LCwtaWFhwlovF4sqV90B/b4/6e3t05EN9+u2PB5mhHQCADartk4jaoajVfUKhkCQpGAxKklKplIaHhzU+Pl5z/9HRUZ08ebLFGrtvS5dPDw3cttbVAAAAHmg4XKXTaZ06darudiMjI04AqqbZYFW5jx2qbMePH1c0Gq15OdGu05NPPuksF4tFHTjAZJ0AAMB9DYeroaGhpkblVYYgm2maNR9rZJ90Ol1WDztQGYZRM9R1d3eru7u70aoDAAC0zLMO7cFgUH6/v2o/qnA43NI+pmlqeHi47HG7L1atYAYAANBOns5zNTIyUjbKL51OKxKJOMuGYTjzWjWyj9/vVywWKwtSqVRKQ0NDq5qaAQAAwC2eznMlLU0KaoehiYmJspF9qVRKiURC+Xy+4X1M01QqlXKWL168WHe0YKW1mOcKAAB0tkbzg+fhaj0iXAEAgGat+SSiAAAAmxHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABwEeEKAADARYQrAAAAFxGuAAAAXES4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHDR1rWuwFqwLEuSVCwW17gmAACgU9i5wc4RtWzKcDU3NydJOnDgwBrXBAAAdJq5uTn19fXVfNxn1YtfG9Di4qLeffdd7dmzRz6fb8Vti8WiDhw4oLffflu9vb1tqiFWi/etM/G+dSbet87E+9Y8y7I0NzenO+64Q11dtXtWbcqWq66uLt15551N7dPb28uHrwPxvnUm3rfOxPvWmXjfmrNSi5WNDu0AAAAuIlwBAAC4iHBVR3d3t5566il1d3evdVXQBN63zsT71pl43zoT75t3NmWHdgAAAK/QcgUAAOAiwhUAAICLCFcAAAAuIlwBAAC4aFNOItqIsbEx+f1+SZJpmorFYmtbIdSVzWaVTCY1ODioYDCoTCajY8eOaWhoaK2rhhKmaer06dMaHx9XJpNZ9jjfvfVppfeN7976NjY2JknK5/OSpGQyuexxvnPuIlxVYX8QI5GIpKUDRzQaXfaBxPpimqay2azS6bSCwaDi8TgH93Uml8tpcnJSpmmqUCgse5zv3vpU733ju7d+xeNxJRIJZzkajWpwcNAJyHznvMFUDFXs3btX09PTTpKXJJ/PV/cu2Fhb6XRa4XC47H3D+pROpzU6Oqqpqamy9Xz31rda7xvfvfXJNE0NDw9rfHzceW9yuZzuv/9+5fN5BYNBvnMeoc9VBcMwZJpm1YNENpttf4WATYLvHuC+yclJGYbhLAeDQUlLwYvvnHe4LFih9ENYyu/3yzTN9lYGTTt9+rQCgYAKhYLy+XxZczjWN757nY3v3vrj9/s1MzNTts4OTcFgUJOTkzX34zu3OoSrBtkHDaxfoVBI0q2/zFKplNMkjs7Fd2/947vXOUZHR5VMJle8hMt3bvW4LNggPmjrXzAYdA7uknT8+HGl02n+AutwfPfWP757nSEej+vEiRNO5/Va+M6tHuGqQukBopRpmjUfw/qQTqfLlu2/zGpdbsL6wnevc/HdW//S6bQGBgbKplngO+cdwlWFYDAov99f9aAQDofXoEZohD0qpvR9s/9q5iDRGfjudSa+e+uf3c/KbrGyO7PznfMO4aqKkZGRspES6XS6bjMq1pbf71csFis7mKdSKQ0NDTE8fB2qddmB7976Vu1947u3vuVyOeVyOYVCIRmGIcMwlEqlFAgEJPGd8wrzXNUwNjbmHCwmJiYY+dIBTNNUKpVyli9evMj7ts4YhqF0Oq1Tp04pl8spFostm8mb7976U+9947u3PpmmqUOHDlXt+1Z66uc75z7CFQAAgIu4LAgAAOAiwhUAAICLCFcAAAAuIlwBAAC4iHAFAADgIsIVAACAiwhXAAAALiJcAUCDTNPkZsQA6iJcAUCDRkdHuRkxgLoIVwDQIPsebQCwEsIVADQgm81qcHBwrasBoAMQrgCgAePj42U3mAaAWghXANAAwzAUDAbXuhoAOsDWta4AALgpl8tpcnJS+Xxex44dUzgcViqVkiT5/X5FIpGmy0yn0xoeHq752MTEhAYGBhQMBhUMBhUIBOT3+1fzawDoYLRcAdgwTNNUNptVJBJRIpHQpz/9aY2OjioWi0mSEolES+WeOnVKx48fX7Y+lUopk8kokUgoEonINE0NDAxocnJyVb8HgM5GyxWADSOVSjlByjYwMCBJCoVCSiaTLZVrmuaylijDMBSPxzU9Pe2ss7cJh8MtPQ+AjcFnWZa11pUAADeU9osyDEMDAwOamZmpeonOMAyl02kFg0FNTEwoGo1W7VOVSqUUCASWdWYfHByU3+/X+Pi4sy4ejyubzWpqasrdXwxAR6HlCsCGURqOstmsgsFgzb5Pw8PDTggKh8N6+OGHq4ai8fFxZTKZZeuz2WxZsJKW+nvRagWAPlcANqRMJrOstcm+dU0ulytb7/f7ZZrmstnXq10OlORsVzmhKHNhAZAIVwA2EHtUoLQ0iu/YsWNlj9lBqVaH88rQlUqlFI1Gaz5fZUuZtNQKlsvllpUFYPMgXAHYEFKplOLxuKSlYFV6ea7yZsumaSoQCJSt8/v9KhQKZesymUzVy3z2lAt2gDJNU8lk0glb2WyW2+QAmxh9rgBsCOFwWJFIRKlUSkePHlUymXSmXigUCmXzW1ULUpWBq96koePj40omk7r//vud5eHhYaVSKYIVsMkxWhDAppPL5fTpT3+6rAP73r17NTU15QSqeDyuEydOEJQANI3LggA2nVAoVHap0DRN51KfLZfLEawAtITLggA2pfHxccXjcR07dkwTExNl0yoQrACsBpcFAaBCNBpVPB7nRs0AWsJlQQCoUCgUCFYAWkbLFQAAgItouQIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABwEeEKAADARYQrAAAAFxGuAAAAXPT/A47CWI5SAm1vAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -262,11 +263,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "(Obs[0.53(35)], Obs[0.38(25)])\n", - "(Obs[1.73(35)], Obs[0.59(25)])\n", - "(Obs[3.92(35)], Obs[-1.23(25)])\n", - "(Obs[5.73(35)], Obs[-1.18(25)])\n", - "(Obs[7.74(35)], Obs[-0.40(25)])\n" + "(Obs[-0.47(35)], Obs[-0.26(25)])\n", + "(Obs[2.44(35)], Obs[1.15(25)])\n", + "(Obs[3.68(35)], Obs[-1.23(25)])\n", + "(Obs[6.50(35)], Obs[-1.86(25)])\n", + "(Obs[7.91(35)], Obs[-0.32(25)])\n" ] } ], @@ -318,10 +319,10 @@ "Fit with 3 parameters\n", "Method: ODR\n", "Sum of squares convergence\n", - "Residual variance: 0.08780824312692749\n", - "Parameter 1 : 0.06(25)\n", - "Parameter 2 : -0.160(47)\n", - "Parameter 3 : 0.80(18)\n" + "Residual variance: 0.49296554803718634\n", + "Parameter 1 : 0.72(56)\n", + "Parameter 2 : -0.43(16)\n", + "Parameter 3 : 2.33(84)\n" ] } ], @@ -347,14 +348,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAFyCAYAAADsyz6AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4h0lEQVR4nO3deXiU1cH+8e9JgAQkk7A4CGiQQKKiKKKCu9YQ9w2KRV5cftoq1VZQaq3Utta2vlTalwqtC9RqraJFqQtqXQB3VESRupdNiYASEbIAJiw5vz/OBELINklmzjMz9+e65goz88zk9k3fzJ3znHMeY61FRERERJonzXcAERERkUSi8iQiIiISBZUnERERkSioPImIiIhEQeVJREREJAoqTyIiIiJRUHkSERERiUI73wHamjHGAL2ACt9ZREREJKFkAWttE5tgJl15whWn1b5DiIiISELaF1jT2AHJWJ4qAL744gtCoZDvLCIiIpIAysvL2W+//aAZZ66SsTwBEAqFVJ5ERESkzWnCuIiIiEgUVJ5EREREoqDyJCIiIhIFlScRERGRKKg8iYiIiERB5UlEREQkCipPIiIiIlFQeRIRERGJgsqTiIiISBRUnkRERESioPIkIiIiEoWkvbadSF0l5ZWUVFQ1eVw4K4NwKDMOiUREJBGpPEnKmLmwmKnzlzV53PjCfK4rKohDIhERSUQqT5IyxgzNpWhAj533l5ds4tpZS7h91CD6hzvvfDycleEjnoiIJAiVJ0kZ4VBmvafj+oc7c0jvbA+JREQkEWnCuIiIiEgUVJ5EREREoqDyJCIiIhIFlScRERGRKKg8iYiIiERB5UlEREQkCipPIiIiIlFQeRIRERGJgsqTiIiISBRUnkRERESioPIkIiIiEgWVJxEREZEoqDyJiIiIREHlSURERCQKKk8iIiIiUVB5EhEREYmCypOIiIhIFFSeRERERKKg8iQiIiISBZUnERERkSioPImIiIhEQeVJREREJAoqTyIiIiJRaOc7gMRfSXklJRVVTR4XzsogHMqMQ6J6bN0CqxdBySfw9adw5h8gvT08NhZWveH+3b4jhHrBUVdAwanuNSYN2jcv88NvF+/8euvwgbH8rxERkSSi8pSCZi4sZur8ZU0eN74wn+uKCuKQqJbtVfDAcPjibajeBukZ0L0ANq+HUE/oP4ySzD7MLO7GmPBnhCs/B7vDvfb9WfDsDbD/CXDgmXDg2ZC1T73fZtr8Zcxc6MrTzIXF9AhlMq4wv8WxS8ormbmwmDFDc/0VThERiQtjrfWdoU0ZY0JAWVlZGaFQyHecQKo78rS8ZBPXzlrC7aMG0T/ceefjcRl52l4FHz4Gy+fCd/8GxsAz10P3fFeCuhdA+u4d/8M1ZZz959d5+prjOaR39q4nNqyEpc/Df5+Fz193j508EU766W6vnzZ/GVPmLt0jyoSighYXqAYziYhIQigvLyc7Oxsg21pb3tixGnlKQeFQZr2lqH+4c/w++CvLYeF0eHsGbC6BfoVQVQGZITjrjy17z655cPRV7vbtRlfKukfK0Op3oXw109YexJR59Y+61RSq1oxAiYhI8lN5kvizFu49zY0UDRrjyk73Ni4sHbvAUd/fdf+TOUx7ZRVTtjf+P3kVKBERaYrKk8TPsnmwz0DI6gFnTIZu/dyE7xZaXrKp2cc+vGkkM7cXN+vYKXOXsq68ktFDcmOSRUREEpvKk8Re+Zfw3I3w8RNQ+Cs44SfQ94RWv+21s5a0+j0aMnNh8c4J5SIiIrWpPElsfTwH5lzjthYYcQ8MHNlmb113gntjHn47ujI0Zmhu1CNPsSxzIiISHCpPEjsbV8Hsy+CAM+CcadCpa5u+fTQT3G8dPpAeocx6V9nV1ZpVdyIikvxUnqTtbVwFod7QpQ9c+TL0OMRtQeBZTSFqrEBNGGRVnEREpFG6PIu0raUvwN3Hw5t/dvf3GRiI4lRjXGE+ExrY+HNCzw8Yt+xyKF8b51QiIpJINPIkbcNaWHA7zLsFCk6HIy+P2bcKZ2UwvjCfcFZGi15f3wjUhKICxn3nDFh3hlsBWL0DMJDWvL8vWptJREQSh8qTtF71Dvj39fDOvXDC9fCdm5pdOloiHMps9WVjxhXms67WJVV2nqrreZj7+vzP3Uab598FaelxySQiIokhLuXJGHMDUBq5m2OtndzE8cOAscBcYCVQBCyy1s6OZU5pIZMGO7bCuX+GwZf4TtNso4fkMnNhcf2r6vYbCv/6gSuGw6fvcYkYERFJXTH/RIgUJ6y1MyL3hxljpltrxzbyshxgGDASV55uU3EKoMpyWPch9DkWzrvDd5q2dcgIVwr/9X2w1TDirypQIiICxGfkaSLQt+aOtXaeMWYubmSpMX2ttaWxDCatUFkGD34XylbD+P9AuySc63Pw+a5Azb4MFh4Bx/7YdyIREQmAmJYnY0we7jRdaT3PDbPWzmuD75EB1P7kzmrte0oTvi2FB0fANyvgkieSszjVGHAuXP78rrlQIiKS8mK9VUFeA4+X4k7NNeZ7xpiRxpgrjTG3NXLcRKCs1m11tCElCt9uhAfOdxf1vXQO9Drcd6LY2/dIt0P6qjfhjb/4TiMiIp752udpA9DYdtOLgXnW2tmRuVIrjDGPNnDsJCC71m3fNk0qu/t2I+zYBpfMSb3RmFWvwws3wbv3+04iIiIe+ZoB2+h1Oqy1K+s89Agw3RizxylAa20VUFVz3wRoQ8aksq0S7A7omgdjX4vpVgSBdcL17iLHT18HXfaHvJN8JxIREQ9i/QlYtwTVyGnkOYwxu109tlZhaug0oMTSju1u1dlDo9xmmKlYnMDtlH7GZOh7IjxyiZvzJSIiKSemn4KREaTSyMTxus/VO1ncGJMDPFr7NZHHoJHCJTFiLTw9Hv77LBzzo0BdasWL9HZwwX3QaxBs2+I7jYiIeBCPIYRJuD2bgJ2jSjNq3c+r2QsKdo4yTa5z6u5KYLa2LvDgpVvhvQfh/DvhgDN8pwmGjl3gkifddft2bItcykVERFJFzOc8WWsnG2NuqHUq7qg6G2TW7CZee9fxSbULFdDNWntBrLNKHV/+B179Awz7NRx2oe80wbNjO9x/DuSdDCff6DuNiIjESVwmjNe5HMvsOs/NoNZIVOSxUnYvU+JDz8Pgsucg92jfSYIpvR3kfQdengT7DYF+p/hOJCIicZCiM3+lUd+sgHfuc//uc4zmOTXmxJ+60vSvH0DZGt9pREQkDlSehIffLt71dcsGmDkS3roTtn3rOVkCSEtz171rl+ku47Jju+9EIiISYypPCaqkvJI/zV1KSXllq95n2vxlzFzoytPMhcVMu3Oqu27d/8yC9h29ZEo4e3WDC/4Ogy+BtHTfaUREJMZUnhJUSUUVU+cvo6SiqumDGzBt/jKmzF2622NT1g9hWt4Mtxmmh0wJa78hcPhF7hRnZZnvNCIiEkMqTymqvuJUY8o7VUybvyzOiZLEgmkw/USoqvCdREREYkTlKQU1VpxqTJm7VAWqJQ46GzZ9Dc9p6wIRkWTl69p20kaWl2yK6viH3y7eOcepKVPmLmVdeSWjh+TGJEtS6poHZ9wGc34M+afBgHN9JxIRkTam8pTgrp21JKbvP3Nh88uWRBx+ESx9zl1AuM9xbkK5iIgkDZWnBHf7qEH0D3du9vHRjDwBjBmaG9XIU6zLXEIwBs6aAgvvgvaZvtOIiEgbU3lKcP3DnTmkd3azj791+EB6hDKbnPMEMKGogHGF+a2Jl7qyerjL2oC7/l16e69xRESk7WjCeAoaV5jPhCGdGj1GxamNfPI03DFU2xeIiCQRjTylGmvBVjNuxHcgu/5Vd8lanErKK3fbg6pmgnvdie7hrAzCoTY63dbzMNhUAi/8Es6d1jbvKSIiXqk8JahwVgbjC/MJZ2VE98I374Blz8NFj+0sSLULVGuKU4szxcnMhcVMrWf7hbrztMYX5nNdUUHbfNOc/aDoFnhmAgwcCX1PbJv3FRERb4y11neGNmWMCQFlZWVlhEIh33GCZfW7cO+pcPRVcOrvdj580+MfMHNhMWOG5nLr8IEeA8ZW3ZGnhrTpyBNAdTX8/UzYvB6uegPadWi79xYRkTZRXl5OdnY2QLa1tryxYzXylCqqNsFjP3CnkQpv3u2p0UNymbmwuNmr6hJVOJTZtqWoudLS3Oq7eTe7uU+d945/BhERaTMqT6niuRuhYh2Mma2VXz70GABjHvWdQkRE2oBW26UCa2GfQ+GsP0K3fr7TpLaVr8Az1/tOISIiraCRp2S3Yzukt4OhV/pOIuBO2y36K/Q7BQ4803caERFpAY08JbPqanjoe/DKZN9JpMZB50D/Inj2Bti6xXcaERFpAZWnZPb2dFgxH3of4TuJ1DDGXTi44it448++04iISAuoPCWrdR/D3Jth6FXQv9B3GqmtWz+3XcRHj7nTqiIiklBUnpLRjm3w+Fjomrfr+moSLCffCFe+7OajiYhIQtFv7mS0Yyv0HgyDL4X2HvY1kqZ12Mt93bAStldB+CC/eUREpNlUnpKNte6D+ZypvpNIc/zrCjcP6vtz3VcREQk8nbZLJtU74MER8NHjvpNIcw37NaxeBB9oA00RkUSh8pRMFt4NK16CrF6+k0hz9T3BbV8w92bYutl3GhERaQaVp2TxzQqY/1sY+kPIHeo7jUSj6Lew+Wt4607fSUREpBk05ykZVFfDnHHQOQyFv/SdRqLVtS+cdwfsN8R3EhERaQaVp2RQWQrV2+DcP+9axSWJ5bBR7mt1NaRpQFhEJMj0WzoZdOoKlz8PeSf5TiKt8dUH8JcjYeMq30lERKQRKk+JzFp4egJ8sUjL3JNB1zyoqoCX/td3EhERaYTKUyJb8hC88zd32k4SX4e93M7j789yo1AiIhJIKk+JqvxLeH4iHDYa8ot8p5G2MvgSd+27eb/2nURERBqg8pSIrIVnJkB6BpymUzxJJb09FP4KSovh242+04iISD202i4RVXwFaxbDWf/nJotLcjnoXDjgLF00WEQkoPTbORGFesI170JGZ99JJBaMccVp3UfuosG9B/tOJCIitei0XaJ54y9QvlbFKRU88xN3s9Z3EhERqUXlKZF88jS8cBN8vsB3EomHkyfC2sWw9DnfSUREpBadtksU3250k8QLzoCBI1v1ViXllZRUVO28v7xk025fa4SzMgiHMlv1vaQV+p4IfY6Hl26F/NO087iISECoPCWK52+CbZVw9pRWb4g5c2ExU+cv2+Pxa2ct2e3++MJ8risqaNX3klYwBk65Ce47Az59Cgac5zuRiIig8pQYNq6CDx6Fs6ZAqFer327M0FyKBvRo8rhwVkarv5e0Up9j4fTbYN+jfCcREZEIY5NsMqoxJgSUlZWVEQqFfMdpOxs+gy776zIsIiIiMVBeXk52djZAtrW2vLFjNYki6D59xi1X79pXxSmV/fdZuO9M2LHddxIRkZSn8hRkn70K//wf+PBfvpOIb1n7wKoF8NHjvpOIiKQ8laeg2roZ5lwDucfCoRf6TiO+9Toc8k+F1/4I1dW+04iIpDSVp6B68XfuMizn/UVL1MU58afw9adu5Z2IiHijT+UgWr8M3roLTvkFdOvnO40ExX5DoO9JbrNUERHxRqvtgmrFi+6DMi3ddxIJki0boGMXLR4QEWljWm2XyNZ97K5l1u8UFSfZU6eurjit+0jXvBMR8UTlKUjWLoG7j9eKKmncmnfhrmNh5Uu+k4iIpCSVp6DYvhWe/BH0GAAHneM7jQRZr8Fu9d0rf/CdREQkJcXl8izGmBuA0sjdHGvt5Fi8JqEtuB1KPoErX4L09r7TSJAZAyfeAP8cDZ8vgP2P851IRCSlxHzkKVKCsNbOsNbOABYbY6a39WsS2tf/hVcmw/HXQc/DfKeRRHDAGdBjILyq0ScRkXiL+Wo7Y8xGoK+1trTWY9Za2+ByoZa8ptZxibfabvtWeOdvcOTl0E4X45Vm+vQZKH4Lhv1aiwtERFopmtV2MS1Pxpg8YEXd0mOMsUCRtXZea19jjMkAajeOLGB1wpSnb0uhY47vFCIiIiktSFsV5DXweCmQ00avmQiU1bqtbm4479Yvh9sHwvI9OqRI82zd4k7drV/mO4mISMrwtdpuA9C1jV4zCciuddu3ddHipLoa5vwYOnVz168TaYm0dHj7Hlgw1XcSEZGU4as8RVucGnyNtbbKWltecwMqWhctThbdA8VvumvXdejkO40kqnYZcPRV8P4sKP/SdxoRkZQQ6/K0soHHcxp5riWvSSwbP4d5v4Yjvw/7H+87jSS6Iy+Hdh3hrTt9JxERSQkxLU/W2pVAaWQSeN3n6p3o05LXJJz2neCwUVB0i+8kkgwyQ3DU5fDOfVBZ5juNiEjSi8dpu0nAsJo7xpiRwIxa9/Nq9nVq7msSWvUO6ByGs/8EGVm+00iyOPpquPBByEiAFaYiIgku5uUpsjN4jjFmZKQEHWWtHVvrkGHA2Chfk5hKi+EvR8Kaxb6TSLLpHIa8k93u47pgsIhITMV8k8x4C+wmmdbCA+e77QmuftOdahFpSzu2wQPD4ZARbh6UiIg0W5D2eZIa7/4dVr4M505VcZLYSG8PnbrCG392p4dFRCQmVJ7iobQYXvgFHH4x9B/W9PEiLXXctbBhJXwyx3cSEZGkpfIUD1UVsO9RcNqtvpNIsus9GPqeCK/frrlPIiIxovIUDz0OhkuegMxs30kkFRw3HjZ85kY8RUSkzak8xVLZGvjHebBxle8kkkr6FcKEj6FLH99JRESSkspTrFgLT42Dr/+rESeJL2MgozNs2QAV63ynERFJOipPsfLOvbB8HpwzDTrm+E4jqaa6GmacDK/83ncSEZGko/IUC9+scKvrjrgMCk71nUZSUVoaHH4RLHkINn/jO42ISFJReYqFDSuhewGc+jvfSSSVHfl99/Wde/3mEBFJMipPsZBfBFe85OadiPiyVzc4bDS8PQO2VfpOIyKSNFSe2tLaJfDEj6BqkzttIuLbMT+CXofDtxt8JxERSRrtfAdIGtsq4fGxkN7B3USCoHs+jHnEdwoRiZOS8kpKKqqaPC6clUE4lBmHRMlJ5amtzP+N25hw7CvQTuVJAsRa+PQZyNoH9j3SdxoRiaGZC4uZOn9Zk8eNL8znuqKCOCRKTipPbeGzV+GtO+DUWyF8kO80Int6dTJ06gYXP+47iYjE0JihuRQN6LHz/vKSTVw7awm3jxpE//CuebjhrAwf8ZKGylNbWPOuu57Y0Vf7TiKyJ2PgmB/DY1fAuo+hxwDfiUQkRsKhzHpPx/UPd+aQ3tqwua1oVnNbOP46uOgxTRKX4Dp4OIR6w5t3+E4iIpLw9GnfGu/cB2/e6f6d3t5vFpHGpLeHoWPhg0d0yRYRkVbSabuW+upDePZncMSlvpOINM/gS6FdpvYfExFpJZWnlti6BWZfDt36Q9FvfacRaZ6OOW70SUREWkWn7Vri+YlQWgwX3AfttU+GJJDqanjmJ/CfWb6TiIgkLJWnaG3fChtXwRm3wd4H+E4jEp20NChbAwtud/s/iYhI1FSeotWug1tZN/gS30lEWuboH0LJx25/MhERiZrKU0ukpbm9c0QSUd+TIDwAFt7tO4mISEJSeRJJNca4ieNLn4OKr3ynERFJOFptJ5KKDh0Fuce6692JiEhUNPIkkorad4S9C9zqu+1bfacREUkoKk8iqWr7VrhzKLxzr+8kIiIJReVJJFW16wD7DIS3p7sRKBERaRaVJ5FUNvQq2LASlr3gO4mISMJQeRJJZfsdBb2PhLfu9J1ERCRhqDyJpLqjr3KXG6os951ERCQhaKsCkVR38HB3S0v3nUREJCFo5Ekk1aWlu9v65fDtRt9pREQCT+VJRKCqAu4+Ht65z3cSEZHAU3kSEcjIgoEj4e2/wo5tvtOIiASaypOIOEdfBRVr4ZM5vpOIiASaypOIOD0Ohv1PgLfu8p1ERCTQVJ5EZJfjxrtdx7dX+U4iIm3g4beLd/sqbUPlSUR2yS+Cs/8E7TJ8JxFJWSXllfxp7lJKyitb9T7T5i9j5kJXmmYuLGba/GXeMyUL7fMkIrvbugXeexAOOgdCPX2nEUk5JRVVTJ2/jKIBPQiHMhs+cNPXsPRZKP0Ctm6CbVugXSaccRvT5i9jytylux1ec39cYX7sMqUIlScR2V31Nph/C2wugVN+4TuNiABUlsHSF2D5XOhxCBw3DsrXwJxxkNUTMkPQvhPs1b3e4lSjNQVKdlF5EpHdZWbDoP9xez6dcD2011+ZIt6sWQwv/x5WvOj+sOl5GPQ+wj23z0D4xbrdTrM3VpxqTJm7FNZ9zLiTc6HX4bFMn7RUnkRkT0PGwtsz4MN/weFjfKcRSS1bNwOwvGQTVH8LG9Ng6GTY/3jo3MMds6as1gvcPKSH3y7eOcepKVPeb8e6j+5ndO8/wWEXQp9jwZgGj19esqlF/ynJylhrfWdoU8aYEFBWVlZGKBTyHUckcc28ACq+hLGvNfpLVUTayNbN8NZdfPjak5xdcaPvNPV6+prjOaR3tu8YMVFeXk52djZAtrW20Sula+RJROp30o1u00wRiS1r3Sjv3F/B5q+h4EfwHtw+ahD9w52b/TbRjDwBjBmay+ghubD6Hfj8VTjuOveHUtUmyNj9+y4v2cS1s5Y0+72TncqTiNRv3yOAI3ynEEl+27bA8zfBvkfCqb+Db7vCe6/TP9w5qlGeW4cPpEcos8k5TwATigp2TRrvXQhDC92/l8+D2ZdD0W9g8KUadW6A9nkSkYaVrYaHLoSNq3wnEUku1dWw6B4oXwsd9oKrFsCFM6Fr31a97bjCfCYUFTR6zG7Fqa5eg+HAc+Cp8fDPMbBlQ6vyJCuVJxFpWMcuUPwGLPqr7yQiyaNiHTxwHjzzE1j6nHtsr+5t9vaNFahGixNAp65w/h1w4cPu//fvOg7WfdRm2ZKFypOINKzDXm7ofvE/dq4AEpFW+Px1mH4CfL0ULnkSjrx8j0PCWRmML8wnnNXynf7rK1BNFqfaDjwTfrgACk6FLvu3SaZkovIkIo0bcgVUVcB/HvadRCSxbf7GrWLtXgBjX4W8k+s9LBzK5Lqiglbv5D2uMJ8xQ3MBNzk86o0xs3vDOVOhw16Eq4q5zj5AeC9NlQaVJxFpSk4uHHg2vHu/7yQiiWl7FezYDnt1g0vmwMVPQFaPuHzr0UNyd/vaYl+9D2/dCY9eCtt0fbuYV0hjzA1AaeRujrV2chPHDwPGAnOBlUARsMhaOzuWOUWkEaf+DjKyfKcQSTxbNsCsi9xu4GfcBvsd5TtRywwcCRkheORimDkSRj+c0r8TYjryFClOWGtnWGtnAIuNMdObeFkOMAyYHrmtUHES8axLHzeRdHuV7yQiiWPjKvhbEZR8AgcP952m9QpOdaNmX74PD492+1OlqFiPPE0Edq67tNbOM8bMxY0sNaavtbY0lsFEJEprFsMDw+EH86F7f99pRIJt/TL4x3mQ3h5+MA+69fOdqG30OQb+39NQWZrSe0DFbOTJGJOHO01XWs9zw9rw+2QYY0I1NyB1xxFFYik8ANLawdtNDR6LCIv+5k5rXfZc8hSnGj0Phb4nunlcr/wBKhu9kklSiuVpu7wGHi/FnZprzPeMMSONMVcaY25r4tiJQFmt2+poQopIM7XPdMuqlzwElWVNHy+SirZucV9P/R1c9iyEevrNE0sbP4c3psFDo3b9d6cIH6vtNgBdG3l+MTDPWjs7Mk9qhTHm0UaOnwRk17rt22ZJRWR3R33fzXt670HfSUSCZ+17MO1wWPMupLdz8wSTWff+MGY2fPkftwpvx3bfieKm2XOejDEjgVHNOHSStXZxI883+r8ma+3KOg89Akw3xtR7CtBaWwXsnMVqUvgcrEjMZe3jJr5++R/fSUSCZd3Hbk5g135uH6dUkTsURv0DZn4Pnv0pnDUlJeZCNbs8RVa8RbPqrW4JqpHTyHMYY0bWXl1nrS2NFKI83KiUiPh03l+gnXYZFtnpmxVucnhoX7hoduot4e8/DM653S0qsdVg0n0nirmYnbaLjCCVRiaO131uXn2vMcbkAI/Wfk3kMWikcIlIHLXLcEuU177nO4mIf9bCv34AHXPg4sfd9SBT0eBLXIFKS3dXJEhysZ7zNAm3ZxOw89TfjFr382r2ggI3ygRMrnPq7kpgtrYuEAmQpc/BjJN1wVARY2DEDHedus57+07j3+cL4PaBbi+oJBbT8hTZTTwnsnJuJHCUtbb2Hk81u4nXNskYc0PNDehmrb0gljlFJEr9h0FWL1h4t+8kIn5sr4K5N7tl+t3zIdTLd6Jg6HU4ZO8Hs8a43dWTVMxX21lrJ0dWzs221v6sznMzrLX96jxWGnlNze1niEiwpLd3K+/ef8Rd7FQklVRXwxNXuT8evlnmO02wdOgEF86Eqk0w+7KkXYGnCwOLSMsccZn7uvjvXmOIxN38W+DDx9zput5H+E4TPDm5cMHf4bPX4NVGL2ebsGJ+YWARSVJ7dYOjr4bMbN9JROJn0d9gwe1w2iQYcJ7vNMGVdxJ896+w31DfSWJC5UlEWm7Yzb4TiMTX1s3uj4ZjrvadJPgO+a77umUD7NgGWT385mlDKk8i0jrla+GTp2Holb6TiMTO9iq3Tcdx43wnSSzWusu3pHeAS+e4rQySgOY8iUjrrFnsdhZe867vJCKxsXUz3FMIi+7xnSTxGONGqIvfgFeSZ/6TypOItM4BZ0BOH1g43XcSkbZnrVtZ981KyD3Wd5rEtP/xcNLP3OTxLxb5TtMmVJ5EpHXS0mHIlW71UcVXvtOItK3X/ggfPwkjpkOPAb7TJK4Trnd7QD15NVTv8J2m1VSeRKT1Dr/IzWl4517fSUTazmevwYu3ulGTg87xnSaxpbeD4dPhnGlJMe9JE8ZFpPU65sBZ/wfhg3wnEWk7PQ+FU34Bx1/nO0ly6J7vbtU7oGw1dOnjO1GLaeRJRNrGoNHQa5DvFCKtt2O7+3DPzIYTr0+KkZJAmfsruO9MqCzznaTFVJ5EpO2seAkeG+sm2Yokqhd/A9NPgqoK30mS09Cxrjg9f5PvJC2m03Yi0nbsDnj/n3DEpdBHK5MkAX36b1gwFYp+CxlZvtNEraS8kpKKqp33l5ds2u1rjXBWBuFQZlyz7ZSTC6f+Bp6+Dg4dBX1P8JOjFYxNsr8QjTEhoKysrIxQKOQ7jkhqsRbuGAJ7HwijHvCdRiQ6G1fB9BOgz/Hu4rbG+E4UtT/NXcrU+U1frHh8YT7XFRXEIVEDqqvh72fCphK46g1o76nI1VJeXk52djZAtrW2vLFjNfIkIm3HGLdtwbM3QOkXkLOf70QizTfnx26e0/l3JGRxAhgzNJeiAU1fBiWclRGHNI1IS4NzpsKqBW6lboLRyJOItK2qTTBlABz9Q/jOz32nEWm+r/8L27a4/Ygkvmouf+ORRp5ExJ+Mzu4aVmFtKCgJ4uulbpR07wN8J0lNr/4Blj4Plz+fMCsbtdpORNper0HQroO7krpIkH27ER4YDv/+qe8kqWv/E2D1Ilh8v+8kzabyJCKx8eadMONkbVsgwWWtW/FVVeF2ERc/co+GQWNg/m9gywbfaZpF5UlEYqPXIFj3ISyf5zuJSP2WPAQfPQ7n3K7FDb4N+7XbefzF3/pO0iwqTyISG7nHQO8j4I1pvpOI7GnzercqdNBFcMgI32mkcxhO+SWktU+I0WpNGBeR2DAGjvkxzL4MvvwP9DzMdyKRXfbqDiPvhT7H+U4iNYZe6TtBs2nkSURi56BzoWs/NxlUJCjWfexGNwpOc6tDJTishbfuhg9m+07SKJUnEYmd9HZw9Ztw1A98JxFxvnwfpp8I78/ynUTqYwysfhueuzHQFw5WeRKR2GqX4TbAW7PYdxJJddur4Imr3H5OBw/3nUYacurvYOsWt/9TQKk8iUjsvf4n+Md5UNnopr0isfXy790u4sPv9r6btTQi1AuOGw8Lp8PGz32nqZfKk4jE3uBLYdu3sPgfvpNIqlq7BBbcDiffCPsM9J1GmnLsj6FjV3jvQd9J6qVr24lIfDx+FXz2KoxfAuntfaeRVLNjOyx50G1NkK6F5gmhtBiy94vbRZqjubadRp5EJD6O+RGUr4aPn/SdRFJN2RpXmI74fypOiSQn1xWnte8Fbu8nlScRiY99DoGhP4TMbN9JJJWsfAWmHgpfaLuMhPTl++4yT5/M8Z1kNypPIhI/Z9wG+UW+U0iqqKqAJ3+0a7d7STw9D4X+RTD3Zti+1XeanVSeRCS+vvoQFkz1nUJSwbxfuwvNnvcXSNPHXcI69bdQugoW3eM7yU76X5OIxNdX78PcX7kl4yKx8vkC92E77Gbosr/vNNIa4YPg8Ivdvk8B2ThT5UlE4uuQkZDVE974s+8kksy6F8BJN8JRV/hOIm3h5BvdhH/is/KuKdqqQETib8FUmP9buPZ9tyGeSFvaVgntM32nkASjrQpEJNiOuAzad4K37vSdRJLN6nfh9oFQ8qnvJJLEtOGFiMRfZghG/g16HOw7iSST7VVudV2oF3Tr7zuNJDGVJxHxo2bLAmvjtoOwJLnX/g++WQZXvqLNMCWmdNpORPxZ8SLceQxs3ew7iSS6rz5w5emEn7gNWUViSOVJRPzpmgfrlwb24p+SSAwMOM+VJ5EYU3kSEX+67A+HfNdtW7Bjm+80kqisdaNNI++Fdhm+00gKUHkSEb+OvxbKvoAPZvtOIolo/TK49zQoLfadRFKIypOI+NXjYCg4HZbP851EEk11NTz5Y9i8Hvba23caSSFajiAi/o34K2Rk+U4hiWbRX+GLt+D//Rvad/SdRlKIRp5ExL/MkNuu4KsP3fwVkaZs/Bzm3QJH/QD2P853GkkxKk8iEgzFC+Hu4+Dz13wnkUSw4TPo1g+G/dp3EklBuradiASDtTD9ROiYA5c+5TuNJAJtsCptKJpr22nOk4gEgzFw0g0w6yJY9Sb0OcZ3IqmjpLySkoqqJo8LZ2UQDsXowrwVX8HLk6DwZujUNTbfQ6QJKk8iEhwHnAU9DoFXboNLnvCdRuqYubCYqfOXNXnc+MJ8risqiE2If18PxW+58iTiicqTiARHWhp85yZYvQiqd0Bauu9EUsuYobkUDeix8/7ykk1cO2sJt48aRP9w552Ph7NitFHlx0/CJ0/BBfdr1Em8UnkSkWA58Ex3k8AJhzLrPR3XP9yZQ3pnx/abb9kAz1wPB57tLsMi4pFW24lI8GyrhJdvgzWLfSeRoPjsFajeDmf+UZPExbuYjzwZY3KA7wEXWGuLmvmaG4DSyN0ca+3k2KQTkUBKbw8fzoa1i+F/Zu3xdCAmLkt8HTwc+p0CmTEe4RJphpiWJ2PMYOBIIAdo1gnqSHHCWjsjcn+YMWa6tXZsrHKKSMCkpcOJP4XHroC170Gvw3d7OhATlyU+qjbBkofgyMtVnCQwYlqerLWLgcXGmJFRvGwi0LfWe8wzxswFVJ5EUsnBI+Dl38Mrf4DRD+32lPeJyxI/L/4W3r0fCk6DLn18pxEBAjZh3BiThztNV1rPc8OstbpyqEiqSG/nRp+e+CGsXwbd83c+5XXissRP8UJYOB1O/Z2KkwRKoMoTkNfA46W4U397MMZkALX/vNTVRUWSxcALICcXuvX3nUTibXsVzLkGeg+Go6/ynUZkN4my2m4DDc+ZmgiU1bqtjlcoEYmx9Ha7LvpaVeE3i8TXB4/ChpVw7l+035cETrNHniLzlkY149BJkblObamxyeaTgCm17mehAiWSXOZcA2Wrtet4Khk0BnoeBj0G+E4isodmlydr7WxgdgyzAKxs4PGchp6z1lYBO9csG+3/IZJ88k+FRy6Gz1+H/Y/3nUZiacd2+GKhG3HcZ6DvNCL1CtRpO2vtSqA0MnG87nOaLC6Sqg46B3oOgvm/BWt9p5FYWngX3H+2O2UnElDxKk/1nnYzxuTV7OtUyyRgWK1jRgIzYphNRILOGDjll/DFW7Bcf0clrW9WwIu3wtCroGtD64dE/ItpeapVjsYCg40xt9XZ82kYdfZviuwmnmOMGRk59ihtkCki9C+EA86Ezet9J5FYqK6Gp8ZD5zCccpPvNCKNivUmmSuByZFbfc/PoJ5RpTqXY4n1PCsRSQTGwOiHfaeQWPnPw/D5a3DJk9BhL99pRBoVtH2eREQat/kbWPx3OO5aLWFPJgcPd6Up72TfSUSaFKgJ4yIiTSpdBfN/4653JomvuhpKi6FDJzj4fN9pRJpF5UlEEkvvwe66dy/dCls3+04jrbXoHrhjKFR85TuJSLOpPIlI4in8lZs4/uadvpNIa2xYCfNuhsNGQ9Y+vtOINJvKk4gknq59YciVsGAqVJb7TiMtUV0NT/4Y9uoORb/xnUYkKpowLiKJ6cTr3STjzBDuspaSUN75G6xaAJc+BRmdfacRiYrKk4gkpk5d3a26Gqo2+U4j0co/Fc78I/Q90XcSkaipPIlIYnv0EtiUDZzpO4k0R3U1bNsCXfrAkCt8pxFpEc15EpHEdtB5sOp13ymkuRb9Fe46BqoqfCcRaTGVJxFJbId8F8IHuX9X7/CbRRr39X9h7q+g4HTIyPKdRqTFVJ5EJLGlpcGx492/P33ab5YU8/Dbxbt9bdT2rfDYFZCTC8NuiXEykdhSeRKRxNdjgPvaLtNvjgRRUl7Jn+YupaS8ssXvMW3+MmYudKVp5sJips1f1vgLXrkN1n0EI2a43cTbOI9IPKk8iUjyKDjNd4KEUFJRxdT5yyipqGrR66fNX8aUuUt3e2zK3KWNF6i+J8Lpv4deh7d5HpF4U3kSkeRRtRnmXANffeg7SdKqrzjVqLdAbat0K+zyTtLqOkkaKk8ikjzadYDit+C5G8Fa32mSTmPFqcYeBerZn8KsMfp5SFLRPk8ikvB2Tlx+90tuPf338OAI+OhxOGSE52TBtryk+ZuLPvx28c45Tk2ZMncp68orGR0uhndehRN/CmsbvoxONDlEgkDlSUS8KCmvZObCYsYMzSUcavlE77oTl3uEChh34Nnw3EToXwiZ2XHPlCiunbUkZu89c2ExMwH4X5gHzNNeXJI8VJ5ExIuaScJFA3q0uKg0NHGZEyYwbtv5sOIlOPj8uGZKJLePGkT/cPOuKxfNyBPAmJwPGc0LMPJe6JjT6LHLSzbFtMiJtDWVJxFJSI1OXH7tKzj5GcYdfGicUyWW/uHOHNK7eSNztw4fSI9QZpNzngAmDMtnXOcvoMfN0LdPa2OKBI7Kk4gknGZNXH75C0jPYFz3RXDoKEhvH6d0yWtcYT5Ao/+3n/CdPowbVgAUxCmVSPypPImIV9FOFo5q4vL85axLf5fRazfBoNFtniUVNVagJpy8H+M+vhC6TYAjL493NJG4UXkSEa9iPddl5o5hzHwNeE0TlmuEszIYX5hPOCujRa+vr0BNGJbPuPW3uAv+5p8a1zwi8abyJCJeRTNpGVowcfnInoxeORGy9oGzb3fXwmtAqkxcDocyua6odafVxhXms67W6sRxWS/D60/DhQ9B9r5xzyMSTypPIuJVNJOWIcqJy0UFbpRk5c/hH+dCxQgYcF5r4koto4fkMnNhMaP33wxP/RyG/hAOPMt3LJGYU3kSkYTTrInLNcUJ3KVBLn8e9hsaj3ipJ6cPnHQDHHet7yQicaHLs4hIQhpXmM+EBk717FacauQeDca4y7dU74hDwhSwI/J/xw6dXHlq18FvHpE4UXkSES/aYpJwfQWq3uJU45sVcO/p8NZdMcuUUt65x32tqvCbQyTOVJ5ExIuaScKt3cl7XGE+Y4bmAriJyw0VJ4Bu/eDoq2H+b+CrD2KWKSV88jQscRdgISPLbxaROFN5EpGEN3pI7m5fG1X4K+ieD7Mvh62bY5wsSa37CB4fC31P8p1ExAuVJxFJLe0z3fXWylbDa1N8p0k81sLjP4QufeHkib7TiHih1XYiknr2PgDGzIZeg3wnSTzGwMj7oF0GbO7kO42IFxp5EpHUtP9x0GEvWL8cNq7ynSb4rIVF90DVJujeH3L2851IxBuVJxFJXdXV8Mgl7rbtW99pgu3Nv8AzP4GVL/lOIuKdypOIpK60NBh+F3z9qSsG1vpOFEwfPgYv/NJtgnnQOb7TiHin8iQiqa3nYXDOVLfsftE9vtMEz2evuZV1A0dC4c2+04gEgsqTiMhhF8KQsfDyJG34WNeXS6DPsXDenY1eVFkklWi1nYgIwGm3wjFXa8PHGtur3Iq6Y6+BoVdBuj4uRGrozwgREYD09tBlf7dx5rM3wpYNvhP5U74W7joW3ovsIK7iJLIblScRkdo2lcD7s2DWxW70JdVUrIP7z4VtlW47BxHZg8qTiEhtXfvC6Idh9SJ48kduO4NUsXk9/OM8N+/r0jluJE5E9qDyJCJSV+7RMGIGfPgveOa61NnC4PmbYMt6uPQpdxFlEamXTmSLiNTn4PPd/KfSFNp9/Izfu9OWexf4TiISaBp5EhFpyOFj4Ds/d9dz++rD5ByB2rAS7jsLSr+Ajl3cdf9EpFEqTyIiTVn3MUw/AV74RXIVqC/fh3tPh01f+U4iklBUnkREmtJjAJwx2V3fbc41UL3Dd6LW+++zrjhl9YTLntOFfkWioDlPIiLNMeQKt4HmE1e71WjDp0P7TN+pWmZTCTx6GfQvdBPjO+zlO5FIQlF5EhFprsMudAXq5d/D9srEK09bt0BaOnQOw+XPwT6HRnXJlZLySkoqdu19tbxk025fa4SzMgiHEuz/NiJRUHkSEYnGgWdBwemuhGxcBZWl7uLCQbd+GTxyCeR9B07/X+g1KOq3mLmwmKnzl+3x+LWzlux2f3xhPtcVacWeJC+VJxGRaKWlu68v/S989Li7Lt5RP3Cr8oLGWvjPw/Dvn0KoFwy+uMVvNWZoLkUDejR5XDgro8XfQyQRqDyJiLTUOVMhMwT/vh4+e9Xd79TVd6pdtm+FWRfBsufhsNFw5h8ho3OL3y4cytTpOBG02k5EpOXaZ8KZf4DvPeDK0z3DgrESr3qHu6xMuw4QPhBG/xOG392q4iQiu8R85MkYkwN8D7jAWlvUjOOHAWOBucBKoAhYZK2dHcucIiItNuBc2G8olHzsTultXg+bv4bwQfHP8tmr8NxEOPoqOPwiKPpN/DOIJLmYlidjzGDgSCAHaO5Ydg4wDBiJK0+3qTiJSG2BXPWV1cPdAN66C16f4srLiTfEZw+lz1+HVybDZ6/Avkf5KW4iKSKm5clauxhYbIwZGeVL+1prS2MQSUSSQOBXfZ10A+zV3ZWZ92bCwcPh5InQvX9svt+KF+GB4dBjIFxwPww4L5iT10WShCaMi0jCCfyqr3YZkdNmF8OSmfDWnbBti3vui0Vuknn3gpYVnG3fwsqX4dNnAAvn3QF9jofRs6DgNJUmkTgIann6njFmA+5UXz9r7c8aOtAYkwHU/g2ZFetwIuJXwqz6yugMQ8fCUVfs2ozy+Z/D6reh8z6w//Gwz0A3UtS1r9vEsqb8bPsWtm4CjDvtV/IJPHUtfLnEbdDZrT8cPMJtRdCuAxxwuqf/SJHUE8TytBjAWrsSwBhzpTHmUWvtBQ0cPxG4OV7hRESiVnsX70uegFVvwuevwucLYOlzrkB17QtvTIOXJ+3+2kMvhBHToWNXCPV0Rav/MNhbm1CK+GJsM68QHpm3NKoZh06KzHWq+9qJ1tojog7oVuttBLrUNw+qgZGn1WVlZYRCoWi/nYhIfFkLttqt0iv5BL76ADDu1F+HTm6Eqcv+vlOKJL3y8nKys7MBsq215Y0d2+yRp8iKt5ivejPGjKy9us5aW2rcMHYekVGpOrmqgKpar491RBGRtmMMmMiO5eGDtEpOJAEEapPMyCjTo8aYvDqPgdu2QERERMSreJWnevd4MsbkGWNuqLkfOS03uWa+U8SVwGxtXSAiIiJBEOtNMvNwm12OAgYbY25j993Ca3YTn1zrZZNqFyqgWyOTxUVERETiqtkTxhOFMSYElGnCuIiIiDRXNBPGAzXnSURERCToVJ5EREREoqDyJCIiIhIFlScRERGRKKg8iYiIiERB5UlEREQkCipPIiIiIlFQeRIRERGJQkx3GPepvLzR/a1EREREdoqmNyTjDuO9gdW+c4iIiEhC2tdau6axA5KxPBmgF1DhO0srZOEK4L4k9n9HstLPJ/j0Mwo2/XyCLZV/PlnAWttEOUq603aR/+BGG2PQuf4HQEVT19eR+NPPJ/j0Mwo2/XyCLcV/Ps3679WEcREREZEoqDyJiIiIREHlKZiqgFsiXyV49PMJPv2Mgk0/n2DTz6cJSTdhXERERCSWNPIkIiIiEgWVJxEREZEoqDyJiIiIREHlSURERCQKSbdJZqIzxtwAlEbu5lhrJ3uMI3VEfj4A/QCstWM9xpEmGGPmWmuLfOeQ3RljbgNWRO5usNbO9plHdjHGXAnk4D6H+gGTrLWlHiMFklbbBUjNB3NNYTLGDAMu0Ad0MBhjbrPW/qzW/elAnj6cg8kYMxJ41FprmjxY4sIYkwPMBwqttaXGmMHAu/oZBUPkM2hGTVmK/Lz+aq29wGeuINJpu2CZCMyouWOtnQdc6S+O1Ij8Ehkc+VpjOjDMGJPnJZQ0KPJz6uo7h+zhNmBWzYeztXYxoD8+gqOo9ihT5N85vsIEmcpTQEQ+gHPqGx6NjECJf0cCtYvSysjXnPhHkSZ8D3jEdwjZw5XAbGNMXs3vtcgfiRIMpcaYuTV/JEY+l1Y2/pLUpPIUHA2NXpSiD2fvrLWl1toukb+Ua9SUWv1yCZDIh7I+kAOm1gjtYNzvtJXGmOn64zBQrsB9Fm2MzEsbpmkj9VN5Cr4N6PRDUE0ExmoyZeDkWGtVaIOnpjyVWmsXR35GPwMe9ZhJaon8LrsNmA3cAFxQZ6qCRKg8BZ+KUwBF/iqbZa2d0eTBEjfGmCu1civw3qn5R82cGo0+BUPk99rKyATxfrjPn3f9pgomlafgaOgv5ZxGnhMPIqu4VmgbiWCJrNx6p8kDxZeGfo+V0vC0BYmTWvNu5wFYa1daa4/AzYMa6Tdd8Gifp4Cw1q40xpQaY/LqnnLQhMrgqDXJdUbkfg7QVaeJAqErbkVkzShGP9i5/HqlRqT8ivyOW4krSrXnDuag0hsEeezaY7C26XHOkRC0z1OA1GyQWeuDeSRu6agm7AVAZGRjGG4+QI2R1NoXRYJDewgFT+R32lE1+6VF7o/VXmnBYIyZi9tbsLTWY9P1GbQnlaeAqfkrOXJ35y8Z8SsywvQZ9ax81Idz8EQ+lEfhyu1kYK5GcIOh1g7WAN30Oy44Ir/nJgLfsGult/44rIfKk4iIiEgUNGFcREREJAoqTyIiIiJRUHkSERERiYLKk4iIiEgUVJ5EREREoqDyJCIiIhIFlScRERGRKKg8iYiIiERB5UlEREQkCipPIiIiIlFQeRIRERGJwv8HAmuMdqdTI1QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAFyCAYAAAAZNbUwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8TklEQVR4nO3deXxU1eH+8c8kQMKSSUAICgYlLCqyGUTcRSFS61LUAEXcaiVoFxTaLyntr7W2tdG0RUWrgq07IhBc0aoJCu4IRBTcWIZNEIKEyQQkgSTz++OaYDDLJMydM3Pv83698kommeQ+hjjzzLnnnuMJBoNBRERERFwoznQAEREREVNUhERERMS1VIRERETEtVSERERExLVUhERERMS1VIRERETEtVSERERExLVamQ7QlOrqarZv305SUhIej8d0HBEREYkBwWCQsrIyunXrRlxcw+M+UV+Etm/fTlpamukYIiIiEoO2bt3Kscce2+DXo74IJSUlAdZ/iNfrNZxGREREYkEgECAtLa22RzQk6otQzekwr9erIiQiIiLN0tS0Gk2WFhEREddSERIRERHXUhESERER11IREhEREddSERIRERHXUhESERER11IREhEREddSERIRERHXUhESERER11IREhEREddSERIRERHXivq9xkRsU10Nu9fD16ugbUfokwml26DwNmjdDpLT4Kh0OHao9XET+9WIiEjsURES99n+ESz/L3z5Cny72/rc0IlWEao6AGU7oKIMvlhkfT3BCzmbwBMPJRuhU0+j8UVEJHxUhMQdKvbC/hJI6QElPtjyPpxyDfQ6H44ZZI0IgVVyrl906Pv27rLuHxcP5QH492nQ7RQ4czKc8GOI09llEZFY5gkGg0HTIRoTCARITk6mtLQUr9drOo7EmqqDUPQ4LLkT0obBT+dYp8Q8nuaf6qqqhHWvwXv3WUWqWwZclAdpQ+3JLiIiLRZqf9DLWXGubSth1rnw8m+h90j40Z3W5+PiWjbfJ74VnHgx3PAqXP8KVFfCW/8Ib2YREYkonRoTZyoPwBOjrVNdk5Zap7/C6fizIHsJlJdatze+DXGt4LgzwnscERGxlYqQOEtguzXfJ9EL174ARw+0RnLsEBcP7TpZHy9/GD5fBKP+DsMm6QozEZEYoVNj4hyb3oWHzoY377Bud8+wrwQd7spH4PSb4dUceGkyVB6IzHFFROSIaERInGHNQnjuJmtC9FlTIn/8+FYw6g5IPQkWTYHqKhj9QORziIhIs6gISex7dyYU/BEGjoPL7odWbcxlOeVq8HaHDl3NZRARkZDp1JjEtmDQWgDx7Klw+SyzJahGr/Ohaz9r7aLX/x8c2Gc6kYiINEAjQhK7dq2FLn2tU1LRODl5z0ZY8SjsWANXzYNWCaYTiYjIYTQiJLFp6T/gwTOsMhSNJQjg6AEw/hnY/B4s/Lk1b0hERKKKipDEnhWPwJt/g/N+Z40IRbOe58DYx+GLl6Hwz6bTiIjIYXRqTGLL54vg5d/AsJvg3N+aThOaEy6y1hc6sM+a0xStI1giIi6kIiSxo7oK3vgbnHQZjMqNrUJx+s2HPi4vhcRkc1lERKSWTo1J7IiLh+tesq4Oi9Vd39cshPtPg7KdppOIiAgRGhHKy8sDYMOGDQDMmjUrEocVpzjwLfxvGgyfDsndTac5Msefa71f+HNrC5C4eLN5RERczvaX1Tk5OUybNo1p06bVFqDMzEy7DytOEQxaW1aszodvd5tOc+Q6dIEr/wOb34WleabTiIi4nq1FyO/3U1RUhN/vr/3cpEmTKCwsxOfz2XlocYr374fVC2D0v+GYgabThEfPc2D472HpXbDxLdNpRERczfZTYytWrMDn85GRkQFAeno6QJ1y9H0VFRVUVFTU3g4EAnZHlGi15QMouA3OugX6X2k6TXidM9Wa59S1v+kkIiKuZuuIUEpKCnv27KktQQCFhYXAoUJ0uNzcXJKTk2vf0tLS7Iwo0SywHdLPgwv+ZDpJ+MXFwzm/gXadYL/fdBoREdfyBIPBYCQPOGTIECZNmkR2dna9X69vRCgtLY3S0lK8Xm+kYkq0cPq6O3s2wazzYPSDcOKPTacREXGMQCBAcnJyk/0hotcg5+TkMG7cuAZLEEBCQgJer7fOm7jMhw/DS7dCdbWzSxBAynHQ4wxrQvg+B0wGFxGJMRErQvn5+fTq1Ytp06ZF6pASi3Z+Bq/9AeJbx+5aQc3h8cCl90LVQWunehERiaiIPNPUzAuqGQny+/26akx+qOogPH8TdDweMv9qOk3kJHWFzL/Ax0/rKjIRkQizvQgVFRVRVFRERkYGPp8Pn8/H7Nmz6dSpk92Hlljz9r9gxxq4/CFonWg6TWSdcg2clg3tjjKdRETEVWydLO33++nZs2e9l8qHethQJzuJA/zvd5CQBBf8wXQSs5w+QVxEJAJC7Q+2riNUc/m8SEguutMqAW5WshHyfwZZj0Cn+peYEBGR8HHBbFSJekv/ASsesT52+0hIh66wdxe8/kfTSUREXEFFSMzasRqW5MK+b0wniQ5t2kHm7fDFIvAtNZ1GRMTxVITEnOoqa72gzn3hrFtNp4ke/a+EtGHw6nSoqjSdRkTE0VSExJwVj8C2FXDpPdCqjek00cPjgR/lwre7oUTLTIiI2Mn2TVdF6hUMwroCGHI99DjddJro030I3PoJtEownURExNFUhMQMjwfGPwNVFU3f161aJUDpNtheBCddajqNiIgj6dSYRJ5vKWx6x9pCo3Vb02mi28pHYeFECHxtOomIiCOpCElkHSyHF38Nb88wnSQ2nPlra5Xtt/JMJxERcSQVIYms9+6DwDa46C7TSWJDYjKcPRWKnoDdG0ynERFxHBUhiZzSr6z9xE6/GTr3MZ0mdpw2Edqnwpt/N51ERMRxNFlaIuetf1h7iZ07zXSS2NK6LYz+NyQdYzqJiIjjqAhJ5GT+FTKuhURtnttsvS6w3ldXW5PMRUQkLPSIKvarqoTAdqsAdR9iOk3s2rMZHhgG2z8ynURExDFUhMR+Kx+F+4dqP7Ej5e0O1ZXWJrUiIhIWKkJir/1+a5LvyaOhfWfTaWJbfCs49//gy5fh609MpxERcQQVIbHXOzOgshwu+KPpJM4wYCx0PF7rComIhImKkNjHvwU+eAjOnAxJR5tO4wzxreCc31ojQhVlptOIiMQ8XTUm9qmugn4/sVZHlvAZNB4G/RTiW5tOIiIS81SExD6desKVD5tO4Tzx3/1vu3sDtEqE5O5m84iIxDCdGpPwCwat/cQ2vmU6iXNVVcJjF1uLVIqISIupCEn4ffk/a2+sygrTSZwrvpW19caqp6Fsp+k0IiIxS6fGJLyqDkLBnyB9OPQeaTqNs516A7w9g+K3/kvx4F82effUpARSvYkRCCYiEjtUhCS8PnoSdq+HrEfA4zGdxtnadoQh1zPnva3c+/Y7Td79lhF9mJLZNwLBRERih4qQhE8waJ2qGTAGjhloOo07nPFLJpTNIHNQP2jXCYD1xXu5dd4q7hk3mN6pHWrvmpqUYCqliEjUUhGS8PF44LpFcGCf6STu4e1GatY/Sa3nS71TO9C/e3LEI4mIxBJNlpbwKA/Ank3QOhHaH2U6jfuseBQ+X2Q6hYhIzFERkvB47z546Byo2Gs6iTutfRWW5FqnJ0VEJGQqQnLk9u6C9/8NQ66HhA5N3l1sMOwm2LkGNjU9aVpERA5REZIj984MiIuHs6eYTuJe6cOhy0nwwYPM/XALQO17ERFpmIqQHBn/Vlj+H2s/se+uWpKWKw6Uc3fBWooD5c37Ro8HTr+ZmZ+2Yc4yqwDNWbaFmYvXRS6DiEgMUhGSI+PxWBuAnn6z6SSOUFxWwb2L11Fc1vxVuWfuHsqMyjF1PjejYG2zy9CRZBARiTW6fF6OTPKxcNl9plO43szF65jxxsZ6vzajYC0Ak0f0iWQkEZGYoBEhabnX/qBLtqPAzMXrastOQ1oyMiQi4gYaEZKW+fpjeP9+6HKC6SSOtL44tGUI5n64pXZOUFNmFKxlZ6Cc8af1CMuxRUScQEVIWmbJndApHQZdZTqJI906b5UtP3fOstCLk4iIG6gISfNt/wi+fAUunwXx+hOyw+H7hDWkOSNCABOG9QhpRMiuIiYiEm30LCbNt+JROKo39M8yncSxQt0n7I7LB9DVm9jkHCGAqZl9NWFaROQwtk+W9vv9zJ49m8zMTLsPJZFy8QyYkK/RoCgxeUQfpmb2bfQ+KkEiIvWz9ZmsqKiIFStW4Pf7KSkpsfNQEiml2yC5O3TqaTqJfE9NyalvZGjqiF4qQSIiDbB1RCgjI4Ps7GzS09PtPIxEyraVcE9/2PKB6SSOlZqUwC0j+pCalNDs761vZGhq4ktM7vpJxDKIiMSaqDu3UVFRQUXFoRVtA4GAwTRSx5I7rblBxw41ncSxUr2JTGniNFdjJo/ow85AOXOWbWHCsB5MDmyztkAZODZiGUREYknULaiYm5tLcnJy7VtaWprpSALw1QpY9zqcl2NtsCpRq+aqsPGn9YChN8LWZbBjteFUIiLRKeqK0PTp0yktLa1927p1q+lIAtZoUOcT4OTLTSeR5jjhx9DhaFj+X9NJRESiUtSdGktISCAhQXMTokpVJXi7wSkTNBoUa+Jbw5Dr4KvlEAxam+SKiEitqCtCEoXiW8FlM02nkJbS6UwRkQapCEnjtq20VpLOuF7rBkWp4kA5xWWHLjCo2Suszp5hwSCp364jta8muouIfF9Entm0hlAMe+NvEPgahtxgOok0YM6yLdxbz87yh2+TcUv8Qqb8sjV0GxyZYCIiMcDWIuTz+cjPz2fevHkUFRWRk5PD0KFDycrS1gwxYcsy2PAGjHkM4qJuXr18Z8KwHmT269r4naqqSH3mz1D0hIqQiMj3eILBYNB0iMYEAgGSk5MpLS3F6/WajuMuT4yGvcVw0zsqQk6w+K/w4Wz4zZfQpp3pNCIitgq1P+jZTer31UrwvQnDc1SCnOKUq6EiAJ+9YDqJiEjU0OxXqV+3U2D8POhzoekkEi6desKg8RCsNp1ERCRqqAjJD1VWQKsEOOFHppNIuF3+kOkEIiJRRec85IfmjIGCP5lOIXbxb4H1i02nEBGJCipCUtemd2HjUm2s6mTvPwDPZkPlAdNJRESMUxGSupbkQtcBcMLFppOIXTKuhW+/gbX/M51ERMQ4FSE5ZOPbsOltGP47XSnmZF37WSN+RU+YTiIiYpye7eSQb76EY0+DEzUa5HinXGPNEyrdZjqJiIhRumpMDhl6o7WVhnYod76TL7d2pK8+aDqJiIhRGhESCAbhk/lwYJ9OiblFohd+cj90PN50EhERo/SsJ7DxLXh2ovVe3KPqIBQ9CTvWmE4iImKMipDbBYOw5E44ZjD01QKKruKJs/7tl//HdBIREWNUhNxu41LY8h4Mn665QW4TFw+DfgprnoWD+02nERExQkXIzWpGg7plQN9RptOICYPGQ0UpfPmK6SQiIkboqjG3O3sKJHg1GuRWnXtD2jBY9TT0v9J0GhGRiFMRcjOPRyNBAuf8FspLTacQETFCp8bcasMb8OTlegIU6HshDBxjOoWIiBEqQm5UMzeoPGCdFhPZsRpe+4P1tyEi4iIqQm604Q3YukxXiskhe4vh/fthW5HpJCIiEaUi5DY1o0HdT4XeI0ynkWiRPhySusHHT5tOIiISUSpCbrNnIxR/BudrNEi+Jy4eBo2D1flQWWE6jYhIxKgIuU2ndJiyBnppNEgOM2g8lPth3eumk4iIRIyKkJt8s966SqxtR40GyQ91OQEuu886bSoi4hJaR8gtgkF4LtsqQVcvNJ1GolXGtaYTiIhElEaE3GLta7BtJZzxS9NJJJoFg1B4u7X/mIiIC6gIuUF1NbzxN+hxJqSfbzqNRDOPB75epR3pRcQ1VITc4LPnYedqGPFHzQ2Spg0cB5vfBf8W00lERGynIuQGyWlw1q1w3Jmmk0gsOPESaN0OVi8wnURExHYqQm6QNhQybzedQmJFQgc48WL4ZL623BARx1MRcrLKA7Dgevj6E9NJJNacPRVGP2A6hYiI7VSEnOyjJ+DT5yG+tekkEmu69oPuQzSnTEQcT0XIqQ58C0v/AQPHQupJptNILNr0DjyVBdVVppOIiNhGRciplv8Hvv0Ghv/OdBKJVa3bwvoC2LjUdBIREduoCDlRdTUUPQ6nXG3tLSbSEt0y4Kje1qRpERGHUhFyorg4mPgGXPAn00kklnk8MGAsfP6SdapVRMSBVISc5tsS2FsMicnQ/ijTaSTWDRwDB/bCl6+YTiIiYgsVIadZehfMHg5VB00nESfolA7XvQQnXWY6iYiILSKy+3xeXh4pKSkA+P1+pk2bFonDuk+JD5b/F86frkvmJXx6nms6gYiIbWwfEcrLywMgOzub7OxsMjIymDRpkt2HdafFf4X2XWDYzaaTiJNUV8O8a6DoCdNJRETCzhMM2ruGfseOHdm4cWPtiBCAx+Mh1MMGAgGSk5MpLS3F6/XalNIBtq2Ehy+Ay+6DjGtNpxGneepKa8L0Df8znUREJCSh9gdbR4R8Ph9+v79OCapRWFhY7/dUVFQQCATqvEkIWreHIdfDoKtMJxEn6p8FW96D0q9MJxERCStb5wj5fL56P5+SkoLf76/3a7m5udx+uzYIPVxxoJzisopG7nEMZPyF1H2VpHojMvVL3OTEi6FVIqxZCGfdYjqNiEjYGHnG7NSpEyUlJfV+bfr06UydOrX2diAQIC0tLVLRotacZVu4d/G6Ju93y4g+TMnsG4FE4iqJXug7ytq7TkVIRBzESBFqqAQBJCQkkJCQEME0sWHCsB5k9utae3t98V5unbeKe4bto/dHd8Doh6BrP1KT9LsTm4y8HRI0T0/EtKbPEFhSkxJI9SZGIFFss7UIpafXv72D3+9v8GtSv1RvYr1/0L2/fIj+AzIg4wwDqcRVOvU0nUBE0BmCcLO9CKWkpODz+X5QfEaOHGnnod2jogwy/2I6hbjFqrmw8jG44VVrCw4RibgGzxCMG0zv1A61n9cZgtDYfmps+vTpFBYWkp2dDUB+fn7tx3IEalaOHjQeUjSHSiKkQxfY+gF8/TF0G2w6jYgrNXiGILUD/bsnG0gU22xfUHHatGn4/X7y8/PJz89n+fLlzJo1y+7DOl/NytGDJ5jNIe7Sczi06wxr8k0nEREJi4hMlv7+lhpZWVmROKSz7fyUue9Y6yvN/aiYO47v2sQ3iIRJfCs4eTSseRZG/gXitF2hiMQ2PYoZUhwo5+6CtRQHypv3jdVVzHz0CeZ8ZF15N2fZFmaGMGkubMcX6Z8FgW3w9Uemk4iIHDEVIUOKyyq4d/G6kC6B/L6Zc55lhr/uJpgzCtY2uwy19PgipA2DX62A7kNMJxEROWIqQjFk5qufMOPTdvV+rSVlSKRF4uKgcx8IBq03ETFq7odb6ryX5lERihEzF69jxpKtjd5HZUgiZt9uuH8orK9/z0ARCd2RTFWYuXgdc5ZZBUhTJVpGm1IZtr54b5P3mfvhlto/9KbMKFjLzkA540/rccTHFWlQu07W+9X50CfTbBaRWHZwP8Vffsi9i/eSuf1BUs+8GPqMhM9egILboEMqJB8LRw+AHmdCj2G13zpz8TpmFKyt8+Nqbk8e0SfkCDVTJTL7dXXlStQqQobdOm9V2H/mnGWhFyeRFvF4YEAWvHcfHNwPrduaTiQSe5bcBe/eCxVdgL/DtyVQ9d28zY7Hw0mXwr5vYM9GWPuaNT/vmmeti2ZeeJsZy/bV+2NbUobcTEXIsMNXAq3P3EWvMmdj4/f5vgnDeoQ0ImRHCRMX6Z8FS3KtB+iTR5tOIxL9Kitg1dPQ4wxIPRGO6gXnTIWU8+HpHXDZTKhZEPGYQdZbjepq2L8HgJn5Bcwoqmr0UCpDoVMRMqzJlUDLdnJHyW/p2uO3zNjSu8mfNzWzr/7wJTI694ZjBsO6AhUhkcYEg/DFy/D6H2DPZrgozypCA75bV29bKbAjhCkLrZj7+mrmNFGCamiqRGhUhKLdK7+F+DZMvv4aeH/3D84Hf59KkETc+LnQQQt6ijQosB1e+BVsWAy9RsD4eVYJqoemSpihIhTNPnsBPn8Rsh6Fdp2YPMKaoFpfGVIJEiO83az3VZXWqtMiUldlBZRutQpQ31GNblYc0lSJZlw8A5oqEQo9chmSmpTALSP6NL47cGIyDJ0IJ19e+6masvP9MtSSEhTS8UVC8dof4Ju1MGGB6SQi0aHyALxzN5zxC+jUE36xLKTtaELZNPWOywfQ1ZvY6NmBGnqBHBoVIUNSvYlMyezb8B2CQUgfbr0dZvKIPuwMlDNn2RYmDOvRoj/0Jo8vEqpO6fDBg9bVLe07m04jYlbZTph/LWxbCWlDodcFYd+Tr74XxIeb2moBk9sNBVSEmqIFFaPRugJ46kqoKGvwLjVDnU0NeYrYrt9o6/2nzxmNIWLcN+vg4Qtgzyb42StWCbLJ5BF9mNrAi9mpI/sw+bzj4LXfw6q5tmVwCo0IRZv9fnjpVuuKnDahXzIvYkz7o6DX+bBmIZw20XQaETP274FHL4J2R8HVz0Jy95C/taVTFRqfKnE7dO0PJ15s2/GdQiNC0eaV/4OKAFx2X6OT6kSiSv8s+PqT2nVORFynbUcY9Xf42f+aVYLg0FSFlqzqPHlEHyYMs84M/GCqxMAx0KYd7PwU3rijwb0Bj+T4TqAiFE1W58Pq+XDxvyBFp7wkhpx8Ofx2rfVkIOImW5fDstnWxwPHHtp+JoKanCqxbSW8lQeLb49gqtihU2PRpNwPgyfAgDE/+FJxoJzisora2zULYB2+EFZqUoJrW70Y1Pq7v7mD5Yc+FnG6rz+BOVdC6slw6g3Ru4RExrVQHrAWdPR21ynsw0Tpv5rLBIPWabChN8KpwXpPic1ZtoV769lV+PC1H24Z0UdXg4kZ21bCY5fCpKXQWVeqiMPtWgtPjraumrxqXvSWoBpn/gpKv4L/TYOU46DvhaYTRY0o/5dziaV5cPBbyLy9wXlBE4b1ILNf0yv4unWym0SB1H7gibMmTQ//nek0IvbZuwvmZEH7VGtidKLXdKLQjLrDmoOaoAtxvk9FyLT1i62NK4dPb/Ruqd5EnfKS6Na6LZx0iVWEzsvRZH9xrvhW0D0DMv9iZE5Qi6dKxMXD6Aesj6ur4OB+lSJUhMwq/QoW3mitNXHu/5lOI3Lk+mfBx3Nhx2o4ZqDpNCLhVV0N+3ZBUlcY85ixGGGZKvHsRKjYC+OfCfuCj7FGRciUygOw4Hpo3Q6ueNj1f4jiEOnnQbvOsHWZipA4zzv/gg//A79eAQlJxmKEZarEoPHW6b1374ZzfhPGdLFHRciU6kro3BdG5VoL0ok4QXxruGWV0ScJEVusX2ytxXNejvG/77BMleiTaZ2JeONvcOxQ6HlueMLFIE8w2MAKS1EiEAiQnJxMaWkpXm+MTEhryn4/tE0xnULEPtXVcHCf8ScMkbDYsxlmnwfdT4Wr5jtnBL+6Cp74CZT44BfvWxt9O0io/cEh/5oxZF0B3DMQdn5mOomIfR65EAq1eJs4QDAIz2ZDgheumO2cEgTfTZ5+EM6eAm3c+6LFQf+iMeDrT2DBz+C4M6HLCabTiNgnbRh89jxUVZpOInJkPB74US6Me8rIFWK2S0mzFliMi4NvS0ynMUJFKFK+WQ9PXWFtpnrlw1YTF3Gq/ldaV9dsest0EpGWK/4cqg5al8o7ffL/x8/AfUOgbIfpJBGnIhQJwaB1qWLbjjBhoeZNiPN1O8VacXf1QtNJRFqmbAc8djEs/ovpJJHR50KIa2Vt/O0yKkKR4PFY55aveV5XiIk7eDzWqFDxZw3ueC0Staqr4fmbrWJw1i2m00RGu05w0Z3w+Yvwxcum00SUipCd/FvguZvgwD5r76Xk7qYTiUTOuf8HE9/QCtMSe5Y9BBvesCYSt+9sOk3knHyFNTL08m+tTVpdQkXILrs3wKM/hs3vwf49ptOIRF6rBKsE7d1lOolI6Eq3weLbYdhN0HuE6TSR5fHAxTPgxItNJ4koFSE7bFkG/70QWiXCDa9C8rGmE4mYsfJxuHegNSoqEgu83aypDCNuM53EjJQ0uPifsbORbBioCIXbns3w+KXWqtE3vGb9TyXiVunnwcFv4cv/mU4i0rQ9m61RkX4/gTbtTKcxa81CmDPWFXP8VITCpfKA9QfT8Tjr1cS1z2titEjH463l+1fnm04i0rgSHzxwOnw0x3SS6NCuM6x7DVYvMJ3EdipC4bDzM3j4Alj5qHX75NHW/AgRsXakX1/o2sXaJAZUV8MLv4b2XazRILFGc0+6DAr+ZO1S72AqQkfi4H5rjYlZ50DVAeuVr4jUdfJoa77Bri9MJxGpX9HjsPkduOw+SOhgOk30uPBv1sU+78wwncRWtu8+7/f7mT9/PgsWLKCgoMDuw0XOnk3w6MWwrxjOnQZn36pRIJH6JB0Nv12n1dQlOu3dBYW3weCrrVEQOaTjcXDmZNjyvjVq5qR91r7H1iJUVFTEihUr8Pv9lJQ4YFh83zfW2hIDx0JyD+h/BWRcZ22bISINi4u3To3FtXLV1SgSA9q0h9N/AUMnmk4Snc6bZv1/6+D1wGwtQhkZGWRkZJCfH8UTJSsroLzUOjd8+D90MAjbi2DLB7Duddj0rvWAnj4cOqTChX81Elkk5hz4Fu7uDyP+BKffZDqNiKW6yro6bPjvTCeJXvGtrfeb3rW2ieraz2weG9h+aizqbSuCR38EbZKsIfzWidDhaLj6u/L25OVwsBx6ngOj/g4Dspy5A7GIndq0g57nwpr8FhWh4kA5xWUVTd4vNSmBVG9iSxKK21QegP9mWgsnDh5vOk10q66CRbdaa+Jd85zpNGEXdUWooqKCiopDD3iBgM3LfHc5AcbNgZINsLfYmgDdtqP1NY8Hfl5oLTDVuq29OUScbkAWLPy5Nb+u4/HN+tY5y7Zw7+J1Td7vlhF9mJLZt2X5xF0++DfsWA1H9zedJPrFxVujufOuBt8S66yIg0RdEcrNzeX222+P3AHbdYKTLmn46130oCoSFidcBK3bwZpn4ZypzfrWCcN6kNmva+3t9cV7uXXeKu4ZN5jeqYeu8klN0gULEgL/FliaZ40GHT3AdJrYcOIl1pXRBbfBxDcdNXE65CKUn5/PvHnzmrzf9OnTycjIaHGg6dOnM3XqoQfJQCBAWlpai3+eiESJNu2tNVr2fdPsb031JtZ7yqt3agf6d08ORzpxk9f/HyQmw/nTTSeJHR4PjLwdHvsxfPa8dbGQQ4RchLKyssjKyrIzCwAJCQkkJOhVnYgjjX7Q0VefSAyoPGC9jbwdEpJMp4ktx58Fox+CXuebThJWUXdqTEQczOOxnoRKt8JRvUynETdq1QauesYVe2jZomZieTDomBc1ETnJ54g1hEQkPF79HTx1pZ6IJPI+ewE+f8n62CFP4kZ8Mh/+M9K6mswBbC1CPp+PvLw8Zs2aRVFRETk5OdG9ppCI2O+kS2DPRtj+UYt/xNwPt9R5L9Kk8gC8/Bv47EXTSWLfUb1g2wr41BmX0nuCweh+WRYIBEhOTqa0tBSvVyvSisS8qkqK/3kac5KzmXDV9c1e92fm4nXMKFhbe3tqZl8mj+jTrJ9RHChnzrItTBjWQ+sOuUXBn2DZbPj1Cms9HDkyc8ZaL2h+8UHUbp8Tan9wzvVvIhIb4ltRfPxPuHdTGsWl+5v1rYeXIIAZBWuZGcIaQ99XXFbBvYvXhbRIozhAiQ8+eNDaE1IlKDyG58A3ax0xKqQiJCKR13uk9X5/6PMH6ytBNVpShsRF3rvf2kbpzMmmkzhH9yHQZxRsett0kiOmq8ZEJPKO7g+8A+07h3T3xkpQjZqvN/c0mbjAj3LhtInWVi8SPmMfd8SuCypCImLM+i/XQNWJEN/wQ9HcD7cwZ1lok6JnFKxlZ6Cc8af1aPy4xXublVNiVDBoLdWQ0gNSTzKdxnlat7V+x1uXQdqwmL0ST0VIRIy59XU/vP5BWH/mnGWhFydxuM9fgvyfwS8/1LpVdtn4FjxxGVz/irXgYgxSERIRY+5Jyaf3salw/u8bvE9zRoTA2pcslBGhW+etCvlnSgyqOgiLb4ee56kE2annuZDaD965W0VIRKS5ep80iP6f/hNS/9zgXIM7Lh9AV29ik3OEoGWX0otDffQk7N4AWY+aTuJsHg+cPQWenQg7VsfkJra6akxEzOk9Eg6UwbrXG73b5BF9mJrZt9H7qARJrQP7YMmdMHAsHDPQdBrnO/kKax7WO/eYTtIiGhESEXNS0qDvRXDg2ybvWlNy6hsZUgmSOg7uh/TzGz3lKmEU3wrO/wPs22U6SYuoCIlIxKUmJXDLiD6kJiVYG2CGqL4y1JISVOf44jztO8MVs0yncJdBPzWdoMV0akxEIi7Vm8iUzL6Htrco3QbFX4T0vZNH9GHCMGsy9IRhPVo0EvSD44tzvPVPWK09LY3Yuwte/yPs95tO0iwqQiJi3sIb4bXQT2PUXBXW1NVh4jJ7Nllzg/ZsMp3EnYLVsOwhKHrCdJJmURESEfMGjgHfm1C203QSiWVv/QPadoTTbzadxJ2SukL/LPhwNlRVmk4TMhUhETHv5MshrhWs0SkNaaESH6yaa22s2qa96TTudfrN1mreX7xkOknIVIRExLy2HaHvKPg49InTInWsfMyaJH3qDaaTuNsxA+H4c+D9B0wnCZmuGhOR6HDKNfDJfDhYDq3rTmIuDpRTXFZRe7tmr7DD9wxLTUrQBGi3uuBPMPhqR2wCGvMy/wJx8aZThMwTDAaDpkM0JhAIkJycTGlpKV6v13QcETHg7oK13Lt4XZP3u2VEH6Y0sfCiOFDZDkg62nQKiTKh9geNCIlI9DiwD9a+Bv1GQ9yhM/cThvUgs1/XJr9d6wK50Dfr4IHT4ap51krlEh2Kv7C23Rj/DCR3N52mUSpCIhI9dqy2dgu/rgv0PKf206neRJ3ykvotvQs6dLXmpUj0SO5uTWBf+Rhc8AfTaRqlydIiEj3ShkHKcfCJJk1LCHZ9aS2eeM5UaKXRwKiSkGStNr3yMag8YDpNo1SERCR6eDwwcBx89qK1X5RIY5beBd7u1kR7iT5Db4R9xVF/Kb2KkIhEl4HjoCIAX/7PdBKJZtXV1rILw3+n0aBolXoSHHc2rHnWdJJGaY6QiESXzr3h1J9DYrLpJBKF6iylMPhP1vttpT+4n5ZSiBJXzIYOqaZTNEpFSESizyUzTCeQKDVn2RYtpRBLaq4Yqyiz5g1FIRUhEYlOm9+DqoOQfp7pJBJFJgzrQeZX98M3a2HcHNbvLufWeau4Z9xgeqd2qL2fllKIIqvz4eWpcOsaSIy+9QBVhEQkOr07E/btgvTFppNIFEn9dh2pmx+Hy+6HHkdBvHVarHdqB/p31+nUqHTcmVCxFz6ZB6dNNJ3mBzRZWkSi08CxsG0F7N5gOolEkyV3Qsee1qXZEhu83eDEi2H5fyAKN7NQERKR6HTCRZDgtV5FigDs/Ay+WATnTYP41qbTSHMMvRF2fQGb3zWd5AdUhEQkOrVuCyePhlVzrUulRbqcaG3ZMGCs6STSXD3Pha79ofhz00l+QEVIRKLXkJ/BKVdDVUXT9xVnqzxg7T93wkUQf2h669wPt9R5L1HK44HspZojJCLSLN0zYHiONTokjlMcKOfugrUUB8qbvvP8a+B/v6vzqZmL1zFnmVWA5izbwswQLqs/ogxyZOJbWSvGf9P8fyc7qQiJSHTbuwveuAPKA6aTSJgVl1Vw7+J1hxZIbMhXK2Htq1Yx/s7MxeuYUbC2zt1mFKxtdhkKOYOEx6IpMO+aqJo0rSIkItGt6gC89Q/49DnTScSUJX+Hzn2h/5VA/SWoRkvKkETQwLGw63P4arnpJLVUhEQkuiV3h17nw6qnTScRE7Z+COsL4bwciItvtATVUBmKYj2HQ8px1q70UUILKopI9Bs8ARb+HL5Zb+1FJo6yvnhvw19cuw6OGgUpFzD3udW1c4KaMqNgLTsD5Yw/rUfLjy3hFxcHGdfAW/+CH+VGxZ6CKkIiEv1OvAQSkmHVHBh5m+k0Ema3zlvVyFdTgOvg3+83++fOWbYl5OIkETT4alhXCGU7VYRERELSOhEu/icc1ct0ErHB4fuE1VpXAMedBW3aAdYl8s0pNhOG9QhpRKjxIiZh5z0Gfv6a6RS1bC9CeXl5AGzYYC2TP2vWLLsPKSJONFCL6DlVvfuEbX4Plvwcxj0FPS8F4I7LB9DVm9jkHCGAqZl9mTyijx1xJRyCQdjyAXRINf4Cx9YilJOTw1133VV7e9KkSWRmZlJQUGDnYUXEqT570VqZdniO6SRitzf/Dl0HwAkX1/l0TblprAypBMWAYDWUbICj+5tOYt9VY36/n6KiIvx+f+3nJk2aRGFhIT6fz67DioiT7dkIb/8L9u8xnUTstOkd2PQ2DP+dNbn2MJNH9GFqZt96v1UlKEbExVurxickmU5i7+XzK1asqFN60tPTAeqUIxGRkA0cB9WVsGah6SQSBqlJCdwyog+pSQl1v/BmLhw90NqxvAH1laGWlKAGM4hr2HZqLCUlhT176r5qKywsBA4VovpUVFRQUXFohc9AQKvJish3ko6GPpnw0VPWbtYS01K9iUw5fGQnGISzp1jbqng8jX7/5BF92BkoZ86yLUwY1qNFI0H1ZhBXieiCirm5ucyaNYuUlJRG75OcnFz7lpaWFrmAIhL9Mq6F7R/B1x+bTiJ28Higz0g4/qyQ7l5zVVhTV4eJNCTkEaH8/HzmzZvX5P2mT59ORkbGDz6fk5PDuHHjyM7ObvL7p06dWns7EAioDInIIX1GQdaj0PkE00kk3Da8Ce/cDWOfgLYpptOIS4RchLKyssjKymrRQfLz8+nVq1eTJQggISGBhASdqxWRBsS3gv5XmE4h4RYMWleKBauiYpE9cQ/bT43VzAuqKUF+v19XjYnIkamugvwb4OOmR6klRmxYDF99CMN/3+TcIJFwsnUdoaKiIoqKisjKyqotP/n5+SGNDImINCgu3rqEfvl/YNA402nkSAWD1pVixw6F3iMavWtxoJziskMX1NTsFXb4nmGpSQmkehPDn1UcxxMMBoN2/GC/30/Pnj3rvVS+OYcMBAIkJydTWlqK1+sNY0IRiWmfPg8LroOb34eu/UynkSNR4oOHzoWxjzdZhO4uWMu9Iewsf8uIProazOVC7Q+2FaFwURESkXpVHoC7+0H/K+Giu5q+v0S3/X5rblATp8UOHxFqiEaEJNT+oE1XRSQ2tWoDg6+CVU/DhXdYk6gl9uz60tpvqm3HkO6e6k1UwZGwiug6QiIiYXXGr+Gmd1SCYlUwCM9mW28ihujRQ0RiV4cu1vuqSpWhWPTlK/D1KrjuJdNJxMU0IiQisW3HaphxIuxqeDdyiULV1daVYsefAz3PNZ1GXExFSERiW+e+EKyGFY+YTiLN8fmLsHM1nP8H00nE5VSERCS2tUqw9h9b9TRU7G36/hIdUtKszVWPO8N0EnE5FSERiX2n3gAHymD1fNNJJFTdh8DIP5tOIaIiJCIOkNID+l4Em983nUSaUlUJC2+EbUWmk4gAumpMRJziyoehdTvTKaQpqxdYb2f8ynQSEUAjQiLiFG3aW+9LtKlz1Ko6CEvvhBMvgW6DTacRAVSERMRJPpkP9w+Fsh2mk0h9Pp4LezbB8Ommk4jUUhESEefoOwri28DKx0wnkcMFg7D8v9BvNBzd33QakVoqQiLiHG1TYOA4WPGodRpGoofHA9cv0ga5EnVUhETEWU6bCHt3wBeLTCeRGgfLYW8xJCRB0tGm04jUoSIkIs7S9WQ46TItrhhNVj4GMzNgv990EpEf0OXzIuI84540nUBqVJTBW/+AfpdZpy5FooxGhETEmfYWw5qFplPIBw9CRUBXiknUUhESEWf67AVrBeM9m00nca99u+G9+2DoRGtvMZEopCIkIs40+CpI8MKyWaaTuNeBvZA+HM6ZajqJSINUhETEmdq0tzZjLXoCygOm07hTx+Os+VrtO5tOItIgFSERca7TsqGyHD7S5OmIW/oPWFdoOoVIk1SERMS5vMfAqDsg7XTTSdxl11pY8nfYvd50EpEm6fJ5EXG2YZNMJ3CfN/4K3mPh1J+ZTiLSJI0IiYjzbXoXnv+ltd+V2GvbSvj8RTh/OrRKMJ1GpEkqQiLifFUHYNVT4HvTdBLne/8B6HKiteebSAzQqTERcb704dAtA96eAb0uMJ3G2X5yP5Rug7h400lEQqIRIRFxPo8HzvkNbHobtiwzncaZqg7Cnk3Qui107m06jUjIVIRExB1O+LF1ymb5w6aTONPKx+Dfw2DvLtNJRJpFp8ZExB3i4mDsk5B8rOkkzlNeCktyoX8WdOhiOo1Is2hESETco0tfaNPOeuKW8Hn7X3BwP1zw/0wnEWk2FSERcZdN78I/T4BvtNhfWOzZbO0wf+ZkawFLkRijIiQi7tJ9CLRNgbfyTCdxhrh4GPRTOGuy6SQiLaIiJCLu0jrRuoLsk/mw60vTaWJf8rFw2X3WJrciMUhFSETcJ+Na6wl8Sa7pJLGrugqemQAb3jCdROSIqAiJiPu0SoDzcqyPqyrNZolVRU/AF4ugTQfTSUSOiC6fFxF3yrjGepPm+7YEFt8OgydA2mmm04gcEY0IiYh7VVfDJwtgx2rTSWLLG3+zTo2N/LPpJCJHzNYRIb/fz/z58wHYsGEDPp+Phx9+mJSUFDsPKyISmmA1LL0LUtLgmudMp4kNB8th87tw/u+hQ6rpNCJHzNYRoZycHEaOHEl2djZ33XUXnTp1YsyYMXYeUkQkdPGtYORt1oTf9YtNp4kNrRNh0tswdKLpJCJhYWsR8vl85Ofn197u1asXK1assPOQIiLNc+IlkHY6FPzJOt0jDVtfCMVfQKs2VokUcQBb/5ILCgrq3F6+fDkjR45s9HsqKiqoqKiovR0IBGzJJiICWDvTX/g3+O9I+PQ5GJBlOlF02rsLFt4IfUbBFbNMpxEJm4hNls7Pz8fv9/Pww43v/Jybm0tycnLtW1paWoQSiohrpQ2FCQuh309MJ4ler/3een/h38zmEAkzTzAYDNp5gJoJ036/n5SUFLKzsxu9f30jQmlpaZSWluL1eu2MKiIC+/3WFhxyyPpCeOpKGP0gDL7KdBqRkAQCAZKTk5vsDyGfGsvPz2fevHlN3m/69OlkZGTU3v5++Zk9ezYdO3Zk48aNDV45lpCQQEJCQqixRETC59Pn4MVb4BfvQ3J302miQzAIBX+GnufBoPGm04iEnW0jQn6/n9zcXKZPn15benw+H7169WLBggVkZYV2Hj7URicicsTKS+G+U+H4s2HMo6bTRI/AdqiuhJQeppOIhCzU/mDbHCGfz0deXh4lJSW1n/P7/QBaR0hEolNiMlz4V/j0WfAtMZ3GvF1rrVOF3m4qQeJYthWhjIwMpk2bRnp6eu3n5s2bR0ZGRpNXjomIGDNwHPQ4A16ZBpUHTKcx5+B+eOYqeOGXppOI2MrWy+enT59OXl5e7W2/38/ixVq0TESimMcDP/4nfPAgVJZba+a4UeHtULoVfvq06SQitrL9qrEjpTlCIiIRtvEtePxSGJULZ/zCdBqRFjE+R0hEJOZ9+jzk32BdOeUWVQfhhV/B8efAsJtMpxGxndZIFxFpSOu2sGYh9BoBp0wwnSYy4lvD5Q+BtzvE6bWyOJ/+ykVEGtJ3lDV5+rXpULbDdBr7ff2xtd/acWdCx+NMpxGJCBUhEZHG/OhOiG8Di6Y4+xRZ8efw31HwwQOmk4hElIqQiEhj2nWCS+6xFhUsLzWdxh4HvoUF10PH4+HUn5tOIxJRmiMkItKUky6BEy6CuHjTScIvGISXfwN7NkP2m9CmnelEIhGlESERkVDExcOONdbISWVFk3ePGesL4eOn4dJ7IPUk02lEIk5FSEQkVMFq+OJleP2PppOET++RcN1LMOinppOIGKEiJCISqmMGwqi/w4ez4ONnTKc5Mns2wRevWCtp9zzXdBoRYzRHSESkOYbeCNs/gpdugS4nQrfBphM137cl8FQWBKug9wholWA6kYgxKkIiIs3h8cDFM2DvTqgImE7TfAf3w9zxsL8Efl6gEiSupyIkItJcrRPh6oXWx1WVUH3QWoU62lVXwbPZ1sKJ1y+Co3qZTiRinOYIiYgciedvhvnXWYUo2pWXwu71kPUIHHuq6TQiUUFFSETkSAz6KWxYDItuid6Vp6urrXlB7TrBpLfhxB+bTiQSNVSERESORO8R8JMH4KOnrIUJq6tNJ6qrugpe+jU8+mNrZ/l4zYgQ+T79HyEicqQGjYOqCnhxMvQ8B06+3HQiy4FvYeGNsPZVGP2gtbO8iNShIiQiEg4Z10KXkw7NvQkGrSvMTNm3G+aOg52fwvi50HeUuSwiUUynxkREwiVtqFV+vngFHrvEKiOmfP2RtX/Y9YtUgkQaoSIkIhJu7bvAri/g4eHw1crIHTcYhA1vWu97j4Rfr4TuQyJ3fJEYpCIkIhJuaUNh4htWIXrkQnjvPmvSsp3KdsK8q+HJ0bB+sfW5RK+9xxRxABUhERE7dDwOfvYqnH4zFD0J1TatM1RVCSsegQeGwZYPYOwT0GekPccScSAVIRERu7RqAxf+DbKXWFtZ7FgDz/8SSnzhO8anz8KiKdD3R/DLD6HfT8L3s0VcQFeNiYjYrU07631gG6wvgI/nWoVl8ATodT7ExYf+s0q3wafPWXudXfhXOPkKa/PXYwbak13E4VSEREQipe8ouOVjWPk4rHwU5lwJI/8MZ0+BwNdQsgFSjrNWgPbEW7vDt2kPe4vh/fth83vw1XKIaw0DsqxJ0fGtVIJEjoCKkIhIJLVuC6ffBMMmwfYiaNvR+vzHT8Piv9S970mXwrinwBMHqxfCsUPg8tlwwo8gMTny2UUcyBMMRuvmOJZAIEBycjKlpaV4vboCQkQc6uB+8G8F/2Zrc9TqSkjpAcedaTqZSEwKtT9oREhEJBq0bgtd+lpvIhIxumpMREREXEtFSERERFxLRUhERERcS0VIREREXEtFSERERFxLRUhERERcS0VIREREXEtFSERERFxLRUhERERcS0VIREREXEtFSERERFxLRUhERERcK+o3XQ0Gg4C1i6yIiIhIKGp6Q02PaEjUF6GysjIA0tLSDCcRERGRWFNWVkZycnKDX/cEm6pKhlVXV7N9+3aSkpLweDym4zheIBAgLS2NrVu34vV6TcdxPP2+I0+/88jS7zvy9Du3BINBysrK6NatG3FxDc8EivoRobi4OI499ljTMVzH6/W6+n+gSNPvO/L0O48s/b4jT79zGh0JqqHJ0iIiIuJaKkIiIiLiWipCUkdCQgK33XYbCQkJpqO4gn7fkaffeWTp9x15+p03T9RPlhYRERGxi0aERERExLVUhERERMS1VIRERETEtVSERERExLWifkFFiZy8vDxSUlIA8Pv9TJs2zWwgh8vLywNgw4YNAMyaNctkHNfJzMykoKDAdAzHy8nJoVevXgB06tSJrKwsw4mcbfbs2fj9flJSUtiwYQPTp0+vfVyX+umqMQEOPSnXlJ/CwkIWLFigJ2eb5OTkcNddd9XenjRpEj6fT0/MEZKfn8+YMWOa3IxRWs7v9zNixAgWL15MSkoKRUVFDBkyRL9zG+Xl5ZGdnV3nBe3EiRNZsGCB2WBRTqfGBIDc3Fyys7Nrb48cOZLZs2cbTORcfr+foqIi/H5/7ecmTZpEYWEhPp/PXDCX8Pv9lJSUmI7heDk5OYwbN672STkjI0NF32YFBQV1Rn9SUlLqPM5I/VSEBJ/PVzuUerjCwsLIB3KBFStW1Ck96enpAHrQioD58+czduxY0zEcb/bs2WRlZeHz+WofR0aOHGk4lbOlpKSQmZlZ+zji8/lqH1ukYSpC0uAohF5N2CMlJYU9e/aQkZFR+7maJwo9aNmrsLBQT8YRUPOYUjPymZ6eXjvqKfZ5+OGH8fl8dOzYkZycHAoLCzW9IQQqQtKgTp066RRChOTm5jJr1ixNarRZzZOy2KumCKWkpJCRkUF6ejp33XUXY8aMMZzM2VJSUsjJySErK4u8vDwWLFigF7MhUBGSBqkERUbNXIrvz9GS8Ks5VSORc+qpp9Z+XDPCrFEh++Tk5JCens6CBQvYsGEDJSUlDBkyxHSsqKciJA2+QtarZ/vl5+fTq1cvLVVgs6KiojpPymKvhh43UlJSdEGATWrmetac+k1PT2flypWkpKSQn59vOF100zpCQnp6eu0D1OEPYJpPYZ+aV8Y1I0E1VzOpfIZfSUkJRUVFtb/zmrWb8vLySE9P10hRmKWnp5Oeno7P56szF87v96uQ2sTn89V7an3SpEmRDxNjtI6QAIcWU6x5Us7Pz6egoEAT7WxS86T8/Sfg/Pz8OmuAiH20po398vPzWb58ee16Wfn5+cyaNUuX0NsoMzOTBQsW1HkMmTRpkh7Hm6AiJLVqXh0DdR7AJLz8fj89e/asdxKj/ne0X35+PvPmzSM/P59p06aRmZmpkU+b1KxyDLB79249ptjM7/eTm5vLUUcdVTsnSy+umqYiJCIiIq6lydIiIiLiWipCIiIi4loqQiIiIuJaKkIiIiLiWipCIiIi4loqQiIiIuJaKkIiIiLiWipCIiIi4loqQiIiIuJaKkIiIiLiWipCIiIi4lr/H20Bu6H55/B/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -393,7 +392,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFdCAYAAAAzNnbkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzeElEQVR4nO3deXhU9b0/8Pf3JJmwJ4BsgjAsQgKETQTZhF/UW9t0r7a2vW3uba1NTffb6tj21lSvNWrdG41aq2jVyuJWR61gVBZBFAgMEHYGQla2TMiemfn+/phEI2uSWT7nzHm/nmeewEDOefu0DG++21FaaxARERFJMqQDEBEREbGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInEsJERERCSOhYSIiIjEsZAQERGROBYSIiIiEsdCQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMSxkBAREZE4FhIiIiISx0JCRERE4lhIiIiISBwLCREREYlLlA5ARGR3SqkbAKQCqAEwFsCdWusawUhEMcdCQmRzTpe7J4BBHV4XnONrKoAkAAkIfX4kAEj8RU2P3Q6ocQCCAAJtrzqE/oI916sCwEEAB3ILM+uj919pXkqpmwA83l5AlFKpAJ4AcK1gLKKYU1pr6QxEFGVOlzsBoX95p7e9JrZ9nQCgb7jX/2VNj91JUOPDvMxRAAcAeNte7T/ehVBhicsPK6XUCq31Ved7jyjecYSEKI44Xe5EfLZwtP/4YgDJgtE644K216Vn+DVfQU7RFgCbO7x25BZm+mOYL1pqlFIrAFyrta5RSo0BsF86FFGscYSEyMKcLncygNkAFgK4HMAcAL1jnSNCIyRd1QxgO0LlZAOAd3MLM/fEOEPY2qZoNgIYA+BuAPu01o+LhiISwEJCZCFOl7sXQqVjYdtrFoAeoqEgVkjOpBTAu22votzCzEPCeTqlbVHrVQCuAbASbaMloqGIYoyFhMjE2qZgFgG4AqECMhOhRaWmYqJCcqr9AIoQKihv5xZmHhXOcxql1F0AVmitV7ZN1ywFkKq1HiscjSimWEiITMbpcichVECuBfAVAANlE52fiQtJRwEAqwAsB/BSbmFmhXAetBWQm7XWPz7l/Y0Ibf1dJpOMKPa4qJXIBNpKyFX4tIT0l00UlxIA/L+218MFOUXrECony3MLMw8KZRqD0PbnUz0W4xxE4jhCQiTE6XI7APwHQusGvoLQGR+WZJERknPZCGAZgOdyCzNLY3njjjtsOrz32KmjJkTxjoWEKMacLvcsAD8B8DUAKcJxIiIOCkm7IIC3EDqY7PVYbCtu22VzC4BjCI2WpKLDQWlEdsFCQhQDbdtzrwOQizOfs2FpcVRIOqoA8DSAv+UWZvJcEKIoYyEhiiKny30RQqMh1yN0/HpcitNC0k4jtFPnCQAv5xZmtgjnIYpLLCREUeB0uTMB/BTAlxFaTBnX4ryQdFQF4EEAj+QWZvqkwxDFExYSoghxuty9AWQjNC0zUThOTNmokLSrBfAogAdyCzMrpcMQxQMWEqIwOV3uHgiVEBdCz2KxHRsWknZNABYDuCe3MHOfdBgiK2MhIeqmtrNDfgTg9wAuFI4jysaFpF0AoW3D+bmFmcXCWYgsiYWEqIucLncCgO8BuBWAUzaNObCQfMYyAL/PLczcLR2EyEpYSIg6yelyKwDfBJAHIE02jbmwkJzGD+DvAP6UW5hZLh2GyApYSIg6welyfwnA7QCmSmcxIxaSs2oAcB9CUzn10mGIzIyFhOgcnC73NACPAJgjHMXUWEjOqwLA/wJ4KrcwMygdhsiMWEiIzqBtC+9tAH4BG5wjEi4Wkk7bAuAnuYWZ66SDEJkNCwnRKZwu9xcBFAAYKZ3FKlhIuiQIoBDALbmFmbXSYYjMgoWEqI3T5b4QwMMAvi6dxWpYSLqlDMBPcwszX5EOQmQGLCRke06X20DoYLP/A9BPOI4lsZCE5RUAudyNQ3bHQkK21rZo9XHE4RN4Y4mFJGy1AG4B8GhuYSY/lMmWWEjIlpwudzJCIyK/Ahetho2FJGLWAvhebmHmAekgRLFmSAcgijWny50G4EMAvwHLCJnLPADFBTlF10kHIYo1jpCQrThd7h8BeABAL+EocYUjJFHxNEKLXnmgGtkCCwnZgtPl7g/gCQDfkM4Sj1hIomY3gG/nFmZukg5CFG0sJBT3nC73pQCWAhglnSVesZBEVQtCC17v54JXimdcQ0Jxzely5wJYA5YRsi4HgHsBvFGQU3SBdBiiaOEICcUlp8vdB6EpGi4OjAGOkMSMF8BXcgszt0oHIYo0jpBQ3HG63BMAfASWEYo/TgBrC3KKviqcgyjiWEgorjhd7gUAPgCQJp2FKEr6AHipIKfo99JBiCKJUzYUN5wu97cALAaQLJ3FbjhlI+YFAD/MLcxslA5CFC6OkFBccLrcv0Xow5llhOzk2wBWFeQUXSgdhChcHCEhS3O63AkAHgJwo3QWO+MIibgKAF/KLczcKB2EqLs4QkKW5XS5ewF4CSwjRMMAFBXkFC2UDkLUXSwkZElOl3swgHcBfFk6C5FJ9APwVkFOUZZ0EKLuYCEhy3G63OMBrAMwSzoLkcn0APByQU7Rt6WDEHUVCwlZitPlnoHQtt4x0lmITCoJwD8KcopypIMQdQULCVmG0+WeAmAFgIHSWYhMzgDwaEFO0c3SQYg6i4WELMHpck8EsBLAAOksRBaSX5BTdKd0CKLOYCEh02tbM/IOgEHSWYgsyFWQU3SHdAii82EhIVNzutxjABQBGCqdhcjCfleQU3STdAiic2EhIdNyutyjECojw6WzEMWBu7jQlcyMhYRMyelyj0CojIySzkIURwoKcoq+Kx2C6ExYSMh0nC73UITWjHBrL1FkGQCeLsgp+op0EKJTsZCQqThd7gsQKiN8LgpRdCQCeLEgp+gK6SBEHbGQkGk4XW4HQs+mmSidhSjOJQN4tSCniKcdk2mwkJCZPApggXQIIpvojVApGSEdhAhgISGTcLrcvwLwA+kcRDYzFKFS0ks6CBELCYlzutxXA7hHOgeRTc0AsLggp0hJByF7YyEhUU6XOw3APwEkSGchsrFrANwqHYLsjYWExDhd7gEA/gUgRToLEeGPBTlF35QOQfbFQkIinC53IoAlAMZJZyEiAIBC6IySS6SDkD2xkJCUBwDwHAQic+mJ0CJXPjuKYo6FhGLO6XL/GECudA4iOqPhAJ7lIleKNRYSiimnyz0ZwIPSOYjonK4EcLN0CLIXFhKKGafLnQzgOYROiSQic7u9IKdotnQIsg8WEoqlOwBMkQ5BRJ2SCOCFgpwi7oKjmGAhoZhwutyZAH4tnYOIumQ0gMekQ5A9sJBQ1Dld7lQAixHaVkhE1vKtgpyiH0qHoPjHQkKxUAiAD/Aisq6HCnKK0qRDUHxjIaGocrrc3wXwLekcRBSWXgCeK8gp4iMeKGpYSChqnC73SAAF0jmIKCJmAPiNdAiKXywkFBVOl9sA8Az4nBqieJJXkFM0XjoExScWEoqWnwFYKB2CiCKqB4AneYorRQMLCUWc0+UeAuA26RxEFGFaHx+z/zWV+V7uj6WjUPxhIaFoyAfQTzoEEUVOr/qKtfM/uCXoPPTveQDuLElL5wP4KKISpQNQfHG63JcByJbOQUSRoYKBw+k7n6kcWv3xvA5vpyL0xO7ronJPpe4CsK/tp8e11suicR8yF6W1ls5AcaJtIeuHAGZKZ6HY+mVNj91JUFzsGE+0DvQ/sWvNlG2PzUwItvQ+y+/6XPrOkrcjdUulVCqAdwBcobWuUUrNALBRa801KzbAERKKpB+AZYTI8oxA866pWx8J9PftPd/C9HtL0tKnpe8sCUTo1ncBeFFrXQMAWutNSqmrInRtMjkWEoqItuPh/yydg4jCoHXjsMr1Gybsfn6eoYOd+fthMoDrEbnn3dwAYKxSagyAMVrrlVrrlRG6NpkcF7VSpNwGYJB0CCLqnqSWk5tmb7i9On3XPxZ2soy0u60kLb1vuPdvKyFA6AC2VAD7lVKPKaWuDPfaZA0cIaGwOV3uDAA3Sucgom7Q+sRor3v76INvzu/mFQYDuAXA78JM0l5IarTWmwBAKXUzgAMA+od5bbIAjpBQJDwMgM+4ILKYXvWVH8z74BZ/GGWk3a9K0tJHRiQU8HH7D9rWkqRylMQeOEJCYXG63F8HT2QlshQVDBxO3/Vs5dCqj+ZG6JI9EDp/6DthXGP/Wd6vwaejJxTHOEJC4fqjdAAi6iStg6kndr1/+Zrf9B9a9VGkd8RdV5KWPqu736y13o9QKTm1fKSiw6gJxS+OkFC3OV3uLwGYKp2DiM7PCLTsnup5pLV/zZ5ojWgqhBa3Xx3GNW4G8C0A7WtIrgGwsn1NCcU3FhIKx/9KByCi89C6aWjVhvVpu/4xv4u7Z7rjcyVp6Zel7yxZ351v1lovU0oNUErd1PbWQK01zyGxCRYS6hany/05AJdK5yCis0tqObl5RvED/Xs3VC6K4W3zEMYoidb68chFISthIaHu+oN0ACI6C61rnAff8IzxvrFA4O5hjZKQfbGQUJc5Xe5FAMLdJkhEUdCzoeqDGcUPXJzcUitRRtr9DsCXBe9PFsRCQt3B0REis9GB8vRdzx8eVrk+Ult5w/HFkrT0jPSdJR7pIGQdLCTUJU6Xew6AK6RzEFEbrYOpvr2rp3gevSQx0NztbbcRphAaJfm2dBCyDp5DQl3F0REikzACLXumbXmoZEbxAwsTA819pPOc4tqStPSLpEOQdXCEhDrN6XLPAPAF6RxEtqd185Dqj9al73x2nqGDSdJxziIBwE8Q/jNuyCY4QkJd8QvpAER2l9RaVzzrozvKJ5UsXmTiMtLu+pK09GTpEGQNHCGhTnG63CkArpHOQWRbWvucB9/aOtr7+nwVWqNhBYMAXAdgsXQQMj8WEuqs7wLoJR2CyI56NlSvm1H8wNjkFp/kVt7u+ilYSKgTWEios66XDkBkOzpQkbbr+dILK9fPkY4Shpklaemz03eWfCgdhMyNhYTOq20x63TpHES2oXUwxbdv9VTPIzNMtJU3HD8DwEJC58RFrdQZHB0hihEj0LJ32ta/br+k+P6FiYHmvtJ5IuTakrT0QdIhyNw4QhIH2p6MWdP201St9d2RurbT5e4F4DuRuh4RnYXWzYOrN66buPOZuYYOOKTjRJgDoc+RB6WDkHmxkFhc+2O625+QqZS6Uin1mNb6xxG6xbUAUiJ0LSI6g8TW+i0zih/o26e+fJF0lij6PlhI6ByU1lo6A4VBKXUCwGitdU2H97TWOiLbAp0u92rwQXp0Hr+s6bE7CWq8dA7L0do36tDbW8cceM1KW3nDkZG+s2SbdAgyJ64hsTCl1BiEpmhqzvBrV4Z7fafLPQEsI0RR0bPxyPq56/7QNPbAawvivYxoQJ/sgS3/WGTwpGc6K07ZWNuYs7xfAyA1Atf/YQSuQUQd6WDlhN3/PDi8Yu1l0lGirSURe9elqbKlC4xx1alqKoDU1xZn3OPJ9nBonk7DQhKfjgMYEM4FnC63Ap/USRQ5Wut+tQdWT9taMC0x0DRbOk60BBQqtznVriULjGF7hqvxAMZ1+OVRAOYA+EAmHZkZC0l8CquMtJkJYEQErkNke0awdV+G57H6gSdKLpfOEg0aqD04GFuXzzN6b5igpmqlhp7jt18HFhI6AxYSa9t/lvdTz/FrnfW1ML+fiLRuGXxk0wcTSxbH3VZeDbQe7YfNr88yAiunq+mtiaqz682+mbE441eebE8gqgHJclhILExrvV8pVaOUGqO13n/Kr60M8/JfDfP7iWwtsbVh6/TiB3r3rS9bJJ0lkuqT4Vk5TdW8dpkx6WQv1Z1TZIcAmAdgVYSjkcWxkFjfnQCuBNB+Dsk17T/urrbdNenhRyOyIa1rR5au3DJ2/ytxs5W3NQEHPpygDi6db4ypGKgyInDJz4OFhE7BQmJxWuu7lVI3tRURALg0AoeifTXM7yeypR6Nxz6cUXz/yB7NJ6z4VN7PCCpU7xipSpbONwaXjFTpAEZH8PJXA7glgtejOMBCEgdOOSp+WQQumRWBaxDZhw5Wjd+z5MCI8tWW3sqrgbrSQdjy0lyjx/o0NS1oqIVRutXUjMUZQz3ZnsooXZ8siIWEPsPpcqcitC2PiM5Ha93vpHf11C0FU5MCjZYsIxrwn+iDYvelRsu/L1HTWpLUvBjcVgH4HIDFMbgXWQQLCZ3qKvD/F0TnpYKt+zO2PXHyguPbLbmVt8GB7e9OUcdemWtM9PVWMwUiXA0WEuqAf/HQqXi0M9G5aN0y6GjxB5N2PD3H0P5k6Thd4Tdw8KPxyrtkgeEsu0BNEo5zVcbiDMOT7QkK5yCTYCGhT7Sdznq1dA4is0r0N3imFz/Us29d6SLpLJ0VBI7uugg7ls43Bm5zGpMQOi3VDAYidADjBukgZA4sJNTRJADnOmGRyJ60PnnR4aLN4/a9PF9Bm/6hpBpoKBuI4lfmGElrJqnpQUOZdVrparCQUBsWEurIkovyiKIpuen4hhmb77+oZ/Nxs/6lDgDQQKCmN4rfnGk0vTVTTW1yqLnSmTrhagC3SYcgc2AhoY7i9oFfRF2mg9Xj9y7dN6Jslal3nTUmoeT9DFX98lwj/URfdYl0ni6albE4o7cn21MvHYTksZBQRxwhIdJa9z15aM20rQ9PSfI3mrKM+A2Ubhqn9i1ZYIw8NFilw7onKycAmA5gjXQQksdCQgAAp8vdF8BE6RxEklTQf2Dy9r/5Bh3zmO6k1SBwfM9wbFs23+i/ZYyRAeAi6UwRcilYSAgsJPSpmQBMv1iPKCq0br3g6Ja1k3c8NcfQ/kgekR4WDTRV9sfmV+YYCasmq+mBBNMuTg3HpdIByBxYSKgd14+QLSX4G7dNL34wuZ9JtvJqIFjbC1v+fYlR756ppjT2UKacNoogFhICwEJCn2IhIXvRum5E2XsbL967fIEZtvI2JWH3mkmqYvlcY/yxFDVdOk8MjctYnNHfk+05IR2EZLGQUDsWErKN5KYTG2YU3zeiZ9PxaD08rlMCCmXFY9XeJQuM4QeGqvEAxkvmETQTwArpECSLhYTgdLlHAhgmnYMo6nTwyMV7l++9qOw9sWkQDfj2DcPWZfOMfpvGqSlQarhUFhO5FCwktsdCQgBHR8gG+p48tHraloczkvwNMS8jGmiuTsXm12Yb6t0papo/UZluF48wriMhFhICAMySDkAULSro907e/mTNoGNbY1oCNKDremLLiunq5L9mGVPqeyqe83N2LCTEQkIArHuoEtHZae0feMyzdvKOJ2cnBP3OWN22ORF71qWr8mXzjXHVqWparO5rccMzFmcM9GR7jkkHITksJAQAY6QDEEVSgr9x+/QtDyf1O3kwJotWAwoVHqfavWSBMWzvcDUewMWxuG+cGQuAhcTGWEhszulyKwBO6RxEEaF13fCy9zeO37ss6lt5NVDrHYKty+cZvT8ar6ZqpbgwPDxjwCf/2hoLCQ0D0FM6BFG4kptrPpqx+b4LezYdi9qoiAZaj/bD5n/NNgLvTFPTWxPV/Gjdy4bGSgcgWSwkxOkasjYdPDJu38t7Rh4umhuVywO6vge2vTNNnXhttjH5ZC/FReDRwUJicywkxEJCltXn5OE107c8NCnJXx/xMtKagP3r09ShpfONsZUDVEakr0+n4WeRzbGQED8EyHJU0H9w0o6njg0+WhzRKZOgQvX2kapk6QJjyM6LVBr45yOWOEJicywkxA9csg6t/QOPb18zefvfZicEW0dF5JJAXekgbHlprtFzfZqaGjSU6HHyNjY8Y3FGsifb0ywdhGSwkBALCVlCgr9px7Stf01IqT2wKNxracB/vC82uy81Wt+eoaa1JKl5EYhI4VEARgPYKR2EZLCQEAsJmZvW9cPLV388fs+S+Qo6IZxL1Sdj27tT1PFX5xgTfb0VTwc1n7FgIbEtFhIbc7rcPQEMlc5BdDaO5pqPZxTfP7RX49FuT6O0GvB+NF4dXLrAcJZdoCZHMh9F3EjpACSHhcTeRiA0TEpkLjp4dOz+V3eNKl3ZramUoMKRnSNQsnSBMXD7KGMSePifVQyQDkByWEjsLVU6ANGpeteVrZm+5cGJjtb6LpURDTSUDUTxy3MNx9qJalrQUJdHKyNFTap0AJLDQmJvfaUDELVTQf+hiSWLjww5sqnTW3k1EKjpjeI3LjWa/n2JmtrkUFE5HI1ipr90AJLDQmJvLCQkT+vAgBMlqzO2PTErIdjSqTUEjQ7seH+yOvrSPCO9po+6JNoRKWZYSGyMhcTe+kkHIHtLCDSXTN3ysErtxFZev4HSjePU/iULjJGlg9XEGMSj2EuVDkByWEjsjSMkJEPrhgsrPvhowu4XzrmVNwgc3zMc25bONwZsHWNMBnBRDFNS7HGExMZYSOyNIyQUc46W2o0zNt83uFfjkTNu5dVAY8UAFL9ymZG4erKaFkjg4lQbYSGxMRYSe+MICcWODh4bc+BfO52H3j5t94wGgrW9sOWtS4yGNy5VUxqT1RyJiCQuVToAyWEhsTeOkFBM9K4vXzu9+ME0R2vdZ8pIUxJ2rZ6kKl+aZ0w41k9Nl8pHppGSsTjD8GR7gtJBKPZYSOyNIyQUVSoYODyxZHHVkCMbPykiAQOHN49Re5cuMEYcGKomAJggGJHMRQHoA6BWOgjFHguJvXGEhKJD60D/EzvXTNn2+KUJwZYRGqjZNwyeZfONlE1jVQaUGiEdkUyLp0fbFAuJvXGEhCLOCDTvnLa1QKf49l1WlYrNr11mqPemqOn+BLVAOhtZgpYOQDJYSOyN//tT5GjdOKxy3fphh1/o985U3fj6rIQL63uqy6RjkeWwkNgU/0Kyt2bpABQf6ozq/YHAUweXZ5ZPOpJqXCidhyyNhcSmWEjsjYWEwjZLleyY4bx3wM2DB2ZAqZ7SecjyWEhsypAOQKJYSCgsSfC3POPIT/pCQ8OsB6uP7oLW9dKZyPJYSGyKhcTeWqQDkLU9nPTQuh6q9WIAyGxonPZo1ZF90JpbNikcPIPEplhI7I0jJNRtM9TunZ8zPv7MQWfzG5umPFlZXQqtfVK5yPI4QmJTLCT2xkJC3ZIIf+tzjj8bSp2+Dm1WU/OkZyuqKpTWxyWykeWxkNgUC4m9sZBQtzyYVLC2p2oZf7Zfn9bckvZ8edUxpfWRWOaiuMApG5tiIbE3FhLqsmlq764vGB+e9oC8U01uabl4SXllraF1VSxyUVxo8GR7/NIhSAYLib2xkFCXJCDgf95xB5RCUmd+f1pL69iXyyqaErQuj3Y2igvHpAOQHBYSe2MhoS65P+mRNb1Uc5cehjem1T/q1cMVwQStD0crF8UNrjuyMRYSe2uSDkDWMUXt2/MlY93c7nzvKL9/hPtwuZGo9cFI56K4whESG2MhsTcuOKROSUDA/4LjDr9ScHT3GsP9gQvfKi3v4dB6fySzUVxhIbExFhJ7K5MOQNZwT9Jja3qrpvRwrzMkEBjy79KyvsnB4J5I5KK4w0JiYywk9sY5fTqvSerA3q8Za7o1VXMmFwSCg1aUlg/sGQzujNQ1KW6wkNgYC4m9cYSEzslAMPCi4/aWcKZqzqR/MDhgRWn50N7B4PZIXpcsj4XExlhIbMybn1UPgEd801nlJz6+uo9qmhiNa6cEg6krDpVd1DcQ3BqN65MlsZDYGAsJcdqGzihdHdx3bcKqOdG8R1+t+60oLRuTGggUR/M+ZBksJDbGQkKctqHTGAgGljhua1IKydG+V2+t+6woLZ8w0B/YGO17kekdkg5AclhIiCMkdJo7Ep9c01c1TorV/Xpo3fPt0rLJQ/z+j2J1TzIdDWCvdAiSw0JCHCGhz5igDh24LuHd2bG+rwNIfqO0fOqFrf4PY31vMoUyT7anUToEyWEhIRYS+oRCMLjEcVudUughcX8H4HAfLr9kVGvrOon7kyieTWNzLCTEKRv6xO2JT61OUQ0ZkhkSgcRXD1fMGtfSslYyB8UcC4nNsZCQVzoAmcPF6rD3uwnvzJLOAQAJQMLysso56c0tq6WzUMywkNgcCwntAp/6a3sKweBSx59qlUJP6SztDMB4sbxy/rSm5lXSWSgmWEhsjoXE5rz5WX4APC3T5m5NfGZNqqqfIp3jVApQz1ZUXT6rsel96SwUdSwkNsdCQgBQLB2A5IxR5QezE96eKZ3jXJ6srF54eUPje9I5KGqCAPZJhyBZLCQEsJDYmNbLHXknlEIv6STnU1B1ZNFV9Q3vSeegqCj1ZHs4dWxzLCQEAJulA5CMPyT+Y3V/VTdNOkdn3Vd9dNGXTta9J52DIm6bdACSx0JCALAFoVMSyUacqqL0hwlvXiKdo6v+fPT4omtrT3JNSXzhCb3EQkKANz/rJID90jkolrRe7sg7qhR6Syfpjj8eO7Hw+77aVdCaRTo+fBypCymlVkTqWhRbLCTUrlg6AMXOLYkvrBmoTk6XzhGO3x6vufxHvto10DoonYXCFpFCopS6BsCVkbgWxR4LCbUrlg5AsTFSVR2+IeF1S5eRdj8/4VvwsxO+D6B1QDoLdVupJ9tTFe5FlFKpAAaEH4eksJBQu2LpABQbLzlurVYKfaRzRMoNvtr5vz1e8yG09ktnoW6J1MMUvwlgSYSuRQJYSKgdd9rYwG8TX1x9gaqdIZ0j0r5fe3LuH46d+Bhat0pnoS4L+5lFSqkrAayMQBYSxEJCAABvflYZuLA1ro1QR8pvTHh1qnSOaPnWybrLbj96fDO05nkW1vJBBK6RqrXm55fFsZBQR1ydHsdectxarhT6SeeIpq/W1c+6+8ixbdC6UToLdUojwhydVUrdoLVeFqE8JIiFhDp6WzoARcevEpeuGaxqTH08fKR8vr7hkgeqj+6E1vXSWei8PvJke7o9zaaUmoEIbhkmWYnSAchUigAEACRIB6HIGY4jFT9PeDlDOkcsXdHQOP2RqiNbbxwyaDSU6iudh87q3TC/fwCAGW1rSABgLAAopW4CsJ8jJ9aieK4QdeR0udcBuEw6B0XO+uTcj4eqE7YYHTnVhz2St18/dPAIKJUinYXOaJYn2xOxU1rbRkw2aq1VpK5JscMpGzoVp23iyM8SXlpr1zICALObmictrqgqV1ofl85Cp6lCZE9ovQbALW0/vqvDqAlZBEdI6DOcLvc8AGukc1D4huFY5QfJP+upFGw/OuBxOHZ/98Ih/bVSg6Sz0CcWe7I9/yUdgsyDIyR0qg8B1EqHoPAtT771EMtISEZLy/gl5ZW1htZhnwhKEeOWDkDmwkJCn+HNz/Ij/IVmJOwnCa+uvVAdnyWdw0zSWlrHvlRW0WhoXSGdheAHp4fpFCwkdCb8oLCwIThe/dvEFydJ5zCjsa1+52uHK/wJWh+WzmJzaz3ZHp90CDIXFhI6ExYSC1uenHfAUEiVzmFWo/z+i14/XK4StT4oncXGOF1Dp2EhodN487P2AtglnYO67oaE1z8YoY7Ols5hdiP8geFvlpYnO3jcuBQWEjoNCwmdzYvSAahrBuPEEVfiC2nSOaxiaCAw9K3Ssr7JweAe6Sw24/Vke3ZIhyDzYSGhs3lBOgB1zTLHn/YZSg+QzmElgwLBQW+Xlg/oEQxyRDB2lkoHIHNiIaEz8uZn7QRQLJ2DOucHCW+uG2lU84TdbhgQDA5cWVo+pHcwyH+1x8Zi6QBkTiwkdC7/lA5A5zcQvqN/SPzHeOkcVpYSDKauOFQ2om8g6JHOEuc2ebI926VDkDmxkNC5/BMAj/I1uWWOvD2G0gOlc1hdX637rSgtG50SCBRLZ4ljz0gHIPNiIaGz8uZnHQSwWjoHnd33E/69brRRNUc6R7zorXWfFaXl4wcEApuks8QhP4DnpUOQebGQ0Pk8JR2AzmwAfMfyEp8ZJ50j3vTUutfbpWUTB/v9EXsKLQEA3vRke45IhyDzYiGh81kGoF46BJ1uqeO23YbSfFhcFCRr9HiztHzqha3+D6WzxBFO19A5sZDQOXnzs+oQKiVkIt9JWLl+rFHBqZoocgAO9+HyS0a1tq6TzhIHTgD4l3QIMjcWEuoMTtuYSCpOnrg98amx0jnsIBFIfPVwxayxLS1rpbNY3IuebE+zdAgyNxYS6oxVAHZLh6CQpY7bShI4VRMzCUDCS2WVc9KbW7jAu/v4jxo6LxYSOi9vfpYGcL90DgK+mfDuhouNsrnSOezGAIwXyyvnT21qXiWdxYLWebI9G6RDkPmxkFBnPQ2AK+QFpaCu5s7Ev42SzmFXClD/qKi6/NLGpvels1jMvdIByBpYSKhTvPlZTQAKpHPY2YuO27cnKD1EOofd/b2yeuH8hsb3pHNYxD4AL0uHIGtgIaGuKADQKB3Cjr5hrPoozSidJ52DQh6tOrLoyvoGjpSc3wOebE9QOgRZAwsJdZo3P+soQlM3FEP9UOe7O+nxi6Rz0GfdX310YVZd/XvSOUzsBLiYlbqAhYS66j4A/BdPDL3guMOToIJDpXPQ6fKPHFt0Te1JjpScWaEn28NDFanTWEioS7z5WXsBvCKdwy6+Yqz9eJJxcL50Djq7W4+dWPifvtr3oTUfRPmpFgAPS4cga2Ehoe64RzqAHfRBQ+29SY8Ol85B53fz8ZqFP/LVrmEp+cTznmxPhXQIshYWEuoyb37WegA8uTLKXnDcsTVRBYdJ56DO+fkJ34Kf1vjWQmtOaYamdom6hIWEuusv0gHi2ReNdRszjAOcqrGYH9fUzv+f4zXrobVfOougZZ5sj0c6BFkPCwl116sANkuHiEe90XjygaQCLmK1qP+qPTn398dOfAytW6WzCPAD+J10CLImFhLqlrbj5P9HOkc8es7x5+JEFeTaEQu77mTdZbcdPb4ZWtvtgXJPerI9e6RDkDWxkFC3efOz3gXgls4RT642Ptw0zdi3QDoHhe9rdfWz7jpyzAOt7XKYYAOAP0mHIOtiIaFw/RZAQDpEPOiNxrqHk/46WDoHRc4X6htm3l99dCe0bpDOEgMPcmcNhYOFhMLizc8qAfA36Rzx4BlH/qYkFRghnYMi68qGxukFVUf2QOuT0lmi6DiAu6RDkLWxkFAk3Aognj9so+4/jI82z1B7OFUTpy5vbJr6RGX1QWjtk84SJXd6sj3x+t9GMcJCQmHz5mdVAbhbOodV9UJTfUHSQxcoBSWdhaLnsqbmyU9XVJcrrU9IZ4mwUvBUVooAFhKKlHsBlEmHsKKnHXdtTFIBPjzPBi5pbk5/rrzqiNL6qHSWCLrVk+2x224iigIWEooIb35WI4A/SOewmkxj05ZL1S5O1dhIRkvL+BfLK32G1tXSWSJgHfgEcIoQFhKKpGcAFEuHsIqeaG54LOn+VE7V2E96S+vY5WWV9YbWVt6V0grgBk+2h8/voYhgIaGI8eZnBQH8AgA/oDrh70n3fJykAqOkc5CMca2to189XNGaoPVh6Szd9BdPtmebdAiKHywkFFHe/KxVAB6VzmF2i4zirZcZO/isGptz+v0jXz9crhK1PiidpYv2ArhNOgTFFxYSioabARyQDmFWPdDc+HjSff2U4p8/Akb4A8PfKC13JGltpT8zOZ5sT5N0CIov/ECkiPPmZ9UB+CE4dXNGTyTdu8Gh/E7pHGQewwKBYf8uLeuTHAzulc7SCc96sj3vSIeg+MNCQlHR9pybx6RzmM18w+OZb2zjrho6zaBAcNDbpeX9ewSDu6SznMMxAL+WDkHxiYWEoum3AKw2Nx41yWhpejLpnj6cqqGzGRAMDlxZWj6kVzC4QzrLWfzGk+2JpzNUyET4wUhR02HqhgA8lnTfh8nKP1o6B5lbSjCYuqK0bHifQNAjneUUKz3ZnqelQ1D8YiGhqPLmZ70DTt1grrFt+0JjK3fVUKf0C+qUlaVlo1MCgS3SWdocAfB96RAU31hIKBZsPXXjQGvzU0n39FAKCdJZyDp6a91nRWn5xQMCgU3CUTSAbE+2x8qHuJEFsJBQ1Hnzs04CuF46h5RHkx5Yn6xax0rnIOvpqXWvt0vLJg7y+z8WjHG/J9vzpuD9ySZYSCgmvPlZKxF6AJ+tzFIlOzKNzZyqoW5L1ujxVmn5lGF+/waB228EcIvAfcmGWEgolm4G8J50iFhJgr/lGUe+g1M1FC4H4HCXlk+/qLV1XQxvexLAdZ5sT0sM70k2xkJCMePNzwoA+BYAqz67o0sKkh78oIdqHSedg+JDEpD0r8MVs8a2tK6N0S1/4sn2WOGgNooTLCQUU978rGoA1wCI6391zVS7Sq4yNnKqhiIqAUh4qaxiTlpzy5oo32qxJ9vzXJTvQfQZLCQUc978rA8ReipwXEqEv/VZx52JSiFROgvFHwMwlpRXzstoal4VpVvsAvDTKF2b6KxYSEiENz+rEMBT0jmi4aGkv67tqVouls5B8UsB6vmKqstnNja9H+FLnwDwZU+2py7C1yU6LxYSknQjQqv448Z0tWfX540N86RzkD08VVm9cF5D43sRulwrgGs82Z7dEboeUZewkJAYb35WE4BvIPTALstLhL/1OccdSikkSWch+yisOrLoivqGSIyU3OjJ9hRF4DpE3cJCQqK8+VkHAXwbQFA6S7juT3pkbS/VMl46B9nPA9VHF36hrj6cUnKvJ9vzt4gFIuoGFhIS583PWgGLP9J8qtq7+4vGek7VkJi7jhxb+I3auu6UktcA3BTpPERdxUJCpuDNz3oQwJ+lc3RHAgL+5x13BDhVQ9Lyjh1f+F1f7fvQWnfyW4oBfMeT7bH8CCVZHwsJmYY3P+v3sOCTgf+SVLimt2pOl85BBACu4zULr/fVrulEKakA8CVPtqc+FrmIzoeFhMzmRgBLpEN01iR1YO9XjbVzpXMQdfSLE74FuTW+tdD6bCMf9QC+4sn22OLUZLIGFhIyFW9+VhDA9wC8LZ3lfAwEAy86bm9RCg7pLESnyqmpnf/rEzXroHXglF9qRqiMfCSRi+hsWEjIdLz5WS0Avg7gQ+ks53J30uOr+6imidI5iM7mv30n591y7MQGaN3a9pYfwLWebM87krmIzoSFhEzJm59VD+ALALZLZzmTdHVw3zeMVXOkcxCdz3dO1s3509Hjm6F1I4DvebI9/5LORHQmqvOLsYliz+lyXwhgLQCncJRPGAgGtiT/aGdf1ThJOgtRJ+m1PXt8d97NVS9IByE6G46QkKl587PKAfwHgCrpLO3uTPzbGpYRshAN4HqWETI7FhIyPW9+1h4AlwM4KJ1lgjp04JsJ782WzkHUSRrA9cjz/V06CNH5sJCQJXjzs3YDmA+gRCqDQjC41HFbnVLoIZWBqAtYRshSWEjIMrz5WYcBLACwQeL+/5f499X9VEOGxL2JuigI4IcsI2QlLCRkKd78rGMArgCwMpb3vVgd9n4noWhWLO9J1E0NAL6OPN9T0kGIuoKFhCzHm59VByALwLJY3C80VfOnWqXQMxb3IwpDFYCFyPO9Kh2EqKtYSMiS2g5P+xaAJ6J9r7zExWtSVf2UaN+HKEw7AMxGnu9j6SBE3cFzSMjynC73nQBc0bj2GFV+8B3HbwYphV7RuD5RhLwD4BvI8/mkgxB1F0dIyPK8+Vm3APgNQrsKIkjr5Y68GpYRMrmnAXyeZYSsjoWE4oI3P+teAF8CUBOpa/4x8dnV/VXd1EhdjygK/og8338jz9d6/t9KZG6csqG44nS5xwJ4CUBYaz5Gq/JDRY7fDFQKvSOTjCiiWgD8AHm+56SDEEUKR0gornjzs/YBmAMgjA9qrZc5/nSMZYRM6jiAq1hGKN5whITiltPl/hmAewEkdeX7fpf43KobEt2XRycVUVg2ArgOeb690kGIIo2FhOKa0+WeB2ApgGGd+f2jVOXh9xy/TlUKfaKbjKhLNELl+ndcL0LxioWE4p7T5R4GYAlCz8I5p4+TczZdoGpnRD8VUadVAshGnu9t6SBE0cQ1JBT3vPlZFQAyATx0rt93U+I/V7OMkMm8AWAKywjZAUdIyFacLvdXATwOYFDH9y9S1WWrHL/spxT6igQj+qxmADcDeAh5Pn5Iky2wkJDtOF3uQQAeA/C19vc2JP9k42Dlu0QuFdEndgL4NvJ8xdJBiGKJhYRsy+lyfw/AQ79OXLLt54mvnHd9CVEMPAHgl8jzNUgHIYo1FhKyNafLPWJX8vfvS1b+a6WzkK0dAXAj8nwxeYI1kRmxkBABQF7KdwA8gFPWlhBFWQDAowD+F3m+GuEsRKJYSIja5aUMBHA/gO9JRyFb+ABALteKEIWwkBCdKi/lcwAKATiFk1B8qkZoB81i7qAh+hQLCdGZ5KUkA/gZgN8B6C+chuJDAMAjCD2ht0Y4C5HpsJAQnUteSn8AtyBUTnoIpyHrWovQ9MwW6SBEZsVCQtQZeSkjAdwO4D/BE46p86oB3ATgGU7PEJ0bCwlRV+SlTAFwF4CrpaOQqR1HaNfWQ8jz+YSzEFkCCwlRd+SlXAHgbgB89g11VA3gPgCPIM93UjoMkZWwkBB1V16KAnAdgDsAjBZOQ7LKAdwD4HGeskrUPSwkROHKS0kEcA2AXwKYLRuGYuwQQlN4TyLP1ywdhsjKWEiIIikvZTZCxeQaAImyYSiK9gHIR+gskVbpMETxgIWEKBryUoYDyAVwA4CBwmkocrYC+AuA55HnC0iHIYonLCRE0ZSX0hOho+h/AWCicBrqHh+AFxCalvlYOgxRvGIhIYqVvJSrEJrO+TwAJRuGzkMDeA/A3wEsR56vUTYOUfxjISGKtbyUUQC+2faaKZyGPuswgKcBPIU8337hLES2wkJCJCkvZQw+LSfThdPYVQuA1wA8CeBt5PmCwnmIbImFhMgs8lIuxqflZIpwmnhXC2AlgDcBvII831HhPES2x0JCZEZ5KWn4tJxMEk4TL3YAeKPttYbbdYnMhYWEyOzyUsYBWAjg8ravo2QDWUYDgCK0l5A830HhPER0DiwkRFYTevJwe0G5HMB42UCmEQBQgk9LyHs8PZXIOlhIiKwuL2UoPi0nCxGa4on3bcWtALYD2NT22ghgC7fnElkXCwlRvMlLSUXoELYJANI6fB0Lax5n3wzAg0+LxyYAHo5+EMUXFhIiuwg9BHAsTi8qEyB/vL0PgBfAwQ4vL4C9AHZwASpR/GMhISIgL6UXgP4dXgNO+fmZXgqhqZOOr5YzvNf+fjOAIwAqAVS1fQ298nx1MfivJCITYyEhIiIicYZ0ACIiIiIWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInEsJERERCTOisdIE1EcU0rd1PbDsQCgtf6xYBwiihEejEZEpqGUuktrfXOHnz8GYIzW+irBWEQUA5yyISJTUEqlApjR9rXdYwCuVEqNEQlFRDHDQkJEZjITQMfysb/ta2rsoxBRLHENCRGZgta6BqGH9nV0ZdvX/SCiuMYREiIys1sA/LitrBBRHOOiViIyJaXUXQCOaa3vls5CRNHHQkJEpqOUugbAAK3149JZiCg2OGVDRKailLoSANrLiFIqlbtsiOIfCwkRmYZSagaAGQA2KaXGtBWRGwAcl01GRNHGKRsiMoW280cO4AxbfLXWKtZ5iCi2WEiIiIhIHKdsiIiISBwLCREREYljISEiIiJxLCREREQkjoWEiIiIxLGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInH/H3QEbH4G77DzAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFhCAYAAABAjrEyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyZElEQVR4nO3dd3xV9f0/8Ne5I3vcDBI2GQxRZoIIDqCSKKIiIIhtv+BCqNrWtlao/bba1rYWfm2ttQu+pXW0tkrUUq2LoDKVkbAJkOQykkB2bva89/7+CEYpBJLcc+/7jNfz8cgDDHDOi4fh3lc+6yher9cLIiIiIkEW6QBERERELCREREQkjoWEiIiIxLGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInEsJERERCTOJh2AiIxl7dq1cLlccDgcKCwsxBNPPAGHwyEdi4g0joWEiFSzevVqLFu2rKuAuFwuPPjgg1i/fr1sMCLSPE7ZEJFqNm7ceN5oiMPhgMvlEstDRPrBQkJEqnE4HMjMzOwqIU6nEykpKbKhiEgXFK/X65UOQUTG4HK5kJ6eDqfTiRUrViA1NRXLli2TjkVEOsBCQkSqWrt2LTZu3IisrCxkZGRg/fr1XNRKRJfFQkJEqlm5ciUyMzORkZEBp9OJhQsXwuVyobCwUDraZa1cuRKpqakAgNjYWCxYsEA4EZG5cJcNEanC6XTC5XIhIyMDAJCSkoKcnBykp6cjKytLs2/wLpcLM2fOxKZNm+BwOJCbm4v09HTwezWiwOKiViJShdPpvOjUzPLlywMfphdWrlyJRYsWdWVPS0vDxo0bZUMRmRCnbIhINZmZmResGVm+fDnWrFkjF+oyFEXpmlJyOp1dIzxEFFgsJESkGpfLhWeeeQZxcXFdZ5B88aA0rXE6nUhNTcX69euRkpICh8OBVatWYeHChSwmRAHGQkJEppWdnY3MzExs3Lixq4C4XC4kJyejpqZGOB2RuXANCRGZ3qRJk7p+/tnITnZ2tmAiIvNhISEi0+ruFFmHwwGn0xngNETmxkJCRKaVkpKClJSUC8qHy+U6b9SEiPyPhYSITG3VqlV49dVXu/77sxNm09LSBFMRmQ8XtRKR6a1du7brgYBVVVVYtWqVbCAiE2IhISIiInGcsiEiIiJxLCREREQkjg/XI6KLamjtQGV9KyoaWlFZ3wpXczs63B50eLxwe7xdP7o9XkxtsSEaLsSW7IFit0Ox2Tp/DAqCNSoS1thYWB0xsMXGwBIdDUVRpP96RKQxLCREJlNW14JTVU2obGjt/KhvRUVDGyrqWz//XEMrWto9Pb7m465QDB/YDPcrv778b7ZaYXU4YI1xwOaI6SwrsTGwDxiIoKQkBCUnIWjYMFiCg334WxKR3rCQEBlUa4cb+WUNyDtbh6Ol9V0/Vje2+eeGPV0f73bDXVUFd1UVuk1iscA+YMC5gpLcVVSCk5JgGziQIyxEBsRCQmQA5XUtOHK2Dnln63G0tA55Z+vgrGhEhydwm+gUqHgvjwftJSVoLylB4/bt5/2SJSoKoePGIXTCBISOH4/QCeNhjYxU795EJIKFhEiHTlY2Ykt+BbYcr8Te0zWo8teoRy+oWkguwVNXh8Zt29C4bdu5GysISk3pKihhEyYgaPhwjqIQ6QwLCZEO1Le0Y0dhFbYcr8DW/Eqcrm6SjnQBxdvzNSeq8nrRVlCItoJC1Ga9DgCwREYiLD0d4Tdcj4hp0xA0ZIhMNiLqMRYSIg3yeLw4WFKLredGQXJP1wR0+qUvAjVC0hOe+no0fPwxGj7+GGUAgoYNQ/i0aYiYMR3hkydDsdulI/osMzMTGzdulI5BpBoWEiKNqG1uxweHS7ElvxLbCyr9t/jUX6RGSHqg7dQptL38MmpefhmWiAhETLsBETfORMT0abpcf5KVlYXs7GzpGESqYiEhEuT2eLElvwJZOcXYeKQMbR3afVO/HC2NkFyKp6EBde+8i7p33gXsdkRcfz2i581F5IwZUIKCpONdlsvlQnV1tXQMItXxWTZEAgrK67F+TzHe3FuC8vpW6Tg+e9wViisTKtH/taeko/SZ1eFA1OzZiJ43D6Fjx0jH6dbatWtx1113ISYmBnz5JiPhCAlRgNQ2tePf+0uQlVOM/cW10nHUp/M3R7fLhZpXXkHNK68gaHgqHHPnImrOHNgTEqSjdcnOzkZGRoZ0DCK/YCEh8iO3x4vNx8vxek4JNubpe0rmchQY5+/WVlCI8l/+CuXP/gbh114Lx53zEZmRAcUm+5LpcrmQkpICl8slmoPIH1hIiPygprENf91+Av/cXWSIKZmeUHQ+QnJRbjcat25F49atsA8ciJglixGzcCEs4eEBj7J27VosW7Ys4PclChQWEiIVlde1YO0WJ17ZdRpNbW7pOAEldg5JgLSfOYPyX6xC5R/+iJi7FiJm8RLYEwMznZObm4tJkyYF5F5EUlhIiFRQVN2EP20uxPqcYkNPy1ySwQvJZzx1daj68zpUvfgSomfPRuz99yNk1Ei/3rO6uhq5ubldW30LCwsBAKtXr0ZKSgoWLFjg1/sTBQJ32RD5oKC8AX/4uAD/3ndG8weX+dPjrlCMizmN+DdXSUcREX7ddYh74H6EX3ttQO6Xm5uL9PR07rIhQ+EICVEfHD5Ti99/VID3DpXCxD3kfCYZIbmYxu3b0bh9O0InpSPhsccQNnGi3+6VlZWFV199FQCwcuVKZGZmcucNGQJHSIh6IedUNX73YQE+OlYhHUVTHneFYrzjBOL+9UvpKJoQkTETCd/5DoJTUqSjEOkGR0iIeuBkZSN+8vYRfHi0XDqKZilecy3ivZSG7E1o+OhjOObPQ/zXvxGwxa9EesZCQnQJzW1u/P6jAqzd6jTvYtWe4tzV+dxuuNZnofattxG7eDHilj2oy+fmEAWKRToAkVa9e/AsMn69Gb/7qIBlpAc4QnJx3pYWVP3f/6EwIxNVf30B3vZ26UhEmsRCQvRfCsobsHjdTjz091yUuJql4+iHiRe19oS7thblq1bBOW8eGnftko5DpDmcsiE6p7G1A7/dlI+/bD+BdjenH3rL6AejqaWtoBCnl9yD6DvuQMLKFbDFxkpHItIEjpAQAfj3/jOY+avNWLPFyTLSR4qHUza9UbthA5y33obswxt4nggRWEjI5I6X1ePutZ/gm//Yi9K6Fuk4usYRkt4rnZKKb+/5AR744AEU1RVJxyESxUJCpuT1evHnrU7c9ttt+NRZLR3HGDwsJL2hJPbDk+OOAwD2lO7BmX8/BOxcC3C0hEyKa0jIdKoaWvHd9ft5uJnKOELSO+/MHYgqy2EAwIKYMbgm9z9AwVbg6NvAHb8HHEOEExIFFkdIyFS25ldg1nNbWUb8gdt+e6z5uvH4a2xnGRkQ2g+PHd7y+S+e2Az88Vpg79+E0hHJYCEhU2h3e/Dzd/Kw5C+7UFHfKh3HkBRO2fSIEhGOn15b2vXfT7XYEd5af/5vaq0DNjwCvHI30FgZ4IREMlhIyPBOVjbizj/uwNotTk7P+xF32fRM7tzRyLdVAQDmxozFdc5Pu//Nx98F1kwHSnIDlI5IDgsJGdrrOcW49bdbcaC4VjqK4Xk5QnJZnqtGYPWQ/QCAhJA4PJ637fJ/qK4Y+OstnMIhw+OiVjKkhtYO/ODNg/jXvjPSUUyDR8dfhs2G52/qgBudw3Q/bA9HVHMPi3JHS+cUTkkucMsqwGr3Y1AiGRwhIcM5UOzC7Oe2sowEGKdsLq3o9jRsD+k8a+TWmDGYUdCD0ZH/tmcd8MJtQH2ZyumI5LGQkKG8feAMFv7pE5yubpKOYj4sJN1ShgzEU6MOAQDigmPwxNFP+n6xok+BtdOBIj4Ph4yFhYQM47eb8vGNf+xFK5/MK4IjJN17dU4MGpQ2AMAPPFGIbqrx7YL1Z4EXbgV2r1MhHZE2sJCQ7rV2uPHtV/fh1xuPcxeNJC5qvajamWnIijoGALgp5ipkHN+qzoXdbcB/vgNs+DrQwa3spH8sJKRrVQ2t+Or/7cSbe0uko5geR0gupMQ48KP0kwCAmKBo/O+x3erfZO/LnbtwavlvgPSNhYR062RlI+b/cQf2nPJx+JvUwUJygS3zU1FirQMAfE+JQ6y/DjkryQHW3QRUFfrn+kQBwEJCunSg2IUFf9qBU1VcvKoViqdDOoKmtKdfiecTOs8c+VLMlZh99GP/3vCz80rKDvv3PkR+wkJCurPleAW+vPZTVDa0SUehL+Iaki5KSAhWzeg8YyQqKBJP5u8NzI0byjoXu5bkBOZ+RCpiISFdeXNvMR54cTca2zg9oDVcQ/K5o3PH4kBQ51khKyz9ER/Ic0Oaa4AX7wBO7QjcPYlUwEJCurFu2wl857X9aHdzK40mccqm04gkPJ10AABwg2M07sjbFPgMbfXA3+4ECgTuTdRHLCSkCy9/chJPv32E23q1zM0RElgsWDc7CG2KGxH2cDx54pBclvYm4B93A3lvyWUg6gUWEtK89XuK8OS/uVBP8zhCgvJb0vF+mBMA8Jh9EPq7hLfiutuA9fcCB16TzUHUAywkpGlvHziD771xkCMjOqC4zb2oVUlMwA/HHAUATHGMwoLD2cKJzvF0AG8uB/b8VToJ0SWxkJBmZR8pw7df3Qe3h21ED8y+7ffteQNQY2lGmC0MPz55TDrO+bwe4O1vATuel05C1C0WEtKkrfkVePiVXC5g1RMT77Jpun48XozpnFb8VvBQDKw5LZyoGx/8gCMlpFksJKQ5u05UY9lLOWjjQ/J0RXGbc4REiYzAz6aUAgAmRY/A3Yc2Cie6jP88Bhx/XzoF0QVYSEhT9he5cP8Lu9Hcbt7vtnXLpLtscuaORr69CqHWEPykqBAKND6q53UD6+8DSnKlkxCdh4WENCPvbB2W/GUXGlrN+Z227plwhMQzdiRWDeo8hfXroSkYUnVSNlBPtTcCrywCak5KJyHqwkJCmlBY0YDF63aitrldOgr1lddkIyR2O57LaINXASZEpeJ/Dn0gnah3Gss7D09rqpZOQgSAhYQ0oLKhFUvW7eKzaXRO6TDXCMmp2yfik5BiBFuD8ZMzp2Hx6nDNU1VB5+Fp7S3SSYhYSEhWh9uDR/6eixJXs3QU8pWJtv0qQwfhqREHAQAPhQ1HckWhcCIfFO0E3ljKhyOSOBYSEvXT/+Rh5wkOGRuCiRa1/mNONJos7RgTlYx7D+psquZi8t4C3v++dAoyORYSEvNGbjFe2HFSOgapxCzbfl0Z6Xgj8jjsFjt+UloKq1HWzuz8I7Djd9IpyMRYSEjEoZJaPPHGQekYpCYTFBIlNgZPpXU+q2ZZxCiMKNPYiay++uAHwOF/Sacgk2IhoYCrbmzD8pdz0MqDzwzFDCMkH89LxllrPa6IHIalRpiquYAX2PAIUKXjNTGkWywkFFBcxGpMiiKdwP/arr4Kv084AJtiw9MVVbAZdRFvW0PnE4I7uOuNAouFhALq5+8cxSfOKukYpDLF4I1ECQ3Bqmk1AID7o0bjirNHhBP5WekBYOMPpVOQybCQUMD8a28J/rL9hHQM8gPF4K8kR+4Yh4NB5RgeMQRfO6jxZ9WoZeefgKPvSKcgEzH4ywhpxeEztfjeGwekY5CfKBYDj5CMSMbPkvbDqljxdHUd7G4TTWVseBioLZFOQSbBQkJ+V9vcjuUv56ClnYtYjcqwMzYWC9bOtqFNcWNJ9JUYU2KynWHNNcDrSwGPQbY2k6axkJDf/fTtIyiu4SJWIzPqGpKyW9KRHXYCSeGD8MjBTdJxZJzeAXz8C+kUZAIsJORXHx8rx/qcYukY5GdGXEOi9E/Ak2OOwqJY8HRtC4I7TPy8l62/BE5skU5BBmfAlxHSivqWdh5+ZhJGHCF5a+4A1Fia8ZXoMZhQtFc6jiyvB3j9QaCxUjoJGRgLCfnNz9/Jw9laE39XaSJGW9PaeMMEvBRzGEPC+uObhz+UjqMNDaXAm18DvF7pJGRQLCTkF9vyK/GPXUXSMShAjDRlo0RG4ukpJVCg4McNHoS2NUlH0o6CjcDuP0unIIMy0MsIaUVjawdWvs4tvqRPu+eNgtNWg7tixuDqU3uk42jPpqeBhnLpFGRALCSkul+8e5RHw5uMUdaQuMeOwv8buA+DwhLxncObpeNoU2tt50P4iFTGQkKq+qSwCn/beUo6BgWYxQivJHY7fpPZAq8CPNWkIKy1QTqRdh14FTi5TToFGYwRXkZII5raOqdquObNfIwwQHJyzkTsDC7BnTFjMfXELuk42vef7wLudukUZCAsJKSa1e8dw+lqLgA0I70XEmXYYPxo+EEkhsbju0e2SsfRh4o84JPfS6cgA2EhIVXknKrGi5+clI5BYnQ8LKYo+NucSDRZ2vFkawgiWuqkE+nH5tVALQ8+JHWwkJAqfvqfPE7VmJiezyGpyUjDhoh8zIkZi2mFO6Tj6Et7I/De96RTkEGwkJDP3jt0FntPu6RjkCC9TtkocbF4amIh+oXEYkXeduk4+pT3FpC/UToFGQALCfmkw+3B6vePSccgYXotJB/NS0KptQE/6IhEdLNLOo5+vfM40M5Tmck3LCTkk1f3FMFZ0Sgdg6jX2iaPwR/6HcAtMWNwYz4Xsvqk5gSw7VnpFKRzLCTUZ81tbjyXnS8dgzRAUfS1gEgJDcUvptUgNjgGTxzbKR3HGLY9C7j4uAjqOxYS6rN125wor2+VjkEaoLcXksNzx+CQvQxPeByIaaySjmMM7lZg26+lU5CO6e11hDSiurENazY7pWOQVuhohMQ7KgU/HbYfGTFXYdZxHg+vqr1/A2pLpFOQTrGQUJ88/2E+6ls7pGOQRuhm26/VijWzLIgIjsT/Hs+RTmM87jauJaE+YyGhXiuqbsLfPz0tHYO0RCeH0JTekoYPw05ihRKPeD6x1j9yXwLqzkqnIB1iIaFe+9UHx9Dm9kjHIA3Rw7ZfZUAifnhVHqY7RuP2ox9JxzEudyuw/TnpFKRDLCTUK4fP1GLD/jPSMUhj9LDL5l9zE+AJtuFJ5wHpKMaX8wJQXyadgnSGhYR65TfZ+XoZnacA0voASeO0ifi7Iw+P2wYioZbTCX7X0Qzs+K10CtIZFhLqsdNVTdiUx+966EKKhh+up0RG4sfXFOE6xxWYdyRbOo557PkL0FgpnYJ0hIWEeuzFT07Co933HRKk5UKya/4oVIS04amTedJRzKW9iaMk1CssJNQjTW0deG0PT2Gki9NqIXGPH4VfDtiH7wQPxYAafv0G3O51QFO1dArSCRYS6pHXc4pR38JzR6g72iskSlAQnp3ZgqsdI7HwEJ9GK6KtAdjxvHQK0gkWErosr9eLFz85JR2DNEyLi1qdcybgYHg1flSUr9kRHFPYvQ5oa5JOQTrAQkKXtTW/EgXlDdIxSMMUaOtcGiVpMJ4afgCPhiRjSBXLtKjWWuDIBukUpAMsJHRZL+w4KR2BNE5TIySKgpdvi8SVjiR85eD70mkIAPa+LJ2AdMAmHYC07WRlIz46xiO26dK0NEJSnZmGDxxHkVXs5lSNVpzaDlQVAnGp0klIwzhCQpf04icneRAaXZZW3vgt8bF4cmIBHgkbjmGVfBq1puS+JJ2ANI6FhLrV2NqBrD3F0jFIB7RSSLLnDUN/RyIWc6pGe/b/A3Bzpx51j4WEupWVU4z6Vr6AUA9oYBit9Zqx+EvCMfzk7BlYvdqZQqJzGsqA/A+kU5CGsZBQt/72KXcnUM9Ij5AooaF45oZKfC1iJFLLj4tmoUvg4la6BBYSuqjjZfXI51Zf6iFFeETi4Lwx8MaG476D/A5c0/I/4FOAqVssJHRR7xzkE1Gp5yRHSLxXpGJ10mE8XV4Bm4dTjJrm6QD2vyKdgjSKhYQu6t2DpdIRSE+kRkisVvxploL7okZhVCkfnqcLuZy2oYtjIaELFFY04FhZvXQM0hFFaFHr2dlpKOnnwYMHOFWjG9WFwMnt0ilIg1hI6ALvHeLoCPWOxMFoysD++PGY43i6qgZ2T3vA708+2MdpG7oQCwldgOtHqNcERkjenNsP8x0puPLM4YDfm3x0/F3Aw63ZdD4WEjrP6aomHD5TJx2DdCbQIyQN0ydi56B6PHQgO6D3JZU0VQFFO6VTkMawkNB53jnE0RHqvUCuIVGiovD0NSX4SU0jgtytAbsvqezYO9IJSGNYSOg873L9CPVBIM8h+XT+SEyLG4xxxfsDdk/yg2PvSicgjWEhoS4lrmbsL3JJxyA9ClAh6ZgwGq8PL8fXD20KyP3Ij6ryO58ATHQOCwl1eZeLWamPAjFCogQF4dmZTfhxXRtC2pv9fj8KAE7b0BewkFAXTtdQnwWgkBTcMQEjEuOQdjrX7/eiACngomT6nE06AGlDfUs79p6ukY5BOuXvERIleSjWjSnD3w8d8Ot9KMBOfwq0NwP2UOkkpAEcISEAQM6pGnjknyBPOuXXbb+KgpduC8P3WjoQ1tbov/tQ4HW0AKd4ait1YiEhAJ2FhKjP/Nhmq25KR8iQUFxzYrff7kGCCj+STkAawSkbAgDsOclCQn2neN1+ua4lPg6/n1KFPx/mVI1hsZDQORwhIXS4PdjH7b7kA3+tIflg3lB8vd2N8FY+7NGwyg8D9WXSKUgDWEgIR87WobndP9/hkkn44bkkrVPGonwEcJ3zU9WvTRrDdSQEFhICp2vId2pP2ShhYVhzYxsez9um6nVJo87y1F1iISFwQSv5Tu0pmwPzxmCRpR1RzbWqXpc0ioWEwEJCAPacqpaOQHrnUW+ExDs6FfvHtWNGAUdHTKOUi5aJhcT0iqqbUFbHJ6aSb1QbIbHZ8Pdbw7Di2A51rkf60FQF1BZLpyBhLCQmx+kaUoVKheTMrWmYEdaM6CZ+XZrOWY6SmB0LiclxuobUoKiwy0YZNACbr2lH5vEtKiQi3eE6EtPjwWg6sXr1ajgcDgCAy+XCihUrVLkud9iQGhQV1pC8P28QHnV+okIa0iWuIzE9jpDowOrVqwEAy5Ytw7Jly5CWlobly5f7fN22Dg/yyxt8vg6Rr4ta6780ESPi6xHXUKFSINIdjpCYnuL1evlINY2LiYnBiRMnukZIAEBRFPj6vy6/rB6Zz3J4nHyXVbED4dvf6NOfVaKj8OZjo/DEkQ0qpyLdedwJhMdJpyAhHCHROKfTCZfLdV4Z+Ux2drZP1y6s4JNTSR2+7LLZe+doLC3eqWIa0q2z+6QTkCAWEo1zOp0X/bzD4YDL5fLt2pWcriGV9HHKpmPiaIQPq0O/ulKVA5EucR2JqbGQ6FRsbCyqq33bIePkCAmppC+LWpXgYGyeHYU5eZv8kIh0ietITI2FRKd8LSMA4KzgCAmppA/bfk/NTcOCql1+CEO6VZkvnYAEsZBoXEpKykU/73K5uv21nnJWcoSE1NHrEZKUoWgZXYf+rhL/BCJ9qjsjnYAEsZBoXEpKChwOx0XXkmRkZPT5uvUt7XA1tfsSjehzvSkkioI984fgjqMb/ZeH9Km5Guhok05BQlhIdOCJJ544b0dNVlYWli1b5tM1S1zNvsYi6qJ4Onr8e2tvnoQbm7irhrpRf1Y6AQlhIdGBFStWwOVyISsrC1lZWdi9ezfWrFnj0zVLalhISEU9XEOi9ItH5dWtGFR92s+BSLdYSEyLR8frxBePil+wYIHP1ytmISEVKe6ejZAULrgCt+av93Ma0jUWEtPiCIlJccqGVOW9/BqS9qnjMc6yCwp4ODRdQh0LiVmxkJgUp2xIVe5LFxIlPBzlMxQMqToZmDykXxwhMS0WEpMqq2uRjkBGcplFrZXzJ+LGk+8FKAzpWj1P7TUrFhKTamjt+a4IostRLjVCcuVwDI7eA4sPz7shE+EIiWmxkJhUYxsLCamou3NIbDbUzIpGUuXFn8lEdAEWEtNiITGppta+PQyN6GK6O6m19darcc3ZdwKchnSNUzamxUJiUk1tLCSknott+7UMHoDYwYdg7cEOHKIubQ1AS510ChLAQmJCHo8XLR18kyAVXWQNScttgzC06phAGNK95hrpBCSAhcSEmtrd8PIoCFLTf42QKF9Kw1V1nKqhPurFowjIOFhITKiJO2xIbV+YlrE4ohE1shA2vqlQX/X26dFkCCwkJtTI9SOkMqXj8/Jhu20EBtbmCaYh3WOZNSUWEhNq4pZfUtu5NxD7xNEY6uUBaOQjLoQ2JRYSE+IOG1JdRweUkBDETCyD3d0mnYb0jiMkpsRCYkKNXENCavO4ETnrSsQ1HZJOQkbANSSmxEJiQhwhIbUFDxuIxLBs6RhkFCwkpsRCYkLNLCSksgGT62Hz8IGNpBJO2ZgSC4kJ2W38307qubVfJcLd+6VjkJGwkJgS35lMKMxulY5ABrLAwdNYSWXcZWNKLCQmFBbMQkLqSWvbIx2BjIZrSEyJhcSEwoJs0hHIIPoFtSOqIlc6BhkNp2xMiYXEhMKCOEJC6ljS/zQUT7t0DDIaha9RZsRCYkKhXENCKrkp+KB0BDKisFjpBCSAhcSEOEJCakmp3SkdgYwoNEY6AQlgITEhriEhNVwX44K97pR0DDIijpCYEguJCYXYLbAo0ilI774ad1w6AhmRYgVCHNIpSAALiQkpisJ1JOSzyZ590hHIiEKiAYXfMZkRC4lJhXLahnwQbnMjrmK3dAwyIk7XmBYLiUlxYSv54qv9S6C0N0rHICMKZSExKxYSk2IhIV/cGnpYOgIZFUdITIuFxKT6RQZLRyAdG9W4SzoCGRVHSEyLhcSkhsSGSUcgnRob2YiQaj5Qj/yEIySmxUJiUsNYSKiPFvcrkI5ARsZD0UyLhcSkhrKQUB9dr+yXjkBGxhES02IhMSlO2VBf2C1e9K/icfHkRxGJ0glICAuJSQ2NYyGh3rszsRSWlhrpGGRk8aOkE5AQFhKTigqxIybMLh2DdGZuxFHpCGRk1mAgNlk6BQlhITExriOh3hrbwtNZyY/ihgMWnpFkViwkJsZ1JNQbQ0NbEFZ5QDoGGVk/TteYGQuJiQ3jOhLqhXv6n4Di9UjHICNjITE1FhIT45QN9caN1oPSEcjoWEhMjYXExDhlQ70xtOZT6QhkdP2ukE5AglhITIwjJNRTt/SrhLWxVDoGGZnFBsSmSqcgQSwkJjbIEYqoEJt0DNKBhY7j0hHI6GKSAVuQdAoSxEJiYoqiYMJQPjeCLi+tPUc6Ahkd14+YHguJyaWzkNBlxAW1I7qChYT8jIXE9FhITC59GAsJXdqS/kVQ3G3SMcjouKDV9FhITG7CUAesFkU6BmnYzcHc7ksBMGC8dAISxkJichHBNoxMjJSOQRqWWrdLOgIZXUQip2yIhYSAtKEO6QikUVNjamGvPSEdg4wu6QbpBKQBLCTEdSTUra/E5ktHIDNIZiEhFhICCwl1b4p3n3QEMgOOkBBYSAjAsLhwxEcES8cgjQm3ehBfuVM6Bhld1GAgjie0EgsJncN1JPTf7u5fAqWtUToGGR2na+gcFhICwGkbutBtYUekI5AZJE+TTkAawUJCAIBJSSwkdL7RjdzuSwHA9SN0DgsJAQDGDXbwQXvUZXREE0Kq86RjkNHFJAGOIdIpSCNYSAgAYLdakDE6UToGacQ9CYXSEcgMOF1DX8BCQl1uHtNfOgJpxPWW/dIRyAySWEjocywk1GX6yH4IC7JKxyBhVsWDgVWfSscgM+AOG/oCFhLqEmK3YsaoftIxSNj8xHJYmqulY5DRDZoERHJUlj7HQkLnufkqvkCY3bzIo9IRyAzGLpROQBrDQkLnmTk6EUE2flmY2biWPdIRyOgUKzBmvnQK0hi+89B5IoJtuH54vHQMEjIopBXhlVzQSn6WMh2ISJBOQRrDQkIXmMXdNqZ1b/8TULxu6RhkdJyuoYtgIaELZI5OhM2iSMcgATNtB6UjkNHZQoDRt0unIA1iIaELxIQHYXJyrHQMEjDMxe2+5GcjbwaCI6VTkAaxkNBF3cJpG9O5Kb4K1oaz0jHI6DhdQ91gIaGLuvmq/rBy2sZU7oo5Lh2BjC4kGhhxk3QK0igWErqohKgQZPLZNqaS3p4rHYGMbvQcwBYsnYI0ioWEurXk2mHSEShAYuwdcFTw/BHyM07X0CWwkFC3rk2Nx6hELj4zgyUDTkNxt0rHICOLHAAk8dk11D0WErqkxVM5SmIGNwcflo5ARjduEWDhWw51j18ddEnz0wYhKsQmHYP8bHj9TukIZGQWGzD5QekUpHEsJHRJYUE2LEgfIh2D/Giyow5BLqd0DDKy0bcD0YOlU5DGsZDQZS2ZOgwKdwAb1lfj8qUjkNFNeVg6AekACwldVlJ8OKaP7Ccdg/xkqnefdAQyskGTgCGTpVOQDrCQUI/cc22SdATyg1CrG/0quX6E/GjKQ9IJSCe4WpF6ZMbIfkiKC8PJqibpKKSiRYlnoVQ3SMcgo4oaDFw5t89/fPXq1QCAwsJCAMCaNWvUSEUaxRES6hFFUbB4apJ0DFLZ7eFHpCOQkV37DcDat+97V65ciRUrVmDFihVdRSQzM1PNdKQxLCTUYwsnDUZ4kFU6Bqnoyqbd0hHIqMLigbQlffqjLpcLubm5cLlcXZ9bvnw5srOz4XRyR5hRsZBQj0WF2HH/9cnSMUglI8ObEVLFERLykylfA4LC+vzH9+zZc175SElJAYDzSgoZCwsJ9cqyaSmIDQ+SjkEquDehAAq80jHIiIIigav7fhCaw+FATU0N0tLSuj6XnZ0N4PNiQsbDQkK9Ehlix8MzUqVjkApusB6QjkBGdfX9QKhD1Us+88wzWLNmDRwOda9L2sFCQr22eOowDHKESscgH1gVDwZVfSodg4woKAKY+nVVL7ly5UosWrQIy5YtU/W6pC0sJNRrwTYrvpUxQjoG+eCOhApYmqukY5ARXf9tICJBtctlZWUhNTUVK1asUO2apE0sJNQnd6YNxsjECOkY1Efzo45KRyAjih6q6ujIZ+tGPhsZcblc3GVjYCwk1CcWi4Lv3jRKOgb10fjWHOkIZESZPwLsIapcKjc3F7m5uUhLS4PT6YTT6cTatWsRGxuryvVJexSv18tl9tRnd/5xB3JO1UjHoF4YENKGHZalUDwd0lHISIZMAR54X5VLuVwuJCcnX3SLL9+yjIsjJOSTlbOukI5AvXRv4kmWEVKZAsz6uWpX+2zbr9frveCDjIuFhHwyOTkWXxrFJwHrycygg9IRyGjGLQIGpUunIJ1jISGfrZh1BSyKdArqqSQXt/uSiuxhQMZT0inIAFhIyGejB0Rh3sTB0jGoB26Mq4atvkQ6BhnJdY8CUQOlU5ABsJCQKr4/+wo4wuzSMegy7o45Lh2BjCRqEHDtN6VTkEGwkJAq4iKC8b+zR0vHoMuY1JErHYGMZOZTPj1Aj+iLWEhINQsnDcG1qXHSMagb0fYOxFTukY5BRjEoHRh3l3QKMhAWElLVz+eNRbCNX1ZatLh/MZSOFukYZAS2EOCOPwAKV7OTevjOQapKig/HN2fyOTdaNCvkkHQEMoqZTwIJPIOI1MVCQqpbPi0FVw2Mko5B/2Vk/S7pCGQESTcAUx6WTkEGxEJCqrNZLfj1XRMQZOWXl1akRdcjyFUgHYP0LjgamPtHTtWQX/Adg/xiVP9IfCuTUzdasTg+XzoCGcEtqwDHEOkUZFAsJOQ3y6elYuJQh3QMAjDVu186Aund6DnAhC9LpyADYyEhv7FaFPxq4XiE2PllJinY4kFiFY+LJx9EJAK3PyedggyO7xTkVyn9IvhEYGGL+pdCaa2XjkF6Nud3QFisdAoyOBYS8rv7rkvG7LH9pWOY1pzww9IRSM/S7wVG3iSdgkyAhYQC4v8tGI+RiRHSMUzpqqbd0hFIr2KSgZt/Lp2CTIKFhAIiPNiGNYsnITLEJh3FVEaENyOkiiMk1AcWOzB/LRAULp2ETIKFhAImOT4cv1k0gUcYBNCShEIo8ErHID269VfAkMnSKchEWEgooGaOTsSjPFo+YKZbD0pHID265iEg/R7pFGQyLCQUcI/OHIGM0QnSMQxPUbwYXP2JdAzSm+EZwM0/k05BJsRCQgGnKAqeXTQBKfGcm/anOQkVsDRVSscgPYkfCSz4C2CxSichE2IhIRGRIXasWZyO8CC+8PnLnVHHpCOQnoTGAF/+JxASLZ2ETIqFhMSMSIzEr+4az0WufjKhdY90BNILix246yUgLlU6CZkYCwmJmjVmAB6azhdBtfUPbkNk5V7pGKQXs1cDydOkU5DJsZCQuO/eNAq3jOFJrmpa0v8UFE+HdAzSg8nLgEn3S6cgYiEheRaLgufunogZo/pJRzGMzCBu96UeSPkSMOsX0imIALCQkEYE2Sz40/+kY0oKH+ClhmQXn+5LlxE/Clj4AnfUkGawkJBmhNitWHfP1ZgwxCEdRdemx9bAVl8sHYO0LH4kcM9bQKhDOglRFxYS0pTwYBtevG8yRg+Iko6iW1+OPS4dgbQsbgRwz9tAZKJ0EqLzsJCQ5kSH2fHyA5OR2o8Hp/XF1W7urqFuxA0H7mUZIW1iISFNio8Ixt+XTsGQ2FDpKLoSaetAbMVu6RikRbGp50ZGuKONtImFhDSrf3QIXlk6Bf2jQqSj6Mb/DCiG0tEsHYO0Jia5c2QkaoB0EqJusZCQpg2JDcPfll6DuPAg6Si6MDvksHQE0pqYpHNlZKB0EqJLYiEhzRueEIGXH7gG0aF26SiaN7KB0zX0BY5hndM00YOlkxBdFgsJ6cKVA6OQ9bWpGOTgmpLuTIhqQHANd9jQOY6hnSMjjiHSSYh6hIWEdGNEYiTefPhaXDWQW4IvZnG/fOkIpBXRQztHRhxDpZMQ9RgLCelKQlQIXls+FdNH8pj5/3Yd9ktHIC0YmAYs3QjEDJNOQtQrLCSkO+HBNqy7ZxIWTeJQ9GeCLR4kVvK4eNO78g7gvne4tZd0iYWEdMlmtWDVgnH4TuZI6SiasCCxFEprnXQMknTDY8DCFwE711mRPrGQkK59c+YI/GrheNitinQUUXdE5ElHICnWIGDeGmDmk4Bi7n8HpG8sJKR7d6YPxl/vnYzIYJt0FDFjmrnd15TC4oAl/wbG3y2dhMhnLCRkCNePiMdrX5tqylNdU8JaEFp1SDoGBVr8KGDpJmDYVOkkRKpgISHDGD0gCm8+ci3GDDLXtuB7Ep1QvB7pGBRIqTd27qSJTZZOQqQaFhIylAHRoXjjoetw/3XmeaGeYT0gHYECadIDwFfWAyHR0kmIVKV4vV6vdAgif/jwaBm+u/4AqhvbpKP4jaJ4URD7bVgby6WjkL/Zw4CbfwZMul86CZFfcISEDOvGKxLx7qM3YEpKrHQUv7k1vpJlxAwGTACWb2EZIUNjISFDS4wKwStLp+CxzJGwWoy3JXKB45h0BPInxdJ5vsjSbCB+hHQaIr/ilA2Zxp6T1Xj0n/tQ4mqWjqKa/cOeQ3TZTukY5A+OocC8tdxFQ6bBQkKmUtvUjhWv78f7h8uko/gsIbgdO61LoXjapaOQ2sZ/GbhlNRBirh1jZG6csiFTiQ6zY83iSXh67hgE2/T95b8k8RTLiNGExgALXwDm/YllhExH36/IRH20eMowbPj6dZgwxCEdpc8yg3kYmqGkzAAe2gFcNU86CZEITtmQqXm9XvxzdxFWv3cUNU36Gm0oSPgebHWnpWOQr2whnc+hmfIwn0VDpsZCQgTA1dSGVe8dw6u7T8Ojg38RN8S68HLTw9IxyFej5wA3/RSIGSadhEgcCwnRF+wvcuGHGw7hQHGtdJRL+sPw3Zhd/Kx0DOqrxDHArGeA5GnSSYg0g4WE6L94PF68sus0fvnBMbg0Oo2zJ3kN4s9ulo5BvRUWB3zp+0D6fYDFKp2GSFNYSIi6Ud3YhlXvHsVrOUXQ0r+ScJsbh0KXQ2lvko5CPWWxAVcvBWZ8r3MnDRFdgIWE6DJyT9fgyQ2HcKikTjoKAGDZ4FP4fuUT0jGop1JvBGb9Aug3SjoJkaaxkBD1gMfjRVZuMf7wUQFOVsmOTGwY8S7GF70smoF6IDa182F4o26RTkKkCywkRL3g9njx1v4z+P1HBcgvbxDJcGzgjxFczWfYaFZ4AnDdo8DkZYAtSDoNkW6wkBD1gdfrxXuHSvH8hwU4cjZwUzljIxvxVvuDAbsf9ULU4M4ikrYEsIdIpyHSHRYSIh9lHynD8x8VYH+Ry+/3Wp26H3eVrPL7fagXYpKB678NTPgKYLVLpyHSLRYSIpVsOV6B331YgF0nq/12jx2pL2FgyXt+uz71woDxwNRvAGPmcwsvkQpYSIhUttNZhec/LMC2gkpVr2u3eHEs6hFYWlyqXpd6QwFGzgKmPgIk3yAdhshQbNIBiIzmmpQ4XJMSh6OldXhtdzH+ta8E1Y1tPl/3zsRSWGpcvgek3rOFAhO+DEx5BIgfLp2GyJA4QkLkZ+1uDzbllSMrpwgfH6tARx8flvPPER9iStGfVU5H3VOAoVOBcXcBV83lgWZEfsZCQhRA5fUteDO3BOtzilHQy23Dh4esRnjFPv8Eo8/Fj+wsIWPv4kPviAKIhYRIyN7TNXhtTzHe3n8G9a0dl/y9Q0NbsBlLoXg9AUpnMuH9gDELOovIoDTpNESmxEJCJKyl3Y33DpUiK6cYnzqrLjql81RSHu4rfVognYHZw4ArbgXGLQJSvgRYuaSOSBILCZGG1LW0Y/OxCnx0tBwfH6/oWgz70fDXkFz8L9lwRhAa27k7ZuQtwOjbgeAI6UREdA4LCZFGeTxe7C2qwaa8cjxa9r8IPrEJAP+59oo9rHNhasp0IHk60H8cYLFIpyKii2AhIdKLpmrgxGbAuRlwfgzUnJBOpD0WGzAwDUiZ0VlCBk/m82SIdIKFhEivXKeBE1uB0gNA6UGg9BDQWiudKrAsNqDfFUDSDZ0FJOl6IDhSOhUR9QELCZGR1JwCyg6dKyjnPlynpFP5TrEAjmFAwpVAwujPP+JGcASEyCBYSIiMrqUWKDv8eUEpzwPqS4HGcsDt+wmyqosaDCRcca50nCsg8aOAoDDpZETkRywkRGbl9QLNNUBDWWdBaSjv/PlnH1/8nC/PzwmKAMLigPB4ICz+3I9xn//4xc9FJABB4ar9FYlIP1hIiOjy3B2A1w14PV/48J7/c3jP/3Uoncet20Ok0xORDrCQEBERkThuyCciIiJxLCREREQkjoWEiIiIxLGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInEsJERERCSOhYSIiIjEsZAQERGROBYSIiIiEsdCQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMSxkBAREZE4FhIiIiISx0JCRERE4lhIiIiISNz/B1LYwGFrARv7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -403,7 +402,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFhCAYAAABAjrEyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAui0lEQVR4nO3deZxcVZ338e+ppbOnO0lnYy3CDrIIqDiIOiWIgoPoADqij+ICLQX6OCqUo85TOi6gzuPaWjA+bjjjMOMIqIWsjYqiqGBIAmHrJgkBsvRWve/3+aOqoQndSS+36ner7uf9etWrO73c8wVC55tzzz3HeZ4nAAAASxHrAAAAABQSAABgjkICAADMUUgAAIA5CgkAADBHIQEAAOYoJAAAwByFBAAAmKOQAAAAcxQSAABgjkICAADMUUgAAIA5CgkAADBHIQEAAOYoJAAAwByFBAAAmKOQAAAAcxQSAABgjkICAADMUUgAAIA5CgkAADBHIQEAAOYoJAAAwFzMOgCAYEqkc4sl1UqqK74dfy1U4S8zUUmRN/XGe48eji2QNDLJq0/SLkk7JO1KZZPDZf7HAFAhnOd51hkAlFEinVsi6WBJB03ydq2eLyDR6Vzvou559+w3Gjl9Gl/qSWpXoZzsLL6d7P1nU9nkrun/EwGoBhQSoEol0rk1ko6XdELx7bGSDlGhcPhmBoVkJjokPVh8rS++Hk5lk0M+jwMgICgkQIVLpHNOhbJxsp4vIMdJWlWO8UtUSCYzLGmzXlhS1qeyyfYyjA2gxCgkQIVJpHNRSSdJenXx9SpJy63ylLGQTGW7CuXkD5Juk/RAKpvkBxtQYSgkQMAl0rmYpFMlvUaFAvJKSUtMQ00QgEKyp10qFJNbJd2WyibbjPMAmAYKCRBAxYWnb5R0rqSzJS2zTTS1ABaSicYk/UWFcnKrpPtS2eSYbSQAk6GQAAGRSOcOVKGAnCvptZJqTANNU8ALyZ7aJd2hYkFJZZM7jPMAKKKQAIYS6dwBkt4l6QJJLzWOMysVVkgm8iT9UdL3JN2Qyia7jfMAoUYhAcoskc4tlPRWSe+WlFSF75hcwYVkol5JP5X0vVQ2+VvrMEAYUUiAMig+mnu6CiXkAgVoUepcVUkhmehxSd+X9MNUNvmMdRggLCgkQAkl0rmVki6VdLGkdcZxSqIKC8m4URWe1vmepJ+z7T1QWhQSoAQS6dyxkj4i6SJJ843jlFQVF5KJdkv6saT/l8omH7IOA1QjCgngk+JtmTeoUETONI5TNiEpJBPdIumzqWzyPusgQDWhkABzlEjnFqjwpMz/lnS0bZryC2EhGXe7CsXk99ZBgGpAIQFmqfi0TErSx1Smc2OCKMSFZNzdkj6TyiZ/Yx0EqGQUEmCGikXkMkkfV4iLyDgKyXN+K+lfUtnkndZBgEpEIQGmKZHOxSVdIulTktYYxwkMCsmL3KtCMbnVOghQSSgkwD4k0rmIpHdKykg6xDZN8FBIpvQnFdaY5KyDAJWAQgLsRSKdO13SNyWdYJ0lqCgk+3SHpFQqm3zcOggQZBQSYBKJdG4/SV+W9A7rLEFHIZmWQUlfkvSFVDY5YB0GCKKKPkMD8FsinYsn0rkrJT0qygj8M0/SpyVtamxoeoN1GCCImCEBihLp3Jkq3J450jpLJWGGZFZ+JunDqWxyu3UQICgoJAi9RDq3v6RvqHACL2aIQjJrPZI+I+lrqWxyxDoMYI1bNgi1RDr3LkmbRBlB+S1WYZ3SA40NTadZhwGsMUOCUEqkc6slZSWdZxyl4jFD4gtP0g8kXZnKJluNswAmmCFB6CTSuQtVmBU5zzgKMM5JuliFRa+vsw4DWGCGBKGRSOdWSPq2pAuts1QTZkh8Nybp8yqcjzNqHQYoF2ZIEAqJdO6Nkh4SZQTBF1HhEeG7Ghua9rMOA5QLhQRVLZHORRLp3Ock5SStts4DzMBrJK1vbGg6yzoIUA7cskHVSqRzqyT9hyTuyZcQt2xKzlNhl9dP8XgwqhkzJKhKiXTuVZL+KsoIKp+TdJWkXzc2NB1oHQYoFQoJqk4infuYpLslcf8d1eQ0SX9tbGh6k3UQoBS4ZYOqkUjnlqqwl8NbjKOECrdsys6T9FVJ6VQ2OWwdBvALMySoCol07iBJ94oygurnJP2jCk/hLLcOA/iFQoKKl0jnTpZ0n6RjrbMAZXS6pHsbG5oOsQ4C+IFCgoqWSOfOlfRbSWusswAGjpT0x8aGppdbBwHmikKCipVI5z4s6UZJC62zAIZWSbq7saHpzdZBgLmgkKDiFDc7+7qkr4nfw4BUKOU/a2xoutw6CDBb/DBHRUmkc/Ml/UzSh6yzAAETkfTNxoamjHUQYDZ47BcVI5HOLZR0s6QzrLPgeTz2G0jflPThVDbJD3hUDGZIUBES6dxiSbeIMgJMxxWSftTY0BSzDgJMF4UEgVfc8Ow2FQ4bAzA975R0Y2ND03zrIMB0UEgQaIl0rk7SHZL+xjgKUIneJCnX2NA0zzoIsC8UEgRWIp1bIalJEnssALOXlHRDY0NT1DoIsDcUEgRSIp2rV6GMvNQ6C1AF3izpu40NTc46CDAVCgkCp7iA9VeSjrfOAlSR90j6snUIYCoUEkzJOXelc+6S4uvKcoyZSOdqVNh99ZRyjAeEzEcbG5o+YR0CmAyFBJMaLyCe513ned51kh5wzl1byjET6VxE0o/Eo71AKX2hsaHpEusQwJ4oJJjKJyRdN/4Lz/PulFTqH2Jfl/S2Eo8BQPpOY0PTBdYhgIkoJHgR59w6SXWe53VO8rmSzF4k0rlPS+IcDqA8IpJ+3NjQ9HrrIMA4Cgkms26Kj3dKqvN7sEQ6d6mkz/p9XQB7VaPCgXyvsA4CSBQSzEy7pOV+XjCRzp0t6dt+XhPAtC2SdEtjQ9Ox1kEACglmwu8ycqSk/xC/DwFLyyXd1tjQtMo6CMKNPwgwmZYpPl63l8/NSPF8mpsk1fpxPQBzsr+knzQ2NPFnAszwmw8v4nlei6TO4uLWPT9351yvX3y8998lHTXXawHwTVKs5YIhCgmm8kVN2A/EOXe+JjwGPEefVeHQLwDB8k+NDU1nW4dAOFFIMCnP874kqc45d36xjLzM87xL53rdRDp3vqRPzjkggFJwkq5vbGg62DoIwsd5nmedASGRSOeOl3SvCiv7USUu6p53z36jkdOtc8BXf5F0WiqbHLIOgvBghgRlkUjnlkj6H1FGgEpwiqSvWYdAuFBIUC7fkXSYdQgA0/bBxoamd1iHQHhQSFByiXTu3ZIuss4BYMaua2xoOsY6BMKBQoKSSqRzh0v6lnUOALOySNL/NDY0LbYOgupHIUHJJNK5mKQfS+KHGVC5jpL0XesQqH4UEpTSpyS93DoEgDl7W2NDE7ddUVIUEpREIp17hdhvBKgmX21saPL1PCtgIgoJfJdI5+ZL+pGkmHUWAL5ZKekr1iFQvSgkKIVPSjrCOgQA313c2ND0t9YhUJ0oJPBVIp07RtJV1jkAlEy2saFpnnUIVB8KCXyTSOecpGslxa2zACiZI1RYsA74ikICP71f0qusQwAouavYMA1+o5DAF4l0brWkL1nnAFAWcRV2cXXWQVA9KCTwy9ck1RlnAFA+p0m6xDoEqgeFBHOWSOfOkvR26xwAyu6axoamtdYhUB0oJJiTRDoXlfRV6xwATNRK+rp1CFQHCgnm6n2SjrYOAcDMBY0NTWdZh0Dlo5Bg1hLp3CJJGescAMx93joAKh+FBHPxUUncPwZwcmND03nWIVDZKCSYleJjvh+3zgEgMD7DY8CYCwoJZisjabF1CACBcbyk861DoHJRSDBjiXTuSBV2ZQWAiTKNDU38uYJZ4TcOZuPzkmLWIQAEzjGS/sE6BCoThQQzkkjnjpb0VuscAALrnxsbmqLWIVB5KCSYqbQkFq4BmMoRkt5lHQKVh0KCaUukcwdLeod1DgCB98+NDU1x6xCoLBQSzMTHxNoRAPt2iKSLrUOgslBIMC2JdG6VCtvEA8B0fLKxoanGOgQqB4UE0/VhSQusQwCoGAeJWRLMAIUE+5RI55ZKSlnnAFBxLrMOgMpBIcF0XKLCMeMAMBPHNzY0nWodApWBQoK9SqRzTlKDdQ4AFesS6wCoDBQS7MvrJB1qHQJAxXpbY0MTM6zYJwoJ9uVS6wAAKtpCSe+0DoHgo5BgSol0brWkN1vnAFDxuG2DfaKQYG8ulsRuiwDmisWt2CcKCSZVXMz6AescAKoGt3+xVxQSTOVMSeusQwCoGheyuBV7QyHBVJgdAeCnheIUYOwFhQQvkkjnlkh6k3UOAFWHxa2YEoUEkzlX0nzrEACqznGNDU2vtA6BYKKQYDIXWAcAULXeYR0AwUQhwQsUb9e8wToHgKp1jnUABBOFBHt6s6R51iEAVK1DGhuajrUOgeChkGBPF1oHAFD1/s46AIKHQoLnJNK5pZJeb50DQNXjKT68CIUEE50rbtcAKL1TGxuaVliHQLBQSDAR06gAyiEq6WzrEAgWCgkkSYl0LiLpddY5AIQGt23wAhQSjHupJKZQAZTLWY0NTTHrEAgOCgnGnWkdAECo1Eo63ToEgoNCgnEUEgDlxro1PIdCAiXSuQWSTrPOASB0WEeC51BIIEmvFo/7Aii/wxsbmo6wDoFgoJBA4nYNADuvtQ6AYKCQQJKS1gEAhNYp1gEQDBSSkCuuHznOOgeA0DrZOgCCgUKCkySxFwAAKy9pbGiqsQ4BexQSvMw6AIBQq5F0vHUI2KOQgEICwBq3bUAhAYUEgDkKCSgkYZZI5+okHWadA0Do8aQNKCQhd4okZx0CQOi9pLGhic0ZQ45CEm7crgEQBHGxsDX0KCThdoJ1AAAoYh1JyFFIwu1o6wAAUEQhCTk2xAqpRDoXkXS4dQ4AKPJtYatz7hJJdZI6JR0q6Yue53X6dX2UBjMk4XWQpAXWIQCg6NjGhqboXC/inLtS0n95nvclz/Ouk/RFSf8253QoOQpJeB1pHQAAJohL2t+H65w5cTak+H6dD9dFiVFIwutQ6wAAsIeED9fodM7d4ZyrkyTn3DpJLT5cFyXGGpLwopAACJqDfbjGByTdL6nDOfclSc2e513qw3VRYsyQhBeFBEDQzLmQFG/RXCPpp5KulHTB+GwJgo1CEl7rrAMAwB7mXEicc9dIavE87wIV/uK1XIUZEwQchSS8/Fg8BgB+mlMhKa4XqfM8705J8jyvxfO8k1VYV3K+HwFROhSSEEqkczFJy6xzAMAeDpzj969TYe+RPV07x+uiDCgk4VQvDtUDEDyr5/LNxZmRkyZZM3Ky53k/ncu1UXo8ZRNOq6wDAMAkljU2NNWkssmhOVzjAkmfcM61qTBbUifpKh+yocQoJOFEIQEQVKskbZ/tNxefsqGAVCBu2YQThQRAUM3ptg0qF4UknCgkAIKKQhJSFJJwWmkdAACmsMY6AGxQSMKp3joAAExhiXUA2KCQhNNC6wAAMIWodQDYoJCE0zzrAAAwBZ7+DCkKSTjVWAcAgCkwQxJSFJJwYoYEQFAxQxJSFJJwopAACCpmSEKKQhJO3LIBEFTMkIQUhSScmCEBEFTMkIQUhSScmCGBb2o0PGKdAVWFGZKQopCEE//DY05Oco89+v34Nb95fN67tp/cd1+/dR5UFWZIQoo/mMJp0DoAKs/RbmvzFbEbt78u8sBB89zIkZKOlKS67Q89tPXQVxunQxWhkIQUhSSc+BstpuUQ98y2K2I3PfnGyJ/WLnBDR0g6dM+vqX32kUO1zhuWc3GDiKg+/LkUUvyHD6cB6wAIrv3U+uxlsZsfOy/6+5WL3cAxkg6a6mtHpOHoyPAB0dHBJ0Zj848uY0xUL2ZIQopCEk7MkOAF6tW5+5LYLzdfEP1NXZ16j3NOa6fzfT2DkZ1O7oDFvU/vztceSiGBH1jbGFIUknBihgSqVU/ne2O/2vSOaNPCeuVPcE4zXggy2BtvlXTAiraHo/naF93NAWYjbx0ANigk4cQMSUgtUn/PO6N3Pvju2O01a9V2gnN61VyuN9AT65ak+rYNa1vW/Z0/IRF2rdYBYINCEk7MkITIPA0NvC366/Xvi96ig9yuE5zTaX5de6grNihJi3qfOUSel5dztX5dG6FFIQkpCkk4MUNS5WIaGT4v+vv1l0R/OXy4e/o453RqKcYZ7o6OOUlOcjXD3U8M1Sw9uRTjIFQoJCFFIQmnLusA8F9EY6NvjPzpwQ/Gft53jNvykojTy0o95mhvLDb+Q2RpvqW7deWJpR4S1Y9CElIUknDaaR0AfvG8v42s35iK3dx5knv86IjzTirn6GP9kQXj769s27iQQgIf7LYOABsUknDaYR0Ac3Nq5KGHL4/evPvUyMNHxNzY8VY53JBbMv7+iraH1lnlQFVhhiSkKCThRCGpQCe45seviN34zGsiDx4Sd6PHWOcZdBqIjLgV47+uGe6ud2OjT3mR6IGWuVDRRiV1WIeADQpJOFFIKsQR7qknr4jduPXMyP0HznfDh0s63DrTuO3R2I6IpwMmfmzBwO6n+hauoZBgttpT2aRnHQI2KCThRCEJsIPczu2XR29qflP0j2sWusEjJR1inWkyvQOx9riUmPixZR2PDvctXGOUCFWA2zUhRiEJoS1Xn9OdSOf6JC20zoKCNWrf2RD7+aNvjd6zfKnrf4n0wpmHIBruinbteZreytYNy5/e/zUmeVAVKCQhRiEJr50K6N+8w2K58m0fiN3y8Nuidy9dpp7jnNNq60wzMdwdH9zzY7X5Jw6Xx8m/mDUKSYhRSMLrWVFIym6JevPvid626Z2xO+evUucJzul060yzNdoVHd3zY9GxkfnR0cGHR2PzzRfdoiJRSEKMQhJeWyT9jXWIMFiogd53RO968D2x26L7q/VEP7dut+T1RCc9lXVx79OtHLSHWXrKOgDsUEjC61HrANWsRsOD50d/s/790VvGDnE7TnCu+sqf643Mm+zjK9o2cfIvZmuTdQDYoZCE1yPWAapNVKMj50buXX9p7JcDR7qnjndOr7DOVErRAbdoso/Xt27cr2Xdm8sdB9WBQhJiFJLwYobEB05jY6+P3L/hstjN3ce5J4+NOO8U60zl0ONc97xBt3Syzy3qezYhz+uUc3VljoXKNiCp2ToE7FBIwutxSZ4kZx2k8nje6ZGNmy6P3dRxinv0qKjzTrROVG5PxWO7akZUP9nnnORqhrqeGJpXG4pyBt9sTmWTY9YhYIdCElJbrj6nL5HOPSXpIOssleJl7pFHLo/dtPO0yKbDYm7sOOs8lrZHYu37e5ry7Jrarpbe3StfWs5IqHzcrgk5Ckm4PSIKyV4d47Y0fyj2s+3JyPqDa9zIUZKOss4UBIM9sV63l9m1+taNCykkmCEKSchRSMLtUUmvtw4RNIe6p7deEbtxyxsif96veH4Mj4zsYaQ72r+3z69o5+RfzBiFJOQoJOHGkzZFB7jdz1wWvfnxc6P3rlrsBo6WdLB1piDzJtkUbaKa4Z4VbmxkmxeJMQOH6aKQhByFJNz+Yh3A0ip17G6I/WLz30d/W7dUfcc5p/2sM1WKSFd0n4uhF/S3bu9btIZCgunoTmWT26xDwBaFJNzWSxqUNOkGV9WoTt0d74/dsunt0bsXr1DX8c7p1daZKlGsJ7LPs2qWdTwy3LeIk38xLQ9ZB4A9CkmIbbn6nKFEOrdequ4NvBapv/vd0ds3vCt2e80adZxYyefHBEVNb2TBvr5mZeuGFU8f8NoypEEV4HYNKCTQfarCQjJfg/1vj969/r3RX0UOdLtPqJbzY4KgMxLpWNyvSXdpnagu33y4PG9IztWUIxcqGoUEFBLoPusAfolrZOgt0XvWXxLNjRzqnjneOb3SOlM12haP7Vo4qEl3aZ0o4o3M4+RfTNN66wCwRyFBRReSqEZHzo7c92BD7Bf9x7itxzmnl1tnqnYt8Xj+iBEdMZ2vXdyzfXe+7rBSR0Jl65f0R+sQsEchCbktV5/TnEjnWqXJtwEPIqexsWTkrxtTsZu7TnTNR0ecd7J1pjB5xov1HynVTedr69s2xSgk2Id7UtnkoHUI2KOQQJL+JOls6xD7clpk00OXR29qe3lk8xFR551gnSesxnqiA9P92vq2jfs3H3peCdOgCtxpHQDBQCGBJP1OAS0kL3WPP3ZF7MZnT49sXBd3o8da54Hk8tGR6X7tor4dCXleh5xbVspMqGgUEkiikKDgdklfsA4x7ii3reWK2I3bzojcf9A8N3KENL31CiiPeFdkRl9fM5RvHppXx8m/mEyrWNCKIgoJJOkBSbslrbQKkHDPPnVF7KaWsyP3rV3gho6Qpj5JFrbmdUWiM/n62nxLz+5VJ5UqDipbUyqb9KxDIBgoJNCWq8/xEunc7ZIuKue4+6n12Q/Gfv7YedHf1y9x/cdKOrCc42PmPMlb0ONmtLPvyrYNiykkmMId1gEQHBQSjLtNZSgkK5RvvTT2y4cviP66rk69xzmntaUeE/7ZHY3uXtY9s6MGlrc/zGwXpkIhwXMoJBh3uyRP0j4PTZupperJvzd268aLonctrFf+BM6PqVxb47HWpX1aOJPvqRnuXe7GRrZ6kRgnKGOi5lQ2udU6BIKDQgJJ0parz9mZSOcelHSiH9dbpP6ed0bv3PDu2O3xtWo7wTm9yo/rwlZLPN519JBWz/T7FvTvfrpv0VoKCSbi6Rq8AIUEE92mORSSeRoauDD6m/Xvi96ig93OE5zT3/gXDUHQXBMfPG505oufl3c8Oty3iLtzeAEKCV6AQoKJbpV01Uy+IaaR4fOiv1//gWhu6Ai3/XjndGqJsiEAOoeiw05aPNPvq299sH47J//ieWOSmqxDIFgoJJjoHhX2BdjrNvIRjY2eFfnzhstiP+891j15bMTpZeWJB2uxrsjobL6vLt9yGCf/YoI/p7LJdusQCBYKCZ6z5epzRhPp3M8kXfLiz3reayMPbkzFbu48yT12dNR5Ly17QJibN8NN0cYVTv4deGg0toDddiFJ/24dAMFDIcGe/lsTCskr3MMPXx67afcrIw8fEXNjxxvmQgDM74rMrpFIWtKzvbWz7nA/46AyDUv6iXUIBA+FBHu6+3jX/OcrYjf1vTayPhF3o8dYB0IwjEqjS7pcrPB0+MytaNsUo5BA0q9S2WSrdQgED4UEL7Dl6nNGlam9X1KDdRYEy45YdOfKvGa0bfxE9W0bD2g+9C1+RkJl+pF1AATTrKdfUdW4v4sX2RKPt63o9uKz/f5FfTsPluexkDHcOiT9wjoEgolCgsn8XtIW6xAIlpZ4vHtp38wf+Z2oZijf4lceVKQbUtnkkHUIBBOFBC+WyXuS/sM6BoKlOR4fnjesZXO5Rl2+ucevPKhI3K7BlCgkmAq3bfACW+MxRcdmvkvrRPWtG+Y0w4KK9kQqm/yDdQgEF4UEk8vkH1bh1g0gSRrtj3hOMzvpd08r2jcf6lceVJzrrQMg2Cgk2JtvWgdAcMzviszued8J4iO9y9zYyBYf4qCyeKKQYB8oJNibn0l6xjoEgmFRl5v1I78TLezf9bQf10FF+V0qm3zSOgSCjUKCqWXyw5KutY4Be0PSYF1ezo9rLW9/ZMSP66CisJgV+0Qhwb5cK4nH9ELu6Xhsx9p2jflxrfrWDXNaGIuK0ynpBusQCD4KCfYuk98p6afWMWDryXi8Y1Xe82WGpLar5TB53qAf10JF+FYqm+y2DoHgo5BgOljcGnLN8Xjvsh7N9+NaEW+0Jjo68IQf10Lg9Un6unUIVAYKCfYtk/+jpL9Yx4Cdlpr48OL+ue3SOtGSnu0crhYO3+UgPUwXhQTT9S3rALCzLRaLzBvWcr+ut6JtEwd7Vr9hSV+xDoHKQSHBdP2npB3WIWBjdyQ6L+Kp3q/r1bduPMCvayGwfpzKJp+yDoHKQSHB9GTyg5KusY4BGzW9LuIk32Y1FvXvPFjeWJtf10PgjEm62joEKguFBDORlcSmViFUm3e+PGEz0byhLk7+rV4/S2WTj1mHQGWhkGD6MvkBSV+wjoHy6nOud3nenz1IJqrNN/f6fU0EBj8nMGMUEszUdyVtsw6B8nkqFtu5X7v/+4asbH2Qk3+r022pbPKv1iFQeSgkmJlMfkjS56xjoHyerIl3rOnwf4Zkefvmw+R5cz6wD4HzResAqEwUEszG9yVx/z8kmuPxvpV5z/efFfGRvjrnjW7x+7owdW8qm/yNdQhUJgoJZi6TH5H0L9YxUB5PxmOjdb3+7NK6p4V9uzhNurp81joAKheFBLN1vSRW0YfAtng8umhAS0tx7eUdm0dLcV2Y+EUqm7zNOgQqF4UEs5PJj0r6jHUMlN7uaHRhzbBWlOLa9a0bfNtsDaYGJf1v6xCobBQSzMVPJP3BOgRKq8/TIqfSFJLarpbD5XkDpbg2yurLqWySdWWYEwoJZi+T9yRdJolp9yq2tNvFnOT7xmiSFPHG4rHR/sdLcW2UzTax7wh8QCHB3GTy6yV9xzoGSiMfcfn6Lvm+B8lEi7ufai/l9VFyH01lk/3WIVD5KCTww6ck7bIOAf89FYvvWtuunlKOUd+2KV7K66Ok7kplkz+1DoHqQCHB3GXyeUlXWseA/1pqYp1rS7BL60T1bZsOLOX1UTLDkq6wDoHqQSGBX34k6XfWIeCv5njNQCl2aZ1oYf+uAzn5tyJ9M5VNbrYOgepBIYE/nl/gOmIdBf5picdGV+a9kt9SmTeY5wmNyrJDPPYPn1FI4J9MfqOkRusY8M/2eCxe26sFpR6Hk38rzlWpbLLLOgSqC4UEfvtnSc9ah4A/WqPRRQsHVVvqcVa2blhS6jHgm3tV2KkZ8BWFBP7K5Lskvdc6BvzRE4ksi4+q5LupLu94mJN/K8OgpEtT2ST/reA7Cgn8l8nfKm7dVDxP8iLDXq1T6WdI4iP9tc4b2VLqcTBn/5TKJjdZh0B1opCgVD4uiRX4FawtGmmt73ZlWyewsG/X0+UaC7Nyl6SvWodA9aKQoDQy+X5JF6mwVwEq0NZYvHV1h9dRrvGWd2wu6ePFmJMOSe/hVg1KiUKC0snk/6rCIldUoJaaWNd+7eor13grWzesLNdYmLEPprLJ7dYhUN0oJCi1L0m6xzoEZq45Hh9Y2+4NlWu8pV1PHsbJv4H076ls8gbrEKh+FBKUViY/JuldktizoMJsice91Z3lGy/ijcVjI5z8GzCPS/qgdQiEA4UEpZfJb5V0uXUMzMzTsVjNiq7S79I60ZIeTv4NkEFJF6ayyW7rIAgHCgnKI5O/XtIPrWNg+tqi0cVL+7SonGOuaNvIyb/B8ZFUNrneOgTCg0KCcmqQ9CfrEJievohbsWCo9HuQTFTftvGgco6HKd2Qyia/Yx0C4UIhQflk8gOS3iK2lg+8MWlsVFodG1VZn3xZ2N96gLyx3eUcEy/yhKQPWIdA+FBIUF6Z/DOS3qrC/WkE1M5odOfCQfU5lfeWjSTNG+x8stxj4jndkv6edSOwQCFB+WXyf1Th9g0Cams81rYyr1aLsevyT5Rt7xO8wIik81PZ5AbrIAgnCglsZPI/kPQN6xiYXHNNvHtNh5e3GLu+deNSi3GhS1LZ5O3WIRBeFBJY+qgK52MgYJrj8aG1ZdyldaLl7ZsP5eTfsvtsKpv8vnUIhBuFBHYy+RFJF0pqsY6CF9oaj2tthzdiMXZ8tL/WeSOsIymfH6ayyf9jHQKgkMBWJt8u6VxJbIgVIM/EovNWdXrOavxFfTufsRo7ZO4UT9QgICgksJfJPyTpbEk91lFQ0BGNLlnRJbNNypa3c/JvGWxU4YkaTuRGIFBIEAyZ/H2SzhOPAwdCv3Mrl/RridX49Zz8W2pPSzo7lU1yxhQCg0KC4Mjk75L0dhUeP4SRIWloTFo5f1jLrDIs7d5yuDyv32r8KtelQhnZbh0EmIhCgmDJ5G+S9F5JPGVh5NlYbKecc5Gx8u7SOlHEG4tx8m9JsNcIAotCguApHMT3IesYYbUlHmtf2uu1O6nGMseS7m0dluNXoTFJ701lk3dYBwEmQyFBMGXy35L0aesYYdRcE+9ZmVebdY76to2mhajKjEi6KJVNXm8dBJgKhQTBlcl/TtJXrGOETXM8PrymwzNf7FjftulA6wxVYlDSW1PZ5H9aBwH2hkKCYMvkPy7pausYYbItHo/s1+6ZnyezYICTf33QK+mcVDb5C+sgwL5QSBB8mfwnJH3cOkZY7IhF569tVyD2AeHk3znJS3p9KpvkeAZUBAoJKkMm/xVJ75M0ah2l2nVGIrWrOr1A/Gyo63zcfKamQrVKSqayyXutgwDTFYgfOsC0ZPLfk3SB2DytpAadW7msR/Osc0jSytYNnPw7c89Iek0qm3zAOggwExQSVJZM/kZJ54ht5ktiwLl+z7nliwe02DqLJC3veOQweV4gbh9ViK2SXp3KJh+2DgLMFIUElaewo2tSsn80tdpsj8V2SFLNsJZbZ5Gk2OjA0sgYJ/9O02OSXpXKJputgwCzQSFBZcrk/yzpdElsf+2jJ+OxDud5YxHPbpfWPS3s2/GsdYYKsEGFmRH+f0DFopCgcmXymyW9UtL91lGqRXNNvG9Zt3Y7KWqdZdzyjs0cI7B3/y3ptFQ2udM6CDAXFBJUtkx+uwozJf9lHaUatMTjI6s71W6dYyJO/p3SqKQrU9nkhalskjVVqHgUElS+TL5fmfzbVNhqnr9Nz8G2eCy6psPrts4x0dLurYdx8u+LtEo6K5VNftk6COAXCgmqR2Gr+beqcLw6ZmFXNLpgv3YvUI9VF07+7ePk3+fdL+kUNjxDtaGQoLpk8jdJerkkHnucha5IpG5NRzB2aZ2Ik3+f8wMVnqTZah0E8BuFBNUnk39U0ivEupIZG3RuVX3eC8yC1nGc/KthSZelssmLU9nkgHUYoBQoJKhOmXxPcV3JP0oaso5TCbqd65JzS5f1aL51lj3Vt206yDqDofGdV79jHQQoJQoJqlsm/1UVbuFsso4SdE/FY7skadGAllhn2dOCgbb95Y3tss5h4HeSTk5lk3+wDgKUGoUEgeOcu7L4utY5d+2cL5jJPyjpFEn/KgVvfURQPBmPd0pSfET1xlEmNX+wI0w7tg5L+hcVDsjbYR0GKIeYdQBgIufcNZ7nXTXh19c65+7wPO/MOV04kx+U9DFlan8h6YeSDp5b0urzRE28PzbqDTkFY9v4PdV1PtG/Y80K6xjlcL+k96ayyQ3WQYByYoYEgeGcq5N0UvHtuGslneGcW+fLIJn8byQdr0IpwQQt8fjoii7tdpKzzjKZ+tYHa60zlNiApKskvYIygjBihgRBc4qkdZLGj05vKb6t822ETL5L0nuUqb1Z0nVSMG9RlNv2WCy2apfXIWl/6yyTee7kX+eq8S9S90h6fyqbfMw6CGClGv/HRoXyPK/T87xlnuc9MOHDZxTftkz2PXOSyd8o6SWSbvT92hVodyy6aG27ArsFeWx0cElkbNj/3we2eiRdrsJTNJQRhBozJAi6T0i61PO8zpJcPZPfKemtytSeJekbko4oyTgVoCcSWba2fWybdY69Wdi389meJQceZp3DJ7dJuiSVTQb63zlQLsyQILCcc9dIusHzvOtKPlgmf5uk4ySlpeDOEpTSsLQ6iLu0TrSivSo24O2QdHEqm3wDZQR4HoUEgeScO19Ss+d5XyrboJn8kDL5ayQdJeknZRs3ANojkTY5t2Bllxe3zrI39a0bVllnmANP0n9KOiaVTf7AOAsQONyyQeA4586QpPGZkeJTN8s9zyvP+oFM/mlJ71Cm9lpJ31Rh5qSqbYvHdktaUdurhdZZ9qZ48m+vnFtknWWGbpX0T6ls8q/WQYCgYoYEgeKcO0nSSZIecM6tKz7ue4mk9rKHKTwi/FJJH5bUWfbxy6glHu+SpAWDWmqdZW+cvGhspO8J6xwz8AdJr01lk2+kjAB7xwwJAqM4E3KXCo/4XjPxc2W9dTNRJj8q6RvK1F4v6SMqlJNA/6E9G8018QFJio9qpXWWfVnavbWzffkx1jH2ZZOkT6ayyZ9bBwEqBTMkCIwJj/26PV/W2ZTJdyiT/2dJCUmfk9RlG8hfT8bjYzXDXp+rgLIV8JN/n5T0vySdQBkBZoZCAsxEoZh8WtIhkj4vqds4kS+ejsXiK/Nqtc4xHSvaNgVx2/+dkq6QdFQqm7w+lU0G+mklIIi4ZQPMRibfLulTytT+X0n/KOlDUvBOyZ2u1mhk8WGdXqekg6yz7MuCgfb95I3tlIusts6iwtqir0j6Wiqb7DXOAlQ0CgkwFy8sJh+R1KAK3Iq+NxJZsbbdq5g9MeYPdGwZWLDCspBslNQo6ccUEcAfFBLAD4Vi8mllaj8n6UJJKUmvsA01PWPS2Ki0er82r9k6y3TV5R/v37Gg7Cf/Dkv6H0mNqWzyd+UeHKh2FBLAT5n8oKTrJV2vTO1JKhSTf5C0wDTXXuyORnfLudWrO62TTN/K1gdrd6w5tVzDPa3CqdP/lsomd5RrUCBsKCRAqWTyD0h6nzK1H5d0sQq3cwJ3DsvWeKxV0uoVAd+ldaJlHY+W4+TfJknflnRzKpscKeE4AEQhAUqvcDvnX4vrTM6S9H5JZysgsyYt8Xi3JC3tU8Xsflo8+ffxsWjN4T5fukvSjyR9O5VNbvb52gD2gkIClEsm76mwhfitytQulvR3Kqw3eYOk+Vaxmmvig5I0f0h1VhlmY1Hfjh3dSw7yo5B0SbpF0k2ScqlsMpSHKwLWKCSAhUy+R4UD/H6iTO0SSW9WoZy8XtK8ckbZEi/cqYmNVdbTQcvbH1b3klk/pfyspJ9LulHS3alscsi3YABmhUICWMvkuyX9WNKPlamt1fPl5AyVoZw8E4vWLBzw8k6qLfVYflrZumH11oPfMJNveUyFAnKTpPtS2aRXilwAZodCAgRJJp9XYQ3Dj5SpXSDpNEmvk5SUdLKkqN9DtkejS1a1qVUVVkiWdG87dB8n/3qS/qxCAbmJNSFAsFFIgKDK5Psl3Vl8qTh78loVysnrJB3rxzB9ztWv6fSe9eNa5eTkReMjvY8PxxefWPzQmAqH2v2++Pp1Kpt82iofgJmhkACVojB7cnPxJWVqV6tQTl4l6URJx0taPJNLDkvDY9Kqte2qmE3RJsgvb9/8552rX/ZLFQrIH1LZZN46FIDZoZAAlSqT36nxhbGSlKl1KuxzcoIKBWX87QFTXWJHLLZTzh2wtn0s6PtstEvaIOl+SX8pvn3i/BuvYh0IUCUoJEC1KDxW/Hjx9dPnP167QoVycrykdZIS468t8Vi7pANWdXquzGn3NCJpm6SW4qt5wvstRz+yudMuGoByoJAA1S6Tb1Nh19GmPT/1yFcPrJN08FDMrZC8AyWt3uNVp8KTPjV7ee250HZUUp+k3gmvjuKrfcL7uyQ9qULp2Hb0I5uDPksDoISc5zHjCWD2Nh91dESFYhKXNHT0I5sHjSMBqEAUEgAAYK6UB1MBAABMC4UEAACYo5AAAABzFBIAAGCOQgIAAMxRSICQcc7dYZ0BAPbExmhAiDjnzpd0hnGGa6Tnzs5p9zzvp3v7egDhQCEBQsI5VydpufH4d0l6ned5nc65k1Q4k8Z623oAAcAtGyA8LpT0X4bjXyPpBs/zOiXJ87wHJJ1pmAdAgLBTKxACzrkzVDgzpl1Sh+eV/zA955wn6dDiL9d5nndnuTMACC5mSIBwqPM8r8VqcOfcuuK7J6lwYF+Lc+7aYlECANaQANXOOXeJ53nXGccYLySdxVs1cs5dpcJpv8vMUgEIDGZIgCpWXDj6F+scEzyXpbiWpI5ZEgASMyRAtVsu6aQJf+gfKknOuSsltZTxkdupbhd16vnZEwAhxqJWIETGH7U1WtTaLOmC8Vs2xY95kk6e+DEA4cQtGyAkipuifaL4/jUGt0qukvS2PfLcSRkBIDFDAqCMnHOXqPCUjSSt8DzvKsM4AAKEQgIAAMxxywYAAJijkAAAAHMUEgAAYI5CAgAAzFFIAACAOQoJAAAwRyEBAADmKCQAAMAchQQAAJijkAAAAHMUEgAAYI5CAgAAzP1/ZlcYDWuSUDMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFhCAYAAABAjrEyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1Z0lEQVR4nO3deXhU5d0+8PucmUkmC2SSECCQsAwIIiRIUOuCYhFcUZBF37rVpWL7Wtda0F/Fbm+lpLa1VatEEapVq+DWal0I1doWFTUggoCYsGQjkGWyZzLb748osoUkM+fM9yz357q4kDA556YNw53nec7zKJFIJAIiIiIiQap0ACIiIiIWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInEsJERERCSOhYSIiIjEsZAQERGROBYSIiIiEueUDkBE1lRUVASfzwePx4PS0lLcc8898Hg80rGIyKBYSIhIc4WFhViwYMGBAuLz+XDjjTdi1apVssGIyLA4ZUNEmluzZs0hoyEejwc+n08sDxEZHwsJEWnO4/FgxowZB0pIWVkZvF6vbCgiMjQlEolEpEMQkbX4fD5MnjwZZWVlWLhwIUaNGoUFCxZIxyIiA2MhISJdFBUVYc2aNVi9ejWmT5+OVatWcVErEXWLhYRISGFh4SGLPhcuXCgbSEOLFi3CjBkzMH36dJSVlWH+/Pnw+XwoLS2VjkZEBsU1JEQCCgsLAQALFizAggULUFBQgJtuukk4lTbKysrg8/kwffp0AIDX68Unn3wCj8eD1atXC6cjIqPiCAmRgPT0dOzcufOQKQxFUWCFv47FxcVYs2YNli5desjHi4qKkJGRgXnz5gklIyIj4wgJUZx9PYJwtPUUxcXF8Q+ksenTp6OkpOSIx3w/+eQTlhEi6hY3RiOKs7KysqN+3Ep7daxatQpLlixBZmbmgT/X4SMmREQHYyEhMoiMjAzU19dLx9CEx+NhASGiPuGUDZFBWKWMEBFFg4WEKM6627HU5/NxN1Misi0+ZUMkID09HZ988skhBcQqT9kQEUWDIyREAu65555DnqhZvXo1t1YnIlvjCAmRkMLCwgMjJB999BEXgRKRrbGQEBERkThO2RAREZE4FhIiIiISx43RiOgIkUgETR1BNLYF4GvvhK8tAF97AI3tAfgDIYQjEYTC+OrnCE5td0JRANWhQFVVOFwKhtV9CCUpCWpyMtTkFKgpKVBTkuHMyIAjLU36j0hEBsNCQmQzncEwyhvasLuuFbtqu34ub2hHXWsnGts64WsPoLkjiFC498vLfuxLOuTXqkOBa+3ibl+vJCfDNXgwXIMHw5k9GK7sIXBlD4Zz8GC4srPhGjwYanJy1H9GIjIfFhIii6rytWNLVRN21rZgV11X8dhd14bqxo4+lY1oOJzKMX8/0taGzrIydHZzrg8AqGlpcA0ZAveYMXCPPwHuE06Ae9w4qCkpWsclIgNgISGygKaOADaVN+LTCh827PFhU4UP+5r9YnmcztiXp4UbG+FvbIR/61Y0vvpq1wcVBQnDh8N9wriugvLVD8dRTk4mInNhISEymVA4gi1VjdhY7sPGch8+LfehrLYVRnqA36HXO0skgs5du9C5axea/vHGgQ+7hgyBe/wJSJpUgJQpZ8A9ZoxOAYhILywkRCZQXt+Gf32xH//esR/vl9ahqSMoHemYHI743i9QVYVAVRWa1xQDhYBz0CCkTDkDqVOmIOW00ziCQmQCLCREBtQZDOPDnXVYu3Uf3t2+D7vq2qQj9Um8C8nhgjU1aHzxJTS++BKgqnDnTUDqlDORMuUMJOXnQ5EOSERH4E6tRAbR1BHAmi01KN5ag3/vqEWL39ijIAc7/CmbrEEO5D3/faE0x6ampSHl1FORevbZ6DdjBhypXCRLZAQsJESCAqEw/rV9P17eUInirTXwB8PSkaJyeCEZPFjFCX/9gVCa3lOSktBv2jSkzZ6FlNNP58gJkSBO2RAJ2Fjuw8slFfj7pmrUt3ZKx9GcQzVHsYq0t6Pp9dfR9PrrcGQNQNpFM5E26xK4x42TjkZkOxwhIYqT8vo2vLKhEi9vrETZ/lbpOJo6fIRk2JAwRj97i1Ca2CWOGYO0WZeg/8yL4Ro0UDoOkS2wkBDpKByOYM3WGqz87y58sLPOUI/maunwQjJiSADeZ2+XCaMlVUXKqafCM28u+p13Hqd0iHTEKRsiHbR1BrHq4wqs+O9O0z0howUHQtIRtBEOo3XdOrSuWwfX0N8h47vfhWfeXG5rT6QDjpAQaai6sR0r1+3CX9eXo7E9IB0nbg4fIRmT3YKc5xYJpdGXIy0Nnu/8DzKuugrOAQOk4xBZBgsJkQY+q2jE4/8uwz8+q0ZQ53NijOjwQnL8IB+GPP8ToTTxoSQkIG3WLGRcdx0SvSOl4xCZHqdsiGLw3y9r8Ye1O7B+Z710FENRI9YfHYp0dsK3ahV8q1cjddo0ZN5wPZILCqRjEZkWCwlRFDZV+LD0zW3475d10lEMyRGyfiE5IBJBy9q1aFm7FkmTJiHr1luQctpp0qmITIeFhKgPSve34IG3tuONzXuloxiaErLe3iq90b5hA/Zcdz1Spp6FQT/+MRJHj5aORGQaLCREvVDd2I7fr/kCL5ZUImTDNSJ9pdpphOQoWv/1Hsr+81945s1D1q23wJmZKR2JyPBYSIiOoaG1E4+88yWe/mC3abd1l6AG/dIR5IVC8D3/PJpeew2ZN34PGddeC9Xtlk5FZFiqdAAiIwqGwih6rxRnFb6DJ/6zk2Wkj9Rgh3QEwwi3tmL/g39A6fkXwPfKK+CDjURHx0JCdJj1O+tx0R//g/v/sQ3NJjpx10jUAEdIDhfcuxfVd9+DnXPnovWDD6XjEBkOCwnRV+pa/Ljz+Y24bNn72F7TLB3H1NRAu3QEw/J/vhV7rr0WFbffgWA9Hxcn+hoLCREAbPgLUp4+H299tkc6iSUoHCHpUfObb6Js5sVoeuMN6ShEhsBCQvbWsAt4ahbw6s1w15Rg+cj3pBNZguq33/k90QjV16PyjjtRcdvtCNZxTxuyNxYSsqdwCFj3MPCn04Cydw98+FtVT2FqZoNcLqtgIemT5rfeQtnMi9H4+uvSUYjEsJCQ/dR+CTwxHXj7J0Dg0H84lZAff0x9WiiYdXCEpO9CDQ2o+tFdqLjlVgRra6XjEMUdCwnZy2ergaKpQFVJty9Jq/kA93s/i2Mo61E7WqUjmFbzmjVdoyWvcbSE7IWFhOwh0AH8/XbgxRuAzpYeX/4/DUUYkcS9NKLGQhKTkM+HqrvuQvkPf4hgA6cQyR5YSMj66kqB5dOBT1b0+lPU9jqsGPo3HUNZm9LOQqKFluK12HnpHLRt2CAdhUh3LCRkbZtfApZNBfb2fQpmZMUr+O6QSh1CWZzCKRstBffuxe5rvov6P/9ZOgqRrlhIyJqCfuD1HwGrrwM6o9/k7CeRIqQ4uG18XzicfFvRXCCAmiW/RsVttyPU0vOUI5EZ8Z2DrKd+J7B8BvDREzFfKqFhB4q8/9YglH04nYp0BMtqfust7Jo3H/7SUukoRJpjISFr+fzVrima6k81u+Tp1X/GGemNml3P6hwsJLrq3LULuy67HM3//Kd0FCJNsZCQNUQiwNuLgReuAfzalgcl2IGH0/6i6TWtzOGQTmB94dZWVNz8Q+x/5BGeHkyWwUJC5hcKAC8tANb9UbdbpO/9L345cotu17cSJwtJfEQiqH3oYVTeehvCrVxETObHQkLm5m8BnpkPfPaC7re6snEZctw8NK4nHCGJr+Y1a7D7u9dyvxIyPRYSMq+W/cDKi4Cyd+JyO7WtFitzX4vLvczMoXAKId46Nm/G7iuuRKC6WjoKUdRYSMic6su6nqSp3hjX244qfwlXZlfF9Z5mo6p8TFpC586d2HXFlfCXlUlHIYoKCwmZT9UGYPm5QMPOuN9aQQT34XEkOUJxv7dZcIRETrC6GruvvArtn22WjkLUZywkZC6l/wRWzgRa94tFSGzYjse868Tub3QOsKxJCjU0YM93v4vWDz6QjkLUJywkZB6bXgCeuaxXh+Pp7azqlfiWp0k6hiGxkMgLt7WhfMFNaFqzRjoKUa+xkJA5rHuo69HecEA6CQBACbbj0fRnpGMYkoqgdAQCEOnsROXtd8C3erV0FKJeYSEh4/vPg8Db9wIw1tqEjOp/46cjtkrHMBw1zEJiGKEQqu9djLrly6WTEPWIhYSM7eMVQPFPpVN065rmZch2d0rHMBRHhIXEaPb95gHUrVgpHYPomFhIyLg2vwi8fqd0imNytO7DytzXpWMYimqQaTU61L7CQvheelk6BlG3WEjImHasAV66CYgYf0+LMeWrcXn2XukYhqGGWEgMKRJB9eLFaF67VjoJ0VGxkJDx7H4feP5qwyxg7YmCCH6uPI5EbggGAFBDnMIyrFAIlXf+CK3r10snIToCCwkZS/Um4NnLgWC7dJI+cddvxaOj3peOYQhqiOf9GFnE70fF/96M9i08LJKMhYWEjKP2S+AvcwB/o3SSqHx77wqclNYsHUOcGuQIidGFW1pQfuMC+HfGf7djou6wkJAxNFYAT88W3YE1VkqgDY9lPicdQ5wa6JCOQL0Qqq/HnhtuQGAv1z+RMbCQkLzWWuCp2UBjuXSSmA2oehc/GbFdOoYohYXENIJV1dhzw/cQbGiQjkLEQkLCAu3AX+YCdTukk2jm+uZlGJxo32kLjpCYS2dpKcpv+j7Cfq79IVksJCTrtTuA6o3SKTTlaN2LFcPelI4hRvWba0EyAR2bNmHvT38mHYNsjoWE5Hz0BPCpNddcHF/xAuYOqpGOIULpZCExo8ZXXkH9s89KxyAbYyEhGeUfAW/eI51CN0okjP9zLodLNdb5O/Gg+NukI1CUapb8Gm0bNkjHIJtiIaH4a9kPvHANYPENtJLqNuMR74fSMeJO8bdKR6BoBQKovO12BGtrpZOQDbGQUHyFQ8Dq64DmKukkcTGjZjkK0lqkY8SV2s4REjML7tuHittvRyTIQxIpvlhIKL6Kfwbs+rd0irhRAq14LPN56RhxpXRwhMTs2j/+BDWFhdIxyGZYSCh+Pn8VWPdH6RRxN7BqLRYOt85jzT1qt9eIkFU1PPU0Gv/+mnQMshEWEoqP/V8Ar9wsnULMTa3LkJVg7TUzAKCo3DreSqrvuw8d2+290R/FDwsJ6c/fAjx/FdBp33NeHC1VWDH8bekYunO6+JZiJZH2dlTccitCzfb9u0vxw3cP0t/fbgFq+V3W+IrnMWvQPukYunI4+ZZiNYE9e1Cz5NfSMcgG+O5B+tryCrDlJekUhqBEQljisvbeJA6HdALSQ+NLL6HlvfekY5DFsZCQftrqgX/8WDqFoSTXfoY/etdLx9CN06lIRyCdVC++j1M3pCsWEtLPm/cArdaeoojG+fuWI6+fNR+NdVh49MfugjU1nLohXbGQkD52rAE2/VU6hSEpnS14POsF6Ri6YCGxNk7dkJ5YSEh7/uauU3ypW4Or1uBHw0ulY2jOwXcUy+PUDemFbx+kveKfAY3l0ikM7wdtjyEzISAdQ1MOJSwdgXTGqRvSCwsJaWv3OuCj5dIpTMHZXIkVw4ulY2hKVULSESgOOHVDemAhIe0EOrr2HAHXEfRWXuVzmJllnZNVHeAIiV1w6oa0xkJC2nn3fqDuS+kUpqKEg1jqftIyUx0O8IRYuwjW1GBf4W+kY5CFsJCQNqo2AOselk5hSin7N+JBb4l0DE2oEU7Z2InvxRd51g1phoWEYhcOA3+7FeA/RlGbWfs4xqW2SceImSPCERJbCYexb2mhdAqyCBYSit1nq4C9m6RTmJrib8byQaulY8RMCVvrqSHqWeu6dVzgSppgIaHYBDuBd34lncIShlS+iduGlUnHiImDhcSWagoLEQlxhJRiw0JCsflkBeDbLZ3CMm7pWIZ0l3mnPdRQp3QEEtD5ZSl8q8w/wkeyWEgoev4W4D2usteSs6kcT45YKx0jaiwk9rX/oYcQarHmGU0UHywkFL33HwFa90unsJwTK5/B+Vl10jGiogZZSOwqVFeHuscfl45BJsZCQtFprQPWPSSdwpKUcBAPuFdAUcy3wZwa7JCOQILqV65EoKpKOgaZFAsJReffDwCd3KVRL6n7S/B77wbpGH2mBPzSEUhQxO/Hvt8/KB2DTIqFhPrOV87zauJgVu3jGJPSLh2jT9QAR0jsrum119C+eYt0DDIhFhLqu3fuB0L8Tlhvir8RTw5+UTpGn6id5ipQpINIBHVFRdIpyIRYSKhv9m0FNv1VOoVt5FT+Az/I3SUdo9cUFhIC0FxcjM7d3A6A+oaFhPrmn/8HRKxxEJxZ3OlfhjST7E2i+llICEA4jLoVK6RTkMmwkFDv1e4Atr0uncJ2XE27sXzku9IxekXxm/88HtJG48uvIFhnzsfXSQYLCfXe+iIA5nsU1QomVzyNczLrpWP0SOngxljUJeL3o+GZZ6RjkImwkFDv+JuBjc9Jp7AtJRzAgykrDb83icpCQgdpeOZZhNs4aka9w0JCvbPxWe47Iqzfvo/xm5GfSsc4tvYW6QRkIKHGRvhWm+tJMZLDQkI9i0S+mq4haXPqi3Ccgfcm4ZQNHa7+z3/mScDUKywk1LPStUDdl9IpCIDa4cPy7FekYxyVw6lAiRh7SoniL1BZiaY33pSOQSbAQkI9+5CjI0YyrOLvWJCzRzrGERwuvp3Q0dU9yZ2dqWd8B6Fjq98JfLlGOgUd5seBIqQ4jTUM7nAo0hHIoPyfb0XbRx9JxyCDYyGhY/voCW6EZkCuxjI8OfJf0jEO4XSykFD3fK+8Ih2BDI6FhLrX2QpseFo6BXXjlKqncHZGg3SMAxwO6QRkZM1vvY1wBw9fpO6xkFD3Nj0PdDRKp6BuKKFO/LHfU9IxDnCoXNBK3Qu3tKC5eK10DDIwFhLq3vrHpRNQD/rXfIil3k3SMQCwkFDPGl99VToCGRgLCR1d1UZg3+fSKagX5jcUwZssPxTOQkI9aV23DsH9+6VjkEGxkNDRbXlJOgH1ktpejyeHyH/n6QAXP1MPQiE0vsYDOunonNIByKA2vyydgPpgRMWruH7o6XiyMlcsg0Mx1mPIZEyNr76KzOuu1fSaixYtwqhRowAAGRkZmDdvnqbXp/hgIaEjlX8ENBpv4y06trtDRXje8XO0hmQGPlWwkFDP/Nu2oWP7drjHjo35Wj6fD+eccw7Wrl0Lj8eDkpISTJ48GRHuGGxKnLKhI3G6xpQSfKV43Pue2P0dERYS6p3GV7SZYly0aBEuv/xyeDweAEBBQQHWrOFGjmalRFgl6WCRCPC7E4DmKukkFIWIIxFXJz6I/9SnxfW+P/YlYUx2M3Keuzuu9yVzcmZlYfS770CJcfMaRVFQWloKACgrK8P06dO1iEdCOEJChypfzzJiYkrIj4f7y2xmp4aDIvcl8wnu34+29etjukZZWRkAoKSkBD6fD16vFzfddBOKi4u1iEgCWEjoUNu5At7sPHvX4VfezXG/ryMciPs9ybxa3n03ps//upB4PB4UFBTA6/Vi6dKlmD9/vgbpSAILCR1q2z+kE5AGvtNQhGFJ8d2bRGUhoT5oeVebs5hOOumkA//t8Xjg8/k4SmJSLCT0jdodQN0O6RSkAbW9FitzXovvPYOdcb0fmVvn7t3w79wZ9ed7vd6jftzj8RwYPSFzYSGhb2zjdI2VjCx/GdcMid96IDXEQkJ90/Kv6EdJvF4vvF7vEeXD5/MdMmpC5sFCQt/YzukaK1EQwU8iRUhyxOdxXDUov309mUsshQQAli5diueff/7Ar1evXo3p06ejoKAg1mgkgBujUZd2H1DxkXQK0lhiwxco8v4XV+84S/d7qUG/7vcga2n/+BOE29uhJiVF9fnz5s1DfX09CgsLAQB1dXXch8TEWEioS/l6IMKzSKxoSvVKnJY+Ee836Ls3iRpgIaG+iQQCaPv4E6SeOSXqayxYsEDDRCSJUzbUpfwD6QSkEyXYgUfSntH/PgFO2VDftb7/vnQEMggWEuqy50PpBKSjjL3/wc9GbtX1Hoq/TdfrkzWxkNDXWEgICAWAyk+kU5DOrml8DEPd+k2rKIF23a5N1uXftg3BhgbpGGQALCQEVG8CgvzHxOrUtv1Ymavfo91qB7+GKAqRCNo+5AgtsZAQwPUjNjK6/EVckV2ty7XVjlZdrkvW177pM+kIZAAsJATsYSGxCwUR3KcUwa3qsDcJ15BQlDo+/1w6AhkACwl1PfJLtuGu345HR2lfQtX2Fs2vSfbQsVXfBddkDiwkdtewC2jZK52C4uzsvStwiqdJ24tyyoaiFG5sRGdFhXQMEsZCYnd83NeWlEAbHk1/TrvrKYDayX1IKHodWzhtY3csJHbHBa22lVn9LywesU2TazlcfCuh2HAdCfFdxO44QmJr1zYvQ7Y79lN6nU5FgzRkZywkxEJiZ6EgULtdOgUJcrTWYGXuG7Ffh4WEYsRCQiwkdubbDYSD0ilI2JiKVZg/OLaFzQ4HCwnFJlRXh0BNjXQMEsRCYmcNO6UTkAEokTB+6XgCiWr0pz07HBENE5FdcWGrvbGQ2Fk9Cwl1cdd9jke80S9wdvCdhDTAaRt749uIndWXSScgAzmnZgUK0qLb3MwRw+gK0df8X34pHYEEsZDYGQsJHUQJtGJZZnR7kzgUTtlQ7ILV+pyzRObAQmJnnLKhw2RVvYO7h3/R589zKBwhodgF9nLXaDtjIbGrcLhr23iiw9zYugwDEwN9+hwVOhzWR7YT3L8fkSCf/LMrFhK7aqoEQn7pFGRAjpZqrBz2Zt8+h4WEtBAOI8hHf22LhcSu+MgvHcO4iucxZ9C+Xr/eEeF3taQNTtvYFwuJXXFBKx2DEgnjV64n4FJ7t1hVjXCEhLQRqGYhsSsWErtiIaEeJNVuxsPe9b16rSPStzUnRN0J7uWTNnbFQmJXXNBKvXDuvieQ37/nvUnUEAsJaYMjJPbFQmJXbfXSCcgElM5WPD7ghR5fp4ZiPzGYCOAaEjtjIbErf7N0AjKJQVXFuGv4sXfQVMMsJKQNbo5mXywkdtUZ3RbhZE/fb1uGrITup2XUIAsJaYMjJPbFQmJXHCGhPnA2V+LJ4W93+/tqgHvakDZCTU3SEUgIC4ld+TlCQn0zoeKvuHjg/qP+nhLsiHMasqxgkLu12hQLiR2Fw0CgVToFmYwSCWFpwpNHPbdGDbCQkHbCHRxxsyMWEjvi+hGKUnLtp3ho1MdHfFz1twukIauKdLKQ2BELiR2xkFAMLti/HOP7HTrCpnCEhDQU6eDXkx2xkNgRF7RSDBR/M54YuOqQj6n+NqE0ZEWcsrEnFhI74oJWilF25du4fdhBxw+wkJCGIn6OkNgRC4kddXKEhGL3w/bHkO7qehqCIySkpTCnbGyJhcSOOEJCGnA2V2DliDUAAKWdX1OknYifUzZ2xEJiRwF+N0vayK98Dhdk1ULp4NcUaYcjJPbEQmJHqkM6AVmEEg7iN+4VUDpZSEg7ES5qtSUWEjtyJkknIAtJ3b8B7ecWSMcgC4kEeDaSHbGQ2JHLLZ2ALObN04NQhgyWjkEWoSQmSkcgASwkdsQREtLYCHRi1aUDpGOQRahJydIRSAALiR1xhIQ0ll9fhRf6b4NvxmTpKGQBajK/abIjFhI74ggJaez4vduRoCbg3kmlULI4UkKxUZM5QmJHLCR2xBES0pgr1InjU3Oxz9GC1+cOlY5DJqcm8ZsmO2IhsSOOkJAO8tWu72pXpm9By9RJwmnIzBSuIbElFhI74ggJ6SC//ZsTgH96yh4o6R65MGRqagoLiR2xkNgRR0hIB3n7vjlsr9zZiHfmegXTkJlxysaeWEjsyJkAKNytlbSVU78HGYnpB379p6xN8J+aJ5iIzEhJSIDi4PuTHbGQ2JWL34GQ9vKTD90c7RdT9kHplyqUhsyIT9jYFwuJXbn4l560lxc69DvbHa46rJ97vFAaMiOFe5DYFguJXfUfIp2ALCivqfaIj/0meyOCBScIpCEzcqR5pCOQEBYSu/IMk05AFpRXvQ2qcuTbypJv+6BwoSL1gmsIv1myKxYSu2IhIR2kdjRhZMqR/6B8lrAPm+ZwgSv1jIXEvlhI7CotVzoBWVSeK/2oH79/2AaEJ4yJcxoyG9dQFhK7YiGxK46QkE7y/J1H/XgIEfzuXD+UhIQ4JyIz4QiJfbGQ2JWHIySkj4l1ld3+3vrESnwx+8T4hSHTcQ3lWUh2xUJiVxwhIZ2MrtmOpGPsBvxz76fAmJFxTERmwhES+2IhsSt3GpCYJp2CLMgRCeGElJxuf79TCeFPF6qA0xnHVGQGanIynOlHX4NE1sdCYmccJSGd5CvHPsDx3aTdKL+4IE5pyCy4oNXeWEjsjOtISCf5rU09vmbxmM+gjODXIH3DNYTrR+yMhcTOOEJCOsmrKe3xNW1qACsuSQZUvg1RFy5otTe+E9gZ9yIhnQxqrMJA94AeX/ePlFLUXDA5DonIDFhI7I2FxM4yR0knIAubmDSoV6+7d8JWKEMG9/xCsrzEMdw4z85YSOxsCBcVkn7ygr17XaPagRcuzdQ3DJmCe8J46QgkiIXEzvoNAvp3/3gmUSzyfPt6/dpV/bej4VxO3diZKyeHj/zaHAuJ3Q3lKAnpY/zerXAqvd9rZPGJpVAG9rzuhKzJPWGCdAQSxkJidzknSScgi0rqbMPo1N4vUtznaMFrc7io0a6S8lhI7I6FxO6Gcpic9JPn7N+n1/85fQtapk7SKQ0ZmXs8C4ndsZDY3ZBJgOKQTkEWld/h7/Pn3HfKHijpHu3DkHEpChe0EguJ7SWkAFnHS6cgi8qv3d3nz6lwNuKduV4d0pBRJYwYAUdqqnQMEsZCQkAOp21IHyP3fYl+rr7/Q/OnrE3oOC1fh0RkRFzQSgALCQFcR0K6URDBhJToFqr+8owaKP34XbMdJHG6hsBCQgAwlE/akH7yIglRfd4OVx0+nMvpRDtw5+VJRyADYCEhYOA4wJUinYIsKr/FF/XnPpC9EYHJJ2gXhgxHSUyE+wT+f0wsJAQAqgPIniidgiwqr3p7TJ+/5NuNUJKSNEpDRpN88slQ3W7pGGQALCTUxTtVOgFZVEZrLXKSoz88b7OrBpvmckjfqlLPOlM6AhkECwl1GXuBdAKysLzE2LaEvz93A8ITeBKsFaWedZZ0BDIIFhLqkj2RB+2RbvIDoZg+P4QIfneuH0pCdAtkyZhcw4chYcQI6RhkECwk9A2OkpBO8hv2xnyN9YmV+OLSE2MPQ4aRehaniukbLCT0DRYS0snx1dvgUl0xX+fnIz8FxozUIBEZAadr6GAsJPSNEWcCiX07DI2oNxJCfhyfmhvzdTqVEP50oQo4nRqkIklKUhKSTzlZOgYZCAsJfcOZAIw+RzoFWVS+qs2uq+8m7caeSwo0uRbJSTnlFKiJidIxyEBYSOhQYy+UTkAWldfeqtm17jvuMygjYh9xITkpUzldQ4diIaFDHTcDUDkcTtrL379Ts2u1qQE8eUkyoPItzKy4oJUOx7/NdKikdGDYadIpyIJy63YhPSFNs+u9kVKKmgt5MKQZJYwehYSc6A5dJOtiIaEjcdqGdJKXPETT6907YSuUodmaXpP0lzZzpnQEMiAWEjrS8SwkpI+8sEPT6zUqHXh+doam1ySdKQrSLr5YOgUZEAsJHSl9BDCYZ4eQ9vKb6jS/5ur+21F/7kmaX5f0kTx5MlxDOV1DR2IhoaM78UrpBGRBedXboEDR/Lr3TtoBZWBs5+VQfPS/hKMjdHQsJHR0+ZcDDu4RQNrq19GIESnariMBgFq1FX+fw++6jU5JSED/88+XjkEGxUJCR5ecARx/kXQKsqC8hHRdrvtU+hY0nz1Jl2uTNlLPmQZHf+4GTUfHQkLdK7hGOgFZ0MTOoG7X/unJe6Cke3S7PsUmff586QhkYCwk1D3v2YBnmHQKspi8ugrdrl3hbMQ/53p1uz5Fz5WTg+TTuMcRdY9bclpQYWEhAKC0tBQAsGzZsugupCjApGuAd/5Pq2hEOK7mC7i9I9ER8uty/UezNuG00/Lhfn+TLten6HjmzoGiaL+gmayDIyQWs2jRIixcuBALFy48UERmzJgR/QUnfxdwJGiUjghwhoM4QYOTf4/l51P2QunXT9d7UB84HEibM0c6BRkcC4mF+Hw+lJSUwOfzHfjYTTfdhOLiYpSVlUV30dSBwLhLtAlI9JV8JVnX65c66/HB3LG63oN6L/Wss+AaNEg6BhkcC4nFfPzxx4eUD6+3az794JLSZ6csiDEV0aHy2pp0v8dvszciMPkE3e9DPcu8/jrpCGQCLCQW4vF40NDQgIKCggMfKy4uBvBNMYnKsG8B2RNjjUd0QH5NaVzus+TbjVCSkuJyLzq6pEmTkHzyydIxyARYSCxuyZIlWLZsGTweT2wXOvlGTfIQAcBgXyUGujN1v89mVw0+nTtB9/tQ9zJv5HsH9Q4LiYUtWrQIl19+ORYs0GDKJW8+kMytuUk7eUnxWVPwq5wNCOeNicu96FCJxx2H1G+fLR2DTIKFxKJWr16NUaNGYeHChdpc0OUGzrhNm2sRAcgLxucR0IgC/HZGB5REHoUQb5k3fo+P+lKvsZBY0NfrRr4eGfH5fNE/ZXOwU24EUrlSnrSR37g/bvf6KLEK22dzHVQ8uYYORf8LL5SOQSbCQmIxJSUlKCkpQUFBAcrKylBWVoaioiJkZGTEfnFXEjDlztivQwRgfPVWOBRH3O73i5GfIjKWu7jGS8b110Fxcu9N6j0lEolEpEOQNnw+H0aOHHnUR3w1+7856Af+OAloqtTmemRrc/Om4IuWPXG739T24bj54d1AUL/zdAhwZGZi9NpiqG63dBQyEY6QWMjXj/1GIpEjfmjGmQic+SPtrke2ludKi+v9/pW0G7svKej5hRSTjKuvZhmhPmMhob4ruIaH7pEmJnboc57NsSweswnKSH796kVNTUX6lVdIxyATYiGhvnO4gLM0enqHbC2vrjzu9+xQgnjy4iRA5dufHjKuuRoOniNEUeDfSIrOxO8AGVwgSLHx7tuBVFdK3O/7Rkop9l44Oe73tTrnwIHI/N73pGOQSbGQUHQcTmDq3dIpyOTUSBjjU4aK3HvxhK1QcoaI3Nuqsu64A2qyvgcnknWxkFD08uYDA3iiKsUmPyKzYVmj0oG/zk4HuHGXJtwTJiBt9izpGGRiLCQUPVUFzuYoCcUmr8Undu8X+21H/bmcutHCoP93D3dlpZiwkFBsxl8K5PAkT4pe/t4vRO9/74k7oAzKEs1gdv0vvADJBXycmmLDQkKxURTg4j8AKndkpOhktuzH0GS5Iwlq1Vb8bU622P3NTklMxMC77pKOQRbAQkKxGzQeOP0W6RRkYnmJsidJP+35HM3fniSawawyrrsWriFcHEyxYyEhbUxdBKSPkE5BJpUXkD/B4r6Td0PJSJeOYSrOrCwM+OoQT6JYsZCQNlxJwEW/k05BJpXv2ysdAZWOJqydO0I6hqnwMV/SEgsJaWf0OV2PAhP10bjqbXAaYB3SYwM+Q/vp+dIxTCFp4kSkXTpbOgZZCAsJaeu8JYDbI52CTCYx2IGxqbnSMQAAvzhjLxRufX5MituN7CVL+JgvaYqFhLSVmgWc+0vpFGRC+aoxSkCpsx7vz+OGf8cy8M47kOgdKR2DLIaFhLQ36Wpg+BnSKchk8jrapCMc8LvBGxE4abx0DENKPuUUpF99tXQMsiAWEtKeogAzHwQcCdJJyETy9++UjnCI+6c2QOGCzUOoKSnIvv9+TtWQLlhISB9ZY4Apd0inIBMZXrsTnoQ06RgHbEnYh41zOEpysIF3L0JCjsxhiGR9LCSknzPvArJPlE5BJjIh2Vg7pt6fswGhPK4nAYCUqWchfT6foiP9sJCQfpwJwPyVQKJxvuslY8uPuKQjHCKiAL+d0Q4lUeZEYqNwpKUh+5dcrE76YiEhfWWMBGY/Ip2CTCKvqU46whE+TqzCtkvtvTfJoMWL4Ro4UDoGWRwLCelv3MXAqf8rnYJMIK96GxQYb8Hkz0d8isjxo6RjiOh3/vlIm3mRdAyyARYSio8ZvwCGniSdggwurd2H4SnGWkcCAEEljIcviABO+d1k48mVk4Psn/1UOgbZBAsJxYfD1bWeJImHl9Gx5SVkSEc4qn+792DXrALpGHGjJCcj55GH4fB4pKOQTbCQUPx4coFLlwEGHJIn48jvDEpH6NZ9x20CvMOkY8TFkPt/BfdYPmFE8cNCQvE15jzgjNukU5CB5dVXSUfoVocSxPKL3YDDIR1FV5k33oj+558vHYNshoWE4m/aYmDY6dIpyKDG7N0Ot8O4j9m+lVyG6osmS8fQTcqZZyLrjtulY5ANsZBQ/DmcwLwngeQB0knIgFzhAMYZ5OTf7tw7bguU3CHSMTTnGj4MQ3/7ABSV/zRQ/PGrjmT0z+4qJaqxNsIiY8hTjH2GTLPqx7OzPF3nNlmEmpyM3IcfhqN/f+koZFMsJCTHOxWY/Si4yJUOl9fWLB2hRy/3+wJ151lk6kZRkL3010g87jjpJGRjLCQkK38+cN6vpFOQweTvK5OO0Cv3TvwCyiDz72Ca+f2b0H/GDOkYZHMsJCTvtJuB02+VTkEGMqShHAMSjbkfycHq1Da8MmeQdIyY9LvgfGTdcot0DCIWEjKIGb8A8v9HOgUZSF7yYOkIvfKMZyuapplzw7SUqWdhaGEhF7GSIfCrkIxBUYBZjwCjp0snIYPID5lnbdHik3ZCyTT+iM7Bkk8+GTl/+AMUFxeWkzGwkJBxOJzAZU8BQy2yUJBikt9YKx2h16odzVgzxzw7uLrz8pDz6KNQ3W7pKEQHsJCQsSSkAFesAjJHSychYeOrt0FVzPMWVTRgM9rPmCgdo0eJx41GbtEyOFJTpKMQHcI8f9vJPlIygateAlLNsYaA9JHib4Y3Zah0jD75+elVUAy8j4crNxe5y5fDmc5DLsl4WEjImNKHA1e9CCSmSSchQRNdHukIfVLmbMB/5xpzLw/noEEYtuJJuAaa/zFlsiYWEjKuwROAa14Gksy1WJC0k+f3S0foswcHf4rOkydIxziEIz0dw55cjoScHOkoRN1iISFjGzoZuP5NoJ/1zg2hnuXVVkhHiMr9U+ugpBhjjYbavz9yn3gciaNGSUchOiYWEjK+rLHADW8BGV7pJBRno/d9gWSnsc+1OZrPXftRMucE6RhwDhyI4U8/jaTx46WjEPWIhYTMwTMMuP4tYFCedBKKIzUSxoQUc04z/HroBoQmjhW7f8LIkRjx3LNwjx0jloGoL1hIyDxSBwLXvgbkniqdhOIoT0mUjhCViAI8ML0NisBeH+78fAx/9hm4hprrKSWyNxYSMpckD3D1y8BoHgRmF3ktjdIRovZJQjW2zs6P6z1TzjwTw1eu4KO9ZDosJGQ+CcnAd54Dxs+RTkJxMHHvDukIMfnFiI2IHB+fBaX9L7kYuX96BGqy+dbdELGQkDk5XMDc5cDk66STkM4GNNcgOylLOkbUgkoYD10QBpxOXe+Tce21GLJ0Kc+mIdNiISHzUlXg4geBKXdKJyGd5bnNvZnXf9zl2DVLpxOBFQUDf3wXBt29CIpingMJiQ7HQkLmN/2nXaMlLmPs+0Dayw9KJ4jd4uM+BbzDNb2mkpCAIb9egswbbtD0ukQSWEjIGvLmAd8rBjK4+ZMV5TfslY4QM78SwhMzEwGHQ5PruYYOxfBnn0XarFmaXI9IGgsJWcegE4AF7wLHz5ROQhobt3cbnIq+azDi4e2UMlRdNDnm66RMPQsjX3oRSRO44RlZBwsJWYu7P3D5X4DpPwMUbb4TJXnuQDuOSzXnBmmHWzxuC5TcKPcHUVVk3XYrch97DI40HjxJ1sJCQtajKMCUO7r2K0keIJ2GNJLv7CcdQRPNqh9/md2/6+u0Dxzp6Rj2xOMY8IMfcPEqWRILCVmXdypw03tAzsnSSUgD+e0d0hE082rqDtSe1/upG/fEfIx86UWknH66jqmIZLGQkLWlDQWu/Qdw8vekk1CM8mp3SUfQ1OKJX0AZ3PPjzOlXXokRTz8NV3Z2HFIRyWEhIetzJgAX/Ra4dBmQkCqdhqI0Yn8Z+idYY9oGAOrUNrw8Z1C3v68mJ2PIAw9g8OJ7oSQkxDEZkQwWErKPif8D/O/7wKhzpJNQFBREkJdsrcPink3biqZzjtwwLflb38LIv/0NaTMvEkhFJIOFhOzFMwy4+iVg9qNAEg8fM5u8iPW2RV88eSeUzAwAgJKcjEGL78WwlSuQkGOt8kXUExYSsqcTrwBuXg+cMFs6CfVBfnO9dATNVTua8fbc4Ug+6SR4X30FGVdeyadoyJaUSCQSkQ5BJGrb68DrPwKaq6WTUA98yRk4c5C11gH1c/XDbQW34bKxl7GIkK2xkBABQEcj8Pa9QMlT0kmoBxeN/xb2tFmjPM4YPgN3n3I3Biab+/BAIi1wyoYIANxpwCUPAdf8DUgfKZ2GjiE/MVM6QswGpwzGQ9Mewu/O/h3LCNFXWEiIDuad2vUkzmk/BFTzn51iRXmBkHSEqDlVJ64adxVenfUqzs49WzoOkaFwyoaoO7U7gOKfAdtek05CB9k8NA/fSWiUjtEnqqLigpEX4OYTb0Zuv1zpOESGxEJC1JPd7wNrFgMVH0knIQAB1YXTvCPgD/mlo/TK1JypuGXSLRibMVY6CpGhsZAQ9daWV4C1Pwfqy6ST2N5VE7+NT5tKpWMcU8HAAtw++XZMGjhJOgqRKXCSnKi3xs8Gjp8JbHwGeO83QGO5dCLbylNT8Kl0iG6MTR+LWwtuxVk5Z0lHITIVjpAQRSPYCWx4Cnjvt0BzlXQa23lj7NlY2Gmskarcfrn44Yk/xAUjL+B+IkRRYCEhikXQD3y8AvjP74GWvdJpbKMyYxjOT5NO0SUrKQvfn/h9XHrcpXCp1tvaniheWEiItBDsBLa8DKwvAio/lk5jC1OPn4h6f4PY/cekj8FV467Chd4LkehIFMtBZBUsJERaqywBPnoC2PwiEOyQTmNZt0w6D+/6tsb1nqqiYmrOVFw17iqckn1KXO9NZHUsJER6aasHSv4MfPQk0LhHOo3lPD7xQvyxaXNc7tUvoR9mjZqFK8ZdwX1EiHTCQkKkt3AY+OLNrumcsncB8K+cFj4YeQpuhL7rdiZmTcT8MfNx3ojz4Ha6db0Xkd2xkBDFU+2Orumcjc8C/ibpNKbW4u6PM4ZkIBwJa3rdfgn9MNM7E/PGzMOY9DGaXpuIusdCQiQh0AGUrgW2/h3Y/gbQ4ZNOZEqz805HaUtFzNdJdaViytApOGfYOTg792yOhhAJ4MZoRBJcbuD4i7p+hALAzve6ysm214HWfdLpTCPflY5SRFdIBiQNwNm5Z2Na7jScmn0qXA4+skskiSMkREYSDgPlH3SVk62vcTFsD1aNn4FftG3v9euH9x+OabnTMG3YNORn5UNVeOA5kVGwkBAZWWXJV+Xk70DdDuk0hrN98DjMS2o95mvGZ47HtGHTMC13Gkanj45TMiLqKxYSIrNoqgbKPwTK13f9XP0pEA5IpxIVUhw4bfRotAfbD3xseP/hODHrRBQMKsDpQ07H4JTBggmJqLdYSIjMKtABVJUcVFLWA2210qniy+nGr06/Aon9hmLSwEk4ceCJyEzKlE6FGTNmYM2aNdIxiEyFhYTISmq//KqgfNg13VNfBgSOPaVhGo5EYPAEIPtEYMiJwJBJQNY4wGGstfmrV6/G/PnzwbdWor4x1t9kIorNgNFdPyZd+c3HmmuAhp1A/c6ugnLwf7fXy2U9mpQswDPssB/Du35kjAQM/iSMz+dDfb3B/jclMgmOkBDZWUdjVzlp+KqgNFUDnS2Av/mrn1uAztZDPxYO9u7ajsSux5tdyYDzq5+//nVy5mGF46v/TkjW98+rs6KiIlx22WVIT0/nCAlRH7GQEFHfBDq+KinNXYUlEgKcSYDroB/OJEC11yO1xcXF8Hq9yMjIYCEhigKnbIiob1zurh8p8otHjcTn88Hr9cLn80lHITIle30LQ0Skg6KiIsybN086BpGpsZAQEcWgpKQEJ510knQMItPjlA0RUQzq6+tRUlKC4uJiAEBpaSkAoLCwEF6vlyMnRL3ERa1ERBoqKSnB5MmTuaiVqI84ZUNEpJHVq1djyZIlAIBFixYdGDUhop5xhISIiIjEcYSEiIiIxLGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiWMhISIiInEsJERERCSOhYSIiIjEsZAQERGROBYSIiIiEsdCQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMT9f2hJkq+WI8PwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -413,7 +412,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFhCAYAAABAjrEyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw0UlEQVR4nO3de3hU1b038O+aSULIbQIkgSTDVREG2BQRvICApXpardXao21PL2esvU1L3/Pap6fam+1Y67Ha9q097XjQ1tPOqbb10nuPUi8jARREBOkWZhBBEAIJ14QEcp3Z7x8zKGASJsns+e3L9/M88wiRzP76NN18Z62111KGYYCIiIhIkkc6ABERERELCREREYljISEiIiJxLCREREQkjoWEiIiIxLGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhIHAsJERERiSuQDkBE1qaUugVAS+a3lYZh3CMYh4gciiMkRNSvTBmBYRgPGIbxAICNSqn7hWMRkQMpHq5HRP1RSh0FMNkwjJZTvmYYhqHkUhGRE3GEhIj6pJSagvQUTUsf/+7y/CciIidjISGi/kzp5+stACrzF4OI3ICFhIgG6wiA0dIhiMhZWEiIaLBYRogo51hIiKg/O/v5euUA/46IaEj4lA0R9SvzlM0FhmHsPOVrfMqGiHKOIyRENJC7ALz1RI1S6noAD8jFISKn4ggJEQ0osznayRGS+YZh3CqZh4iciYWEiIiIxHHKhoiIiMSxkBAREZE4FhIiIiISx0JCRERE4lhIiIiISBwLCREREYljISEiIiJxBdIBiPIts9EXAJwDAIZhfF4wDhERgRujkcsope4+dadRpdT9AKYYhnGFYCzrCPsKAYxB+kTfk/8cBWAkgEIARQAK53Tenyrt9fV+rH1ECYBeAMnMqzfzagFwMPM6BODgsuVLO/P7H0NEdsIREnINpVQlgLlKqUrDMFoyX74fwMtKqSmnHiDnSGFfOYApZ7wmAxiHt8tHWTZv5UXqkNdAM4CZ2V4+Eoq1I1NOcHpZaQKwDcBWAG8sW740le17EpFzsJCQ28xD+i/ijZnfnywhlSJpzBD2jQMwN/OagfTU1BQAVbm6RAGSQykNZZnXpAH+TGckFHsN6XISz7y2Ati+bPnS7iFck4hsgoWEXCMzKjLqjC+fPMnWnqMjYd8kpIvH+Xi7hIwz+7JepJImvXUxgNmZ16l6I6HYTqTLycsAGgCsX7Z8aZdJOYgoz7iGhFxNKfUygPsNw3hAOktWwr4ZAJZmXouQw1GPwVjUdW+j6h7X8pHjI7KesjFBJ4AXkS4nqwCsXbZ86QnBPEQ0DCwk5FpKqbsBHDYM4x7pLP0K+6bg7QLybuRh9CMbl3X9aE+qu/6YcCE5Uw+Al5AuJw0Anl+2fGmbbCQiyhYLCbmSUup6AKMtNzKSfsrl3QA+BOB9ACbKBurbe7p+sLune3y7xQrJmZJIF5TfA3h82fKlu2TjENFAWEjIdZRSlwOoNAzj8czvK5EuJzLrSMK+YgDvRbqEfADvXOdiOe/t+v4bHd2TTli8kJzpJQCPA3hs2fKlb0iHIaLTsZCQqyil5iK9kPXxU758PYAHTnkU2HxhXxmA9yNdQq5Clo/bWsVVXf+xo717SqfNCsmpXgbwGNLlxJ4LmokchoWEXCMzEvIG+njE1zAMlZcQYd9iAJ9GugSV5OWaJrim647tLd1Tu21cSE61Cely8uiy5Ut3SIchcisWEiKzhX01AG4EcBOAabJhcuO6rtu3He6e1uuQQnKSAeBpAD8D8L/coI0ov7gPCZEZwj4P0otSPwPgaqS3XXeMIW6MZnUKwD9lXm9EQrH/AvDgsuVLj8jGOjul1OeQHvlrQXojvLvyOgVJlAMcISHKpbCvAsDnAfwfAOOF05jmo93f3LKvS4PDRkj60gHgtwB+tmz50k3SYfqSOSzyrTVQmanJnxuGcYNkLqLB4ggJUS6EfbUAbgYQAlAhG8Z8BUilAHikc+TBSKSn2m6KhGJrkZ7OeWzZ8qU9srFOc8Wpe+kYhtGSKSVEtuKGGwqRecK+6Qj7HgSwC8AtcEEZAYACJN04tHoJgIcBvBkJxb4VCcWs8mRUi1Lq6ZMlRCk1BXY9CoFcjVM2REMR9i0AcCvS+4bk5wkdC/l091de2d41v9AFUzYDOQTg+wAiy5Yv7ZQKkSkiLyN9gOI9AHZYbsM/oixwhIRoMMK+eQj7ngLwPIBr4MIyArh2hORMVQB+CGBHJBT7QiQUE1m4nFk7cjfSe+vcAuAGTtmQHbGQEGUj7JuBsO8PSO/2eYV0HGmZNSSUVgfgPgDbIqFYMBKKefN58cyZTDszi1jPATAa6RETIlthISEaSNhXl1kj8g8A10nHsQqOkPRpMoBfAXg1EordEAnFTB89y6wXqTQM4xkAMAxjp2EYFyC9ruR6s69PlEssJER9CfvKEfbdAWA70k9Z5PVTr9WxkAxoOoBHAWyMhGJXmXytKUjvPXKm+02+LlHOsZAQnSns+zjSReRbsPH27mbyKhaSLMwB8L+RUOzPkVDMlD1pMiMjc/tYM3LBycMjieyC+5AQnRT2nYf0WoD3SEexOo6QDMo1AJZGQrHvAPjJsuVLkzl+/xsAfF0pdRjp0ZJKpJ8AI7IVPvZLFPaNAPANpG/iI4TT2MJtPTeua+h8X7nLH/sdik0APrds+dIN0kGIrIZTNuRuYd8VAF4F8G2wjGSNIyRDdj6AFyOh2H9GQrFy6TBEVsJCQu4U9o1F2Pc7AE8BOFc6jt0UIMVCMnQepM86ikdCsQ9JhyGyChYScp+w71oAOoCPSEexKy9HSHKhHsDvzVz0SmQnLCTkHmFfKcK+nwP4E4Bq4TS2ximbnLoGwJZIKPav0kGIJLGQkDuEfRcBeAXAZ4STOEIBH/vNtXIA0Ugo9nAkFHPFAY1EZ2IhIWcL+7wI+74DYA24ViRnCpDrJ1cp42MANkVCsYukgxDlGwsJOVfYNwXpIhIG99zJKU7ZmGoKgDWRUOzr+dh+nsgqWEjImcK+q5A+YOxi6ShOVACerWeyAgD/AeBvkVBstHQYonxgISFnCfsUwr7bAPwV6R0ryQR8yiZvrkL6TJwLpYMQmY2FhJwj7CsH8AcA3wV/tk3FNSR5NRHA6kgo9iXpIERm4k2bnCHsmwbgRQAfFE7iCiwkeVcE4KeRUOyXkVCsUDoMkRlYSMj+wr4PAFgPICAdxS04ZSPmRqRPEOajweQ4LCRkb2Hf1wH8GQBv0HlUoLioVdAVSE/h1EsHIcolFhKyp7DPg7DvZ0g/icBHI/OMUzbiZgNYFwnFNOkgRLnCQkL2E/aNAPAIgGXSUdzKy8d+rcCP9H4ll0sHIcoFFhKyl7DPB+DvAK6XjuJmHCGxjAoAT0RCsaB0EKLhYiEh+wj76gCsArBEOorbeVlIrKQQwK8iodh3pIMQDQcLCdlD2DcdwAtIz52TME7ZWFI4Eoo9GAnFeEwC2RILCVlf2PcupM+kmSgdhdIKkOJCYmu6CcDDkVDMKx2EaLBYSMjawj4NwDMAxkhHobdxysbSPoz0FA7v72Qr/IEl6wr7ZgJ4FkCVdBQ6nZf7kFjdJwA8wNOCyU5YSMiawr4AgBiAauko9E5eTtnYwacB/Ew6BFG2WEjIetLn0sQA1EhHob5xysY2vhgJxX4sHYIoGywkZC1h31Sky8g46SjUP46Q2MrNkVDs+9IhiM6GhYSsI+ybBOA5AHXCSegsWEhs59ZIKHa7dAiigbCQkDWEfZUAngDAA8NsgPuQ2NK3I6HYN6RDEPWHhYTkhX1FAP4EICCchLLk4QiJXd0ZCcV4BhRZEgsJyQr7FIBfgtvB2wqnbGztJzyQj6yIhYSk3QngY9IhaHA4QmJrXgCPRkKxqdJBiE7FQkJywr7PAfi6dAwaPC8MFhJ7GwXgr5FQrFI6CNFJLCQkI+y7EsB90jFoaDyKIyQOMA3A73juDVkFCwnlX/rk3keQHjomG+KUjWO8F8CPpEMQASwklG9hXxmAPwAol45CQ+eBwXuHc/zfSCj2GekQRLypUL79HHy81/Y4QuI490VCscXSIcjdWEgof8K+fwPwUekYNHweLmp1mkIAv4+EYpOkg5B7sZBQfoR9lwD4oXQMyg1O2ThSFYA/R0KxEdJByJ14UyHzhX3VAB5D+lMYOQCnbBxrNoC7pEOQO7GQkLnCPi+A34Fn1DiK4giJk90cCcXeIx2C3Ic3FTLbNwEslQ5BucUpG0dTAKKRUGyUdBByF95UyDxh33wAt0nHoNxTXNTqdPUA7pcOQe7CQkLmCPtKADwEoEA6CuUeR0hc4YZIKPZJ6RDkHrypkCnalboTwHnSOcgcXEPiGj+LhGITpUOQO/CmQjmnRbWlCyf6P/qXspKXpLOQOVhIXKMCwK8joRj/9ybT8YeMckqLamUAHkwpNe6b1VXzP1w3bnW7Um3SuSi3WEhcZRGAW6VDkPPxpkK59n0Ak07+Jj6iaNGlE/2tz5aM3CQXiXJNpZ/EIPe4PRKKzZUOQc7GQkI5o0W1JQC+eObXk0r5b66pmvOpcTUNnUp1CESjHOMIiesUAvg5p27ITPzhopzQoloxgAfR3ydnpdSGkcVLFkz0N60rHvFqXsORGbzSASjv5gLgqcBkGhYSypWvADjnbH+oR6nJnx1XE/jS2KqV3UB3HnKRCThC4lp3csM0MgtvKjRsWlSrA/D1rL9BKW9DScllCyf6d/1jRNE285KRWVhIXKsKwB3SIciZeFOhXLgLQOlgv6nT4znv47Vjp9xaPaYhCSRNyEXm4ZSNe4Uiodhs6RDkPCwkNCxaVJsPYOi7OSpV+ERZ6ZKFE/2JbYWFO3OXjMykeO9wMy+An0qHIOfhTYWG617k4BHQ4x7PzOvrx9V9b8yoBgMwhh+LzGVwhMTdFkdCsY9KhyBnYSGhIdOi2r8AWJCzN1Sq+JGK8iWLJtRv3l1QsCdn70s5xxESAvDDSCg26Klaov7wpkJDokW1kQDuNuO9W73eOVf7a0f9ZJRvtRnvTznBERKqB/BN6RDkHCwkNFRfBTDetHdXquwXlb5FS8fXbWjyeptMuw4NFQsJAcBXIqHYudIhyBlYSGjQtKjmR57OtjhYUDDvn8bXFT/oq3ghH9ejrLGQEAAUgY8BU46wkNBQ3AGgJF8XM5SqvHd05YIr/bXrDns8h/J1XRoQCwmd9OFIKHaedAiyPxYSGhQtqk0C8AmJa+8tLLz43RPqjcfKS1+UuD69TSneO+gtHgDfkA5B9sebCg3WVwEUSF3cUKr6u1VjLrquftzzrR7VKpWDAA9S3MyOTvp4JBSbLB2C7I2FhLKmRbWxAG6SzgEArxcVLVw8wX/iydKSl6WzuJUXSe4XQycVAPiadAiyNxYSGowvAyiWDnFSSqnaW2qqLvh47dhVJ5Q6Lp3HbbwwUtIZyFJujIRifukQZF8sJJQVLapVAviCdI6+/KN4xOKFE/2HV40s3iydxU28SLGQ0KmKANwiHYLsi4WEsrUMQIV0iP70KjVh2dhq7bPjqhu6FDql87iBFylO2dCZPhsJxcZKhyB7YiGhs9KiWgmA/yud46yU8qwbOXLJggnjGzcUj9gqHcfpOEJCfSgG8O/SIcieWEgoG58BUC0dIlvdHnXOp8bVnPflmqqGHqBHOo9TcYSE+vGFSCg2RjoE2Q8LCQ1Ii2qFsOMnHqUKniktWbJwov/1LUVF26XjOJFXcYSE+lQKO4yokuWwkNDZfAxmnlljsg6PJ/DRurETbqsa3ZAC+BdoDnGEhAbwmUgoJrZfEdkTCwmdTUg6wLApNeJP5WVLLp3g37KzsGC3dBynYCGhAdQCeL90CLIXFhLqlxbVZgC4WDpHrrR5Pdq19bXV94yuXGUA/Mt0mLiolc7iM9IByF5YSGggltiVNaeUKvm1r2LxZRPqN+0t8DZKx7EzjpDQWVwZCcXqpEOQfbCQUJ+0qFYA4JPSOcxyxOude6W/rvy+St8a6Sx2xUJCZ+EF8CnpEGQfLCTUn6sB1EiHMJVSFf81ynfpFePr1h/weg9Ix7GbAp5lQ2d3UyQUU9IhyB5YSKg/n5YOkC9NBQUXXj6+ruChivK10lnshCMklIUpAJZKhyB7YCGhd9CiWi2AK6Vz5JOh1Oi7x4y65Gp/7dqjHs8R6Tx24GEhoexwcStlhYWE+vKvSM//us7uwsJLLptQ3/unstL10lmsroCFhLJzHXdupWywkFBfXL0QLaVUzW3VYy68oW7cmjaljknnsSpO2VCWRsDBC+Qpd1hI6DRaVLsUwDTpHFaQGFF06aKJ/mPPlIzcJJ3Firxc1ErZc94WApRzLCR0po9JB7CSpFL+L9dUzQnW1qzqUOqEdB4r8XInfsqeFgnFpkqHIGtjIaEzfUA6gOUopTYWFy9eONF/4IXiYl06jlV4FadsaFCukw5A1sZCQm/RotocAH7pHFbVo9Skz4+rnvHFsdUN3UC3dB5p3IeEBomFhAbEQkKnulo6gOUp5V1dMnLJgon+3ZtHFG2TjiOJi1ppkC6KhGK10iHIulhI6FQsJFnq8nimfqJ27JRbqsc09AK90nkkcA0JDZICcK10CLIuFhICAGhRrQbAhdI5bEWpwifLSpdcOtH/WqKocId0nHzjUzaULU+y+/Uxh/WV79r8M95jqF8F0gHIMt6P9CcYGqTjHs+MG+rGdX64rb3hm4ePLvK4pOgXcISE+mMYPYU9bfrYAxvb/I0rp5R0HDwXwLkALopPD3wxkIh3Skck62EhoZM4XTMcShU/WlG+5O+lJZsf3tc8emJv73jpSGbzsJDQqQzjSOnx/fG6/Ws8tU0vzixIds7t40+NBHAZgBX5DUd2wEJC0KJaEYArpHM4QavX+66r/bXtn249tvrmo62LpPOYiVvHk0r17Bx19LU94xtXjhp9JD5TwViYxbe9Dywk1AcWEgLSn1jKpUM4hlJlD1b6Fv25rGzDb/Y11dcmk458ssCLFMdI3MYwegt72vWag5uO+RtXTio90TwF6RN9B+NKADfnPhzZHQsJAZyuMcWhAu+8fxpf13rz0dbnP916LJtPjrbiQZKFxA0Mo6XkRNOWuv0vqNqmtTMLezvOH+Y7nhefHpgcSMTfyEk+cgwWEgKApdIBHEsp372jKxc+Xl627qF9TeeOSaWqpCPlSgFS7nze2QVUqveNypbtb/obG3xjjmyZ5TFSuS7UVwK4L8fvSTbHQuJyWlQrBxCQzuF0ewsLLn73hPpD3zp8dN2H29ovls6TC9yHxEEMI1nQe+LVmoOvtPgbV04oO75vMoDJJl7x3WAhoTOwkNCFcMljqtIMparuqBpd9ZuKsuej+5tn+VKGTzrTcHi4qNXeDKN1ZMeBLXX7XzDq9q+dUdh7/F15vPoFebwW2QQLCV0kHcBtdhQVLVw8wb//roOHt191/MQ86TxD5VEcIbEblerd7Wvdscvf2FBRdVif5TFSC4SiTI5PD1QGEvEWoeuTBbGQEAuJgJRStbfWVNX+urNr9S+aDpxfahhl0pkGy4sUN9KzuvRUzJbqQ5uP+PeuHF9+vPEcABOlY2XMBRCTDkHWwUJCLCSCXi0esejSif499zYf3LGkozOfQ+bDxjUkFmUYx0Z2HNxS27Q2Vbf/+UBRz/HZ0pH6wUJCp2EhcTEtqk0CMFY6h9v1KjX+S2Or6y/q7GqINB+4aISBYulM2WAhsQ6VSu71Hdu5o75xVVn1oc2ax0heIp0pC33t5EouxkLibhwdsQqlPC+OLF6yYOL4ncubDnTO7+yaIR3pbFhIBBlGqiDZsaXqkH7Yv/e5+or2PVMB+KVjDRIXttJpWEjczRGPnzpJt1JTbhpX0/ueEx0NPzhwaEEhUCidqT88yybPDKO9uPPwq7VN63rr9q2ZNqKnTZOONExT49MD5YFEvE06CFkDC4m7cYTEipQqeLa0ZMmCif5tv9x/wDOru3uqdKS+cFGr+VQq2VjRtmuHv7GhpPrgZs1j9DrpQ4QCMAfAauEcZBEsJC6lRbVCAMPdAppM1OnxTPuXurHd17Yfb7j90JFLvYBXOtOpOEJiAsMwvMnOrVWHXz3o37uy1te2axqAeulYJpoLFhLKYCFxr/MAeyyedDWliv5cXrbk2ZIS/aH9TeXn9PROko50kpf7kOSGYZwo7jqij2t6sbt+35ppI7pbZ0pHyiMubKW3sJC417nSASh77V6P9sH62hMfP9bWcOuRlsUqPdwtysMpm6EzUvsrju3eXr9v1ciagxs1b6rXrdOnLCT0FhYS9zpHOgANklIlD/sqljxRVrrpN/uaavy9SdGhfD5lMwiGYXiTXYkxR7Y0+/c+N67y2BvTAdRKx7KAQHx6YGQgEe+QDkLyWEjci4XEpo56vedf6a87Fmo5tnpZS+siqRwcITkLw+gY0dWij2te31W/b9XU4q6WAHiQ5Zm8AN4FYJ10EJLHQuJeLCR2plTF8lG+RX8sL13/m33Nk2qSyZp8R/DCYCE5k5FqLm/b81r9vlUjxh54WfOmei6UjmQDGlhICCwkbsZC4gDNBQUXXj6+7uhXj7S88MljbXk9KI0jJGmeZFdizJGtTf69K2sqW18PKO5+PFh10gHIGlhIXEiLal5Y54AtGiZDqVH3jBm14JGKsrW/3tc8bVQqNTof13XtY7+G0Tmiu1Uf2/xSR33jqqkju45MBzBdOpaNcS0NAWAhcasJsPAOoDQ0uwsLL7lsQv2B2w8dWf/B9uOmTxW4aoTESB0sa9+7zb9vdeHY5g2zvKnu+dKRHISFhACwkLgVp2scKqVUzW3VY2oerihf89/7m2eXG0aFWdfyOHwNiSfZ/droo/F9/r0rq0e1vDZDAdXSmRxqnHQAsgYWEndiIXG4xIiiSxdN9Df+8MChHZef6DBlR16PctgIiWF0F3Uf+8fYAxtO+BtXTRnZeeg8pDcQJHNxhIQAsJC4FQuJCySVqv9yTVXd+V1dq+5vOjhvpGGU5PL9lRNGSIzUobLj+xJ1+9YUjGteP6sg2TVPOpILcREwAWAhcasJ0gEoT5RSm4qLFy+Y6N/9s+aDxxZ2dObshFi7Hq7nSXa/PurotsbxjStHjzq6baaCcal0Jpcrik8PjAkk4oelg5AsFhJ3qpQOQPnVq9TE0Njq1KUdnQ0/aT54cREwYrjvaZsREsPoKexp08ce2Njmb1w5paTj4Lng0QlWUwuAhcTlWEjcyScdgAQo5VlTMnLJgon+7b9oOpCc09U9rEdVLb2o1TCOlB7fH6/bv8ZT2/TizIJkJ89MsbZxAF6VDkGyWEjciYXExbo8nqmfrB3b877jJ1bedfDwpQVDvA9Y7bFfT6pnR+XR1/aMb1w5evSR+EwFY6F0JsoaF7YSC4lLsZC4nVKFK8pKL1tVMnJrdH/ziOndPYNe6KxgeMyIljXD6C3saddrDm485t/bMKm0o/kccMG2XfHRX2IhcSkWEgIAnPB4ZtxQN67z+rb2htsOH13kAbIuGSIjJIbRUnKiaUvd/hc8tfvXzihMmvNIM+UdR0iIhcRttKhWAKBUOgdZiFLFj1eUL3mqtGTzw/uaR03q7c3qKax8LWpVqd43Klu2v+lvbPCNObJllsdIcSrGeVhIiIXEhUzbuZPs7ZjX+64P+GuP39jatvorR1sWne3PmzZlYxjJwt7jevXBV1r9e1dOKDuxfzKAyaZci6yCe5EQC4kLcbqG+qdU6a8qKxb9raz05Yf3N9XV9Sb7/eSa0xESw2gt6WjeUrt/rVG3/4WZhb0n5uTsvckOiqQDkDwWEvdhIaGzOlTgveC9/rrWfzva+vxnW4/1OUXiGeYIiUr17va17tjlb2yoqDqsz/IYqQXDeT+yNUM6AMljIXEfFhLKjlK+/xxdufD35WXrHtrfdE5VMnXa4XKDHiExjGRB74kt1Yc2H/HvXTm+/HjjOQAm5jIyEdkXC4n7cA0JDUpjYcHFS8fXH/rm4aPrPtLWfvHJr2e1hsQwjo3sOLiltmltqm7/84GinuOzTQ1LdsUREmIhcSHZvSPIlgylqr5XNbrqtxXlz0f3N83ypQxff4VEpZJ7fMd27vQ3NpRXHdqseYzUJfnOS0T2w0LiPvwkQkO2o6hw4eIJ/v3/cfDw9tmdRnohomGkCpIdW6oO6Yf9e5+rr2jfMxXAeNmkZDO8LxELiQulpAOQvaWUqv1aTVXtJUnvig9u+tux+n1rphf1tOXsFGFyJRYS4vC9C/H/+JQTL449fMWk3U/OLOppq5LOQkT2x0LiPhwhoZxIeZR3TxW2SucgR+AHJWIhcaGkdAByjqfP9/AeQkQ5wZuJ+3RJByDnaJitNIM/UzR8HCEhFhIX6pQOQM7RWaTKWkrxqnQOIrI/FhL3YSGhnFo9Ux2XzkC2xxESYiFxIRYSyqkV8zxTpTMQkf2xkLgPCwnl1CGfqu0sREI6B9lau3QAksdC4j5HpQOQ82w6RzVLZyBb2ycdgOSxkLiMHtSPATghnYOc5Yl5nrHSGcjW9ksHIHksJO7UJB2AnGXbeDU9qfgpl4aMPzvEQuJS/DRCObe9Dq9LZyDb4j2JWEhciiMklHMr5nlKpTOQbXGEhFhIXIqfRijn1k9TmgG0SecgW+I9iVhIXIojJJRzvV5V1DQKW6RzkO0kARyQDkHyWEjciZ9GyBTPzfbw8EYarOZAIs5TyImFxKVYSMgUz8xRMwyeKE2Dw/UjBICFxK04ZUOmaC9Ro9qLedgeDQo/IBEAFhK34g2ATLNuumqRzkC2whESAsBC4lYHAHRJhyBnemK+Z5J0BrIVfkAiACwkrqQH9RSAuHQOcqbGKjWx24sd0jnINjhCQgBYSNxMlw5AzvXqJLVXOgPZxi7pAGQNLCTuxYWHZJon5qkx0hnINjZKByBrYCFxL46QkGn0yWpGSuGgdA6yvN2BRPywdAiyBhYS92IhIdMYSnl212CbdA6yvJelA5B1sJC4lB7U9wJokc5BzvXU+Z4i6QxkeSwk9BYWEnfjOhIyzepZapYBdErnIEtjIaG3sJC4G6dtyDTdharkSDl/xmhALCT0FhYSd+NfFmSqBk1xhIT682YgET8kHYKsg4XE3VhIyFR/n+uZZgCGdA6yJI6O0GlYSNxNB8Bjv8k0R8tVTUcRtkrnIEtiIaHTsJC4mB7UWwFsls5BzrZhquKwPPWFhYROw0JCMekA5GxPzPfUSWcgS2IhodOwkNBz0gHI2XbWqqm9HuyRzkGWsieQiHMnXzoNCwmtAtArHYKcbZsfb0hnIEvh6Ai9AwuJy+lBvQ28OZDJVlzgKZfOQJayTjoAWQ8LCQGctiGTvXSe0gygVToHWcbfpAOQ9bCQEMBCQiZLeVRB4xhskc5BlrAzkIjzZ4HegYWEAGANgG7pEORsz87xKOkMZAl/lQ5A1sRCQtCD+gkA66VzkLM9N1vNMIAe6Rwk7i/SAciaWEjoJE7bkKlOFCvfsRKeMO1yLUg/2Uf0DiwkdNJT0gHI+Z6fodqkM5CoFYFEnNsMUJ9YSOikFwDskw5BzvbkBZ4p0hlIFNePUL9YSAgAoAf1FIDHpXOQszWPVv6uAmyXzkEiegE8IR2CrIuFhE71iHQAcr7NkxVH4txpTSARb5EOQdbFQkKnWgvwzBEy1xPzPdXSGUgEn66hAbGQ0Fv0oG4AeEw6Bznb1gkIJBWapHNQ3rGQ0IBYSOhMnLYhcymldo7jOhKXiQcS8R3SIcjaWEjoNHpQXw/wZFYy198v8BRLZ6C84ugInRULCfXlUekA5GxrA0ozgOPSOShvfisdgKyPhYT6wkJCpuopUMUHfdy11SXWBhLxzdIhyPpYSOgd9KC+EcDr0jnI2VbO9vBcG3e4TzoA2QMLCfXnV9IByNmePl9NN4CUdA4y1UHwyT3KEgsJ9ecBAF3SIci5WktV1fERnLZxuP8OJOK8j1BWWEioT3pQPwg+AkwmWz9NHZXOQKZJAVguHYLsg4WEBvJT6QDkbE/M90yQzkCmWRFIxHdJhyD7YCGhfulBfQOAddI5yLnerFGTe7zc98ahuJiVBoWFhM7mP6UDkLNtnaDelM5AOfcGgCelQ5C9sJDQ2TwOYL90CHKuJ+epUdIZKOfuDyTifIKKBoWFhAakB/UeAPdL5yDnemWKmpkCjkjnoJzpAvCgdAiyHxYSysb9ALiJFZki5VHevdWIS+egnHkskIgfkg5B9sNCQmelB/UmcHMjMtHT53u80hkoZ7iYlYaEhYSyda90AHKuBk3NMrgRnxNsCCTia6VDkD2xkFBW9KD+EoC/SucgZ+osUmVHy6BL56BhC0sHIPtiIaHBuA2AIR2CnGn1TNUhnYGGZV0gEf9f6RBkXywklDU9qG8G8Kh0DnKmFRd4zpXOQMNym3QAsjcWEhqsbwNISocg5znsU7UdhUhI56AhaQgk4s9IhyB7YyGhQdGD+msAotI5yJk2naOapTPQkHB0hIaNhYSG4rsAuqVDkPM8Md8zTjoDDdrTgUR8tXQIsj8WEho0PajvBvCAdA5yntf8alpSYZ90DsqaAeBr0iHIGVhIaKi+B+CEdAhynu11eF06A2XtoUAivnE4b6CUulsp9bnM6/pcBSP7YSGhIdGDejOAn0rnIOdZMc9TKp2BstIB4BtD/WalVKVS6mUAdxmG8QCADeCO0K7GQkLDcQ94KBrl2PppSjOAY9I56Kx+HEjE9w7j++8G8IhhGC0AYBjGRgBX5CIY2RMLCQ2ZHtSPALhVOgc5S69XFTWNwhbpHDSgZgDfH+Z7fA7A40qpKUqpywHAMAw+OuxiLCQ0XA8CWCMdgpwl9i4PdwS2tnAgEW8b6jcrpaZkfjkXQCWAnUqp+08WE3InFhIaFj2oGwA+D6BHOgs5x7Nz1AwD6JXOQX16BcDPh/keJwtJi2EYGw3D2In0aCvXkLgYCwkNmx7UtwL4gXQOco72kaqybSSnbSyoB0AwkIjnarfmDSd/kVlLUslREvdiIaFc+R6AHdIhyDnWTVct0hnoHe4IJOL/yMH77Ozn6y14e/SEXIaFhHJCD+odAL4onYOc48l5nknSGeg0GwHclYs3ykzR7MQ7y0clThk1IXdhIaGc0YP6UwB+K52DnKGxSk3s9nLUzSK6AdwYSMRzua7nVgAfOfmbzKZoz2Qe/yUXYiGhXPsy0sOuRMOmT1bD2eeCcueOQCKu5/INDcN4HMAOpdQtSqlbAMw3DIP7kLiYMgw+XUe5pUW1zwNYLp2D7E97I/Xqbb9LzZLO4XIvA7g4x6MjRO/AERIywwMAYtIhyP5enaRmpBQOSudwMTOmaoj6xEJCOZfZm+RfwW3laZgMpTy7arBNOoeL3R5IxF+VDkHuwEJCptCDeiOAz0jnIPt7aq6nSDqDS72E9HkzRHnBQkKm0YP6H5GeviEasjUz1SwjfbIs5U8X0lM1udoAjeisWEjIbF8GEJcOQfbVXahKDpeD0wb5FQ4k4lulQ5C7sJCQqfSgfgLpvQb4CZeGbJWmOqUzuEgDeBQECWAhIdPpQV0H8CXpHGRff5/rmWYA3KPAfLsAXM+pGpLAQkJZUUo9PZzv14P6fwOI5igOuczRclXTUQROIZirHcA1gUT8kHQQcicWEjqrzJbOuTiB84sAT3CloXnpPMW/KM1jAPhkrndjJRoMFhIakFKqEsDoXLxXZj3JP4Nby9MQPDnPUy+dwcG+E0jE/yQdgtyNhYTO5sMAHs3Vm+lBfRvSpaQnV+9J7rCzVp3b68Gb0jkc6NFAIn6HdAgiFhLql1LqcgDP5Pp99aAeA/DZXL8vOV/Cr3ZJZ3CYTQA+JR2CCGAhoYFVGoax04w31oN6FAA/ldGgrJinKqQzOEgzgGsDifgJ6SBEAAsJ9UMp9bnM8eCm0YP6twE8bOY1yFk2TFWzDKBVOocDdAP4UCAR3yMdhOgkFhJ6B6XUXAAb8nS5mwCsytO1yOZSHlXQOIa7tuZAKJCIvyAdguhULCTUl9EALldK3aKUugWZA7Yyv78+lxfSg3o3gOsAvJbL9yXnemaOh/et4bk3kIj/UjoE0ZmUYXDzQxpYZsTkZcMwlFnX0KLaOQDWAagy6xrkDCM7jWO/+nFypAIKpbPY0F8BXMedWMmK+EmDBpQZEfl65td3Z568yTk9qO8AcA0AnllCA+ooVhWtJeAGXoP3N3BbeLIwjpCQpWhR7b0A/gSgWDgKWVjw6eSq928wFkvnsJG/AfjnQCLeLR2EqD8cISFL0YP63wFcC46U0ABWzPNMkc5gIywjZAssJGQ5elB/Cunpmw7pLGRNzaOUv6uAC6GzwDJCtsFCQpakB/WnAXwALCXUj1emqP3SGSzur2AZIRthISHL0oP6swCuBsCdJOkdnpzvqZbOYGF/RXoBK8sI2QYLCVla5tyb94OlhM6wdTwCSYUm6RwWxDJCtsRCQpanB/WVAK4CcFw2CVmKUmpnLbZLx7AYlhGyLRYSsgU9qDcAuBJAu3QWso4Vcz0jpTNYCMsI2RoLCdmGHtRXA1gMoFE6C1nD2oDSDI6cAcAfwDJCNsdCQraiB/VNAC4CsEk6C8nrLVAjDvhcf9jenWAZIQdgISHb0YN6I4BFAP4inYXkrZzt6ZXOIKQDwEcDifi3Aok4t9wm22MhIVvSg/pxpE8J/n/SWUjW0+er6QaQks6RZ3sBLAok4o9IByHKFRYSsi09qKf0oP4VACEAbv2U7HrHStWY48XYIp0jj9YBmB9IxF+WDkKUSywkZHt6UL8f6ceCW6WzkIwXp6nD0hnyJArgskAizv1XyHFYSMgRMlvNLwDwhnQWyr8n5nkmSmcwWRLAvwcS8RsDiXiXdBgiM7CQkGPoQX0r0k/grJDOQvm1p0ZN7vE6toy2Arg6kIj/SDoIkZlYSMhR9KB+EOnpm38HwMcgXWTLBPWmdAYTvAbgokAizpJNjsdCQo6jB3VDD+o/QnoKh1uLu8ST89Qo6Qw59iTSZWSbdBCifGAhIcfSg/rLAOYC+B/pLGS+zVPUzBTghMWtbQA+H0jErwok4i3SYYjyhYWEHE0P6u16UA8C+ATSN3pyqJRHefdUIyGdY5ieBaAFEvEHpIMQ5RsLCbmCHtQfBjAHwHrhKGSip8/3eKUzDFE7gC8AuCKQiO+WDkMkQRkGdxwm99CiWiGAOwB8FSzkjlPcbbRHf5QsVMAI6SyD8ByAmwKJ+C7pIESSeEMmV9GDeo8e1L8G4GIAG6XzUG51Fqmyo2XQpXNk6TiALwF4D8sIEQsJuZQe1F8CcCGAfwNwTDgO5dDqWapDOkMWVgGYHUjEIzwYjyiNUzbkelpUqwXwYwAfkc5Cwzem1dh/333JcQpQ0ln6cALA1wH8lEWE6HQsJEQZWlS7AsB9AM6VzkLDE/1hb3xkDwLSOc7wHIDPBRLx16WDEFkRp2yIMjLn4WgAbgfA80JsbOO56oB0hlP8A8BVgUR8KcsIUf84QkLUBy2qTQXwUwDvlc5Cgze10Xjtzv9JniccYxeA2wD8JpCIp4SzEFkeCwnRALSo9m6kHxNeKJ2FBue33+9t9BqoF7j0IQB3ArgvkIjzPCWiLLGQEGVBi2rvQ7qYzJPOQtm5/de9qwJ7sTiPlzyO9OLoHwQScT65RTRILCREg6BFtWsBfBfAbOksNLAFW1Mbb/5zam4eLtUL4OcAvhtIxJvycD0iR2IhIRokLaopADcACAOWe5KDMgqSRvfD9yQ7FVBh0iUMAI8B+FYgEeep0kTDxEJCNERaVPMA+DiA7wA4RzgO9eHe+3vX1h3BJTl+2ySAPwO4K5CIb8jxexO5FgsJ0TBpUc0L4AMAlgG4XDgOneKadakXPvFcakGO3q4J6amZBwKJ+N4cvScRZbCQEOWQFtWmA/gigCDMmyqgLJV1GC0P3pssU0DBMN5mDYAIgN8HEvGeHEUjojOwkBCZQItqZQA+ifSoyUzhOK72i3t7X6nowJxBfttxAA8h/ejuP3KfiojOxEJCZDItql2G9Kmu12J4n9RpCD7992TDezcaS7L84wkA/wUgGkjEW02MRURnYCEhyhMtqtUDuBHAv4CjJnlTe9h48ycPJCcM8EeSAP4CIBJIxJ/NUywiOgMLCZEALappAD6aeU0RjuN4D93Tu6MoedqTUL0AVgL4PYA/BhLxZpFgRPQWFhIiYVpUmw/gQwCuAzBNOI4j3fJYcuW8141LADyNdAn5SyARPyIci4hOwUJCZCFaVAsgXUyuA3ABACWbyPYOAlgReNP44+0PJ58JJOJt0oGIqG8sJEQWpUW1KgCLAVwGYAkADSwoZ5MEsAnAE5nXS3pQ50m7RDbAQkJkE1pUG410QVmCdEmZDcAjmckCDgNYB2Bt5rVeD+rtspGIaChYSIhsSotqlQAWIV1O5iH95M4YwUhmSwJ4FW+Xj3V6UH9NNhIR5QoLCZGDaFFtLNLFZEbmnydfoyVzDVIvgF0AXs+8tiNdRDj6QeRgLCRELnBKUZmJ9EGAY0951SA9spLP9SmdAPYiXTZeP+Ofu/Sg3pvHLERkASwkRAQtqhUAqMbbBeVkWRmD9O6y3ixf7QCOZl4tZ/zzrV/rQb0rH/9dRGQfLCREREQkzu0r9ImIiMgCWEiIiIhIHAsJERERiWMhISIiInEsJERERCSOhYSIiIjEsZAQERGROBYSIiIiEsdCQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMSxkBAREZE4FhIiIiISx0JCRERE4lhIiIiISBwLCREREYljISEiIiJxLCREREQkjoWEiIiIxLGQEBERkTgWEiIiIhLHQkJERETiWEiIiIhI3P8Hk3UGyDegN40AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFhCAYAAABAjrEyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzE0lEQVR4nO3deXxU5b0G8OfMPllnkknYt4CyqEBYXAEtS2VT1NKq3VyugFZb7a0SrfbaxVuvab221baXRcW1KrjXrSBVUUsVIosQ2UIgQCAhyWTfZrl/REEggczMOfM7y/P1wwcIyXkfPobkmfd9z3uUaDQaBREREZEgm3QAIiIiIhYSIiIiEsdCQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMSxkBAREZE4FhIiIiIS55AOQET6V1hYCJ/PBwAIBoNYuHChbCAiMh2Fz7IhopMpLCwEgCMlZNWqVVi+fDkWLVqUlPEXL16MYDAIn8+HXbt24a677jpSjojIPFhIiOik/H4/du/efUwJUBQFyfjSUVhYiPnz5x8zOzNv3jwsX75c87GJKLm4h4SIulRSUnJkduJ4q1at0nz8lStXHjO2z+dDMBjUfFwiSj4WEiLqUklJSadvT1Yx8Pl8mDZt2pGxSkpKkJeXp/m4RJR83NRKRDHLyspCdXW15uMsWbIEY8eOhd/vx8KFCzF48OCk7V0houTiDAkRxSwZZQTomCEpKCjA3LlzUVhYiOXLl3PJhsikWEiIqEtdLY8Eg8GkLJ0UFBQgLy8Py5cvx65du1BdXY2xY8dqPi4RJR8LCRF1KS8vDz6fr9O9JFOnTtV07K821H41Tl5eHtavXw+fz4cVK1ZoOjYRJR8LCRGd1F133XXMHTUrVqzA/PnzNR+3pKSk07t7FixYoPnYRJR8PIeEiE6psLDwyBLNp59+igceeCAp406bNg3Lly8/ppgsWLCAG1uJTIiFhIh0KxgM4v7770d2dvaRW42/flAaEZkHCwkRERGJ4x4SIiIiEsdCQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMQ5pAMQkQ6F2oCGg0BDBdBaB7Q3H/PjsdZvoDmsIBKJIhIFzm91QFEUKDZAURTY7AqcbjvcKU64vQ64Uhxwex1wp3b8bLPztRARHYuFhMhqGiqAmlKgvhyoP3j0R8NBoP5Qx9ubawB0fWbiougyHGp1Hfm9I+iNKYLDbYcnxQFPmhPpWR6kZXmQ7vcgPduDjIAHmTleuFOccf4FiciIWEiIzKq1HqgoBg5t6fi5YmvHz02HE750qj2S0MeHWsNoaA2joaYVh8saOn0fd6oDmTkp8OV6kd03DTn905HTLx2eVBYVIjNiISEyg9r9wN5/AQc3Hy0ftWWaDZdqD2t27a+0NoZQ0ViHitI64JNDR96enuVBoN/RgpLTPx2pPrfmeYhIWywkREYULANKPwT2fNjxc01pUodPSUIh6Up9dQvqq1uwe+PRmR5vhgu98jLR+3Qf+pzuR3afVCiKIpaRiGLHQkJkBDWlQOlHR0tIcK9onGTMkMSiua4NJRsqUbKhEgDgSXXi/MEV6JkdRtqEC+Ds00c4IRGdCgsJkR5FwsCej4CtrwHb3wFqZQvI8VJs+iokx2tpbEf7q8/i4J6tAADXoEFInTABaRMuQMrZZ8PmjW0TLhFpj4WESC/C7cDu94GtrwJfvKnK5lOteO0h6Qgnle5zwvllGQGAtt270bZ7N2qeegqKy4XUCROQeemlSJv8DdhcrpNciYiShYWESFKoFdj5LlD8GrDtLaAlKJ2oW7y2xO6y0VpuSn2XfxZta0PD6tVoWL0atvR0pF/8TWReeilSxo/nvhMiQSwkRMkWiQC73gU2/g3Y/g+gretvnnrltel7hsR/eOup3wlApL4etSteRO2KF+Ho3QuZs2Yjc86lcA8ZonFCIjoeCwlRsjRUAp89BaxfBgT3SKdJiK4LiQKkblgZ84eFDpSjaskSVC1ZAvfw4ci85BJkzJ4FZ26uBiGJ6HgsJERa270GWPcY8MXfgXCbdBpVeBT9FhJ/lgP2isQ2AbcWF6OiuBgVDz6I1HPOQebllyFj+nQoTh7KRqQVFhIiLTQHgQ3PAusfBw5vl06jOo+O77LJcdWod7FwGI0ff4zGjz9Gxf8+hOxrr4Hv29+GLSVFvTGICAALCZG6Kr4APn4Y+PxFINQsnUYzep4h8ZVv0uS6ofJyHLr/f3D4L3+F/3vfhf8HP4DD79dkLCIrYiEhUsOhrcD7D3TcLRPV9x0oanAr7dIROqXYgJR172g6Rri2Fof/8ldUPb4MviuuQNZ118HVlwevESWKhYQoEQc3f1lE/o6TPR3XbNyKPpdsAgE7bHVVSRkr2tyMmmeeQc3zzyNjxgxk33ADPENPT8rYRGbEQkIUjwMbgPcLgW1vwkpF5CtunS7ZBJTK5A8aCqHu9ddR9/rrSJ00EYF585AyfnzycxAZHAsJUSz2r+8oItvflk4iygV9Ltlklq0XHb/xgzVo/GANvPn56FGwEN7Ro0XzEBmJTToAkSFU7QKevQpYMtnyZQQAXNDfDIndaYOnKPbzR7TQ/NlnKL36uzhQUID2igrpOESGwEJCdDKtDcDKe4G/nAtsf0s6jW64dLipNTcA2FoapWMcFY2i9tXXUDJ9Bg4vWoxImznOoCHSCgsJUVc2Pg88Mg746A+mOdBMLa6o/gpJdtt+6QidijQ1ofKhh1AyazbqV62SjkOkWywkRMcr3wg8ejHw8nygvlw6jS45dLiHJGP3WukIJ9VeVoZ9t/wYe6+/Hq07dkjHIdIdFhKirzRWAa/fCiy+CCjT9zc3ac6ovvaQuDx2uDe+Jx2jWxo//hdKLr8CB+/7b4Rra6XjEOkGCwlRNAp8sgR4eEzHg+8scLBZopw6myHJzQpDCeurJJ1UKISap5/Grouno/rZZxEN6/NcF6JkYiEha6suAZbNAt68HWgJSqcxDIfO9pBkN5VKR4hLOBjEoV//Bnu+/wO07dsnHYdIFAsJWVM0Cvx7EfDXC4A9H0mnMRy9FZL0bR9IR0hI82efYfecyxB8+RXpKERiWEjIemr2AE9cAry1EGhvkk5jSPaIfu468qY54Cr+t3SMhEUaG1F+113Yd9tPubeELImFhKxl43PA/00AStdIJzE0Pc2Q9MhokY6gqvq330bJnMvQuNb4JYsoFiwkZA3NQWD5dcDLC4DWOuk0hmfT0QyJv858t9CGDh7E3uuuw6HC3yHKA9XIIlhIyPxKP+zYK7LlJekkpmHX0QxJ2ubV0hG0EY2i+rHHsPvKq9C6c6d0GiLNsZCQuf3rz8ATlwJ1vINBTbawPgpJus8J556t0jE01VpcjN1zv43qp5+RjkKkKRYSMqf2ZuCl+cA7PweiPONBbXpZsslNqZeOkBTRlhYcuu8+7F2wAKGaGuk4RJpgISHzCe4FHv0msOl56SSmpeikkPgPm3t25HiN73+A0quuQmvJbukoRKpjISFz2f1Bx9HvBzdJJzE1W7hVOgKgAKkbVkqnSLr2PXtRevXVvAuHTIeFhMzjX38BnrocaKqSTmJ6ig6efuzPcsBesVc6hohIbS32zpuH4IvcqE3mwUJCxndkv8hdQMRAzzMxMh1sas1xWXwvRXs7yu++GxUPPohoNCqdhihhLCRkbPWHgMemc79IsulgycZXzmU5AKhashT7b70NkRZzHRBH1sNCQsZVUwo8djFQvkE6ieUo0QjcNrmnIis2IKXoHbHx9ab+H//Anh/8EKHKSukoRHFjISFjOrS1Y2akhncbSElzyN1OHQjYYavjXqGva9m8GbuvvBIt27ZJRyGKCwsJGU/Zp8DjM4D6cukklpZqFywkCmcCOhM6UI493/0eGt5/XzoKUcxYSMhYdr4LPDkHaAlKJ7G8VLvckk1m2XqxsfUu0tiIsh/djODLr0hHIYoJCwkZx5aXgb9dBbQ3SichACk2mRkSu9MGT5H1zh+JSTiM8rvvRu3rr0snIeo2FhIyhvXLgBXXAzo4/4I6pArtIckNALYWltJTikRw4M67UPfmm9JJiLqFhYT078M/AK/fCkTllgjoRClCe0iy2/aLjGtI4TD2LyxA3du8I4n0j4WE9G3t/wGr7pVOQZ2QWrLJ2L1WZFzDCoWw/447UP/uu9JJiE6KhYT0a8OzwNt3SqegLnhtyT8V1+Wxw73xvaSPa3jt7dh/209R/9570kmIusRCQvpU/Hfg1VsA8EhsvfIKLNnkZoWhhPl4gHhE29ux/ye3omHNGukoRJ1iISH9KXmvYwNrVO6cCzo1iRmS7KbSpI9pJtG2Nuy75cdo+Ogj6ShEJ2AhIX3Ztw547nu6eFYKnZxHSX4hSd/2QdLHNJtoayv23XwLGtf+WzoK0TFYSEg/Dm0Fnv4W0NYgnYS6wZPkTa3eNAdcxfwmqoZoSwvKfvQjNK1bJx2F6AgWEtKH6hLgqct5AquBJHuGpEcGn2arpmhTE/bdfAvaysqkoxABYCEhPWioBJ68DGg4KJ2EYpDsQuKv25HU8awgXFuLfT/6EcINPGiO5LGQkKxwO/DCD4HgHukkFCN3kgtJ2ubVSR3PKlp37MSBhQsRjfKONpLFQkKy3ioA9n4snYLi4EbyCkm6zwnnnq1JG89qGlavRuUf/igdgyyOhYTkrF8GrHtUOgXFyaW0J22s3JT6pI1lVVWLFvG5NySKhYRk7P038OYd0ikoAa4kzpD4D3N2JBkO3H0PmrdskY5BFsVCQslXdwB44Qd8cq/BJa2QKEDqhpXJGcvios3N2HfLjxE6fFg6ClkQCwklV3tLx8FnDYekk1CCkrVk489ywF6xNyljERAqL8e+n9yKaBtfMFBysZBQcv39NuBAkXQKUoEzmpxCkuOqSco4dFRzURHKf/1r6RhkMSwklDxr/wps/Jt0ClKJM0lLNr7yTUkZh45Vu+JFVD/5lHQMshAWEkqO8k3Ayv+STkEqciRhhkSxASlF72g+DnXu0AMPoHnDBukYZBEsJKS9UCvw0nxuYjUZR1T7/5+BgB22uirNx6EuhMPYX1CASFOTdBKyABYS0t6qXwGVxdIpSGWOqPZLNgGlUvMx6OTa9+zFofv/RzoGWQALCWmr5H1g7V+kU5AGkrFkk1m2XvMx6NSCy5ejfvU/pWOQybGQkHaag8ArPwLAZ2SYkV3jJRu70wZPEc8f0YvyX/wCoSoun5F2WEhIO2/eDtTtk05BGrFHtJ0hyQ0AthY+hVYvwlVVKL/7HukYZGIsJKSNzSuAzculU5CG7BFtZ0iy2/Zren2KXcN776H21VelY5BJsZCQ+uoOAG/8TDoFacymcSHJ2L1W0+tTfA799n4eLU+aYCEh9b16C9ASlE5BGtOykLg8drg3vqfZ9Sl+4dpaHPwVT3El9bGQkLq2vALselc6BSWBTcM9JLlZYSjh5D1NmGJTv3Il6t7mgXWkLhYSUk9bE/APbnqzCkXDg+6ymko1uzap4+B99yFUw+cMkXpYSEg9ax4EasukU1CSaFlIMrat0ezapI7w4cOo+N3vpWOQibCQkDqqdgEfPyydgpJIq0LiTXPAVcwNrUZQ+8oraNm2TToGmQQLCanj7TuBcKt0Ckomjf5/98ho0eS6pIFIBBUPFEqnIJNgIaHEbXsL2PEP6RSUZEokBLsSUf26/rodql+TtNP48cdoWPOhdAwyARYSSkyotWN2hCwp1a5+IUnbvFr1a5K2Kn73O0Qj6n8ukLWwkFBiPvojUFMqnYKEpDrU/SaU7nPCuWerqtck7bVu347al1+RjkEGx0JC8avdB6z5X+kUJCjNHlb1erkp9apej5Kn8k9/QqS5WToGGRgLCcXv/UIgxC9AVpaqciHxH+bsiFGFDh1C9bJl0jHIwFhIKD7BvcCGZ6VTkDBVC4kCpG5Yqd71KOmqlj6KUFWVdAwyKId0AFJfYWHHbXi7du0CACxatEj9QT74PaDx4+dJ/1JULCT+LAfsFXtVux4lX6SxEZUPP4xev/yldBQyIM6QmExBQQEWLlyIhQsXHiki06ZNU3cQzo7Ql1Ls6j1vJsfFY8jNILjiRbSWlEjHIANiITGRYDCIoqIiBIPBI29bsGABVq1ahRI1v0BwdoS+5LWpN0PiK9+k2rVIUCiEit8/KJ2CDIiFxGTWrVt3TPnIy8sDgGNKSkI4O0Jf41HUKSSKDUgp4tNjzaJh9Wo0b9kiHYMMhoXERHw+H2pqajBmzJgjb1u1ahWAo8UkYZwdoa/xqrRkEwjYYavjZkgzqXnySekIZDAsJCZ3//33Y9GiRfD5fIlfrGYPZ0foGCkqLdkElEpVrkP6UfvmW2ivqJCOQQbCQmJiBQUFuPLKKzF//nx1LriGsyN0LI+izgxJZtl6Va5DOtLejppn+QKGuo+FxKRWrFiBwYMHY+HChepcsK4c2PA3da5FpqFGIbE7bfAU8fwRMwo+/wIirXwKOHUPC4kJfbVv5KuZkWAwmPhdNuse5ewIncBtS7yQ5AYAW0ujCmlIb8I1Nah99VXpGGQQLCQmU1RUhKKiIowZMwYlJSUoKSnB4sWLkZWVFf9FQ63A+mWqZSTzcCPxQpLdtl+FJKRXNU89JR2BDIIntZpIMBjElClTEAwGUVBQcMyfJbR08/mLQCM3HdKJ3Cos2WTsXqtCEtKr1h070fDhR0ibcIF0FNI5zpCYyFe3/Uaj0RN+JOTfGhw9T6bgSrCQuDx2uDe+p04Y0q3qJ5+QjkAGwEJCJ7dvHVC+QToF6VSiSza5WWEoYfWOnyd9alzzIY+Tp1NiIaGTW/e4dALSMRcS2+ic1VSqThDSt2gU1U/woDQ6ORYS6lpLHbDlJekUpGMuJbFCkrFtjUpJSO9qX3sNYbUeYUGmxEJCXdv0PNDeJJ2CdMwZjX+5xZvmgKuYG1qtItrcjODLr0jHIB1jIaGuredGNDo5ZwJ7SHpktKiYhIyg7q23pCOQjrGQUOfKNwGHNkunIJ1zRONfsvHX7VAxCRlBy6ZNaN/Pc2eocywk1Lmtr0gnIANwJrCpNW3zahWTkFHUvf22dATSKRYS6tyWV6QTkAE4om1xfVy6zwnnnq0qpyEjqHuLhYQ6x0JCJzr4OVC9SzoFGUC8Sza5KfUqJyGjaPn8c7Tt2ycdg3SIhYROxOUa6iZ7nA9c9B/m7IiVcXMrdYaFhE7E5RrqJnskviWb1A0rVU5CRlLPZRvqBAsJHevQFqCKdz9Q99jjWLLxZztgr9irQRoyipatW9G2l58DdCwWEjrW1lelE5CB2OJYsslx1WiQhIyGm1vpeCwkdCwu11AM4lmy8ZVv0iAJGQ1v/6XjsZDQURXFwOFt0inIQJRwbIVEsQEpRe9olIaMpLW4GG2lpdIxSEdYSOioL96QTkAGY4txhiQQsMNWV6VRGjIazpLQ17GQ0FG7P5BOQAYT6wxJQKnUKAkZUcOHH0pHIB1hIaEOoTag7BPpFGQwSrg1pvfPLFuvURIyopZNmxFpi+/WcTIfFhLqsO9TINQsnYKMJtz9u2zsThs8RTx/hI6KtrWhZTMf4kkdWEioQymnTikOMSzZ5AYAW0ujhmHIiJo+XScdgXSChYQ6lK6RTkAGpCCKVHukW++b3cbHztOJmtZzGY86sJAQ0N7C/SMUt1RHuFvvl7F7rcZJyIiaP/sM0Uj3Si2ZGwsJAfs+AWLcnEj0lTT7qQuJy2OHe+N72ochw4k0NKCluFg6BukACwlx/wglJLUbhSQ3KwwlHEpCGjKiZi7bEFhICAB2c/8Ixc9rP3XRyGoq1T4IGVbTOhYSYiGh9hZgP3e5U/xSbKde/8/YxtJLXePGVgJYSKiyOKZbN4mOl3KKJRtvmgOuYm5opa6Fq6rQWrJbOgYJYyGxukNbpBOQwZ2qkPTIaElSEjKypvWcqbU6FhKrO7RVOgEZXIrt5IXEX7cjSUnIyJq5j8TyWEis7tDn0gnI4Ly2k29qTdu8OklJyMhadmyXjkDCWEisroIzJJQYj9J1IUn3OeHcw88xOrX20j3SEUgYC4mVNVQAjXwcPCXGc5Ilm9yU+iQmISOLNDWhvaJCOgYJYiGxMm5oJRV4TrJk4z/M2RHqvvY9nCWxMhYSK2MhIRWcbMkmdcPKJCYho2stLZWOQIJYSKyM+0dIBe4uCok/2wF7xd4kpyEj4wyJtbGQWBnvsCEVdDVDkuOqSXISMjrOkFgbC4mVVe2STkAm0NUMia98U5KTkNFxhsTaWEisqqUOaGuQTkEm4EL7CW9TbEBK0TsCacjI2vaWIRo59bORyJxYSKyqvlw6AZmECyfe9hsI2GGrqxJIQ0YWbW1FqJxfm6yKhcSq6g5IJyCTcHYyQxJQeL4NxYf7SKyLhcSq6g9KJyCT6GzJJrOMzyWh+LRxH4llsZBYVT1nSEgdx8+Q2J02eIp4/gjFp40zJJbFQmJVdVynJXU4o8cWktwAYGtpFEpDRheq5HKfVbGQWBU3tZJKjp8hyW7bL5SEzCDSwDJrVSwkVsVCQipxHDdDkrF7rVASMoNIA48jsCoWEqvikg2pxB49ejCay2OHe+N7cmHI8FhIrIuFxIoiEaDhkHQKMglHtO3Ir3OzwlDCXT9sj+hUwiwklsVCYkXtTUD0xMOsiOJhjxxdsslqKpULQqbAGRLrYiGxolCrdAIyEXvk6AxJxrY1gknIDCKN3NRqVSwkVhRqkU5AJmL/csnGm+aAq5gbWilBkQhLiUWxkFgRCwmpyBbuWLLpkcHPK1JHmLf+WhILiRWxkJCKbF8u2fjrdggnIbOINNRLRyABLCRWxEJCKlK+LCRpm1cLJyGz4MZWa2IhsSJuaiUV2cJtSPc54dyzVToKmQRv/bUmFhIram+WTkAmooTbkJvCKXZSD4+PtyYWEiviDAmpKdwG/2HOjpB6om38GmVFLCRWxD0kpKJwNIzUDSulY5CJKC63dAQSwEJiRRGe0krqaLe7cMeoKbBX7JWOQiZi87CQWBELiRU5+I+dEtfi9OLHIy/CqpotgKJIxyETUdz8GmVFDukAJMCZIp2ADK7RnY5bhp+NdcEvOt6gKEA0KhuKTIOFxJpYSKzI6ZVOQAZW6/XhptNHY3Pt1w5C4wwJqcjm8UhHIAEsJFbk4gwJxacqLQfzBw3F9rqSY/+AhYRUpLhZSKyIhcSKuGRDcTjo64t5ffuitIEbWElb3NRqTSwkVsQlG4pRWfZA3NAjgAONBzp/B86QkIoULtlYEguJFXGGhGKwK/d0zMtOQWVzRZfvoygKuKWV1GLjplZLYiGxIhYS6qatvc/Ajek21LRUn/wdbTxBgNTDGRJr4lcRK3J6AXCKnU7us375uCEtipq22lO/Mz+dSC0OBxS7XToFCWAhsSJFARx8BUJdWzvobCzwNKG+vbtPXWUjIXVwuca6WEisKiVLOgHp1D9Pm4CbbdVoDsXwVGhuaiWVKF5uurcqFhKryugjnYB06K1hF+E/wwfQFmmL7QNZSEgljkBAOgIJYSGxqoze0glIZ14aMRV3tpUiFA3F/sHsI6QSZ48e0hFICO+ysarMvtIJSEeePms6ChuKEY335l3OkJBKHD17qnKdgoICDB48GACQlZWFuXPnqnJd0g4LiVVxyYa+tGjUTDxS93mCV2EhIXU4eyVWSILBIKZMmYJ3330XPp8PRUVFGDt2LKJ8+KPusZBYFZdsCMBD+bPwWHBz4hfiDAmpxNEjsUJSUFCAK6+8Ej6fDwAwZswYrFy5UoVkpDUWEqviko2lRaHgt2Nm4bmaTepckH2EVOLsmdgeksWLF2PXrl0oKSlBSUkJpk6diqlTp6qUjrTETa1WxSUbywordtwzZqZ6ZQTgSa2kGmevXnF/bElJx1Ooi4qKEAwGkZeXhwULFmDVqlVqxSMNcYbEqtJ6ADYHEInjjgoyrHabEwWjp2JljQrLNERqs9vh7BP/i6WvConP58OYMWMAAA888AAGDRqEmpoaVSKSdviyxqpsNiA9/lciZDytDg9uHTUZK2u2qH9x7iEhFTh794bidCZ8nXHjxh35tc/nQzAY5CyJAbCQWBn3kVhGkzsNN515AdYEi7UZgIWEVODq3z+hj8/Ly+v07T6f78jsCekXC4mVBU6TTkBJUOfNxLxh4/Fp7Q7NxmAfITW4BiReSPLy8k4oH8Fg8JhZE9InFhIryx0hnYA0VpWWg+tPG4lNdbs0HomNhBLnTHCGBOjYM/L8888f+f2KFSswderUI3tKSL+4qdXKWEhM7VBmb9zQbwBK6/doPlaUUySkAlf/AQlfY+7cuaiurkZhYSEAoKqqiueQGAQLiZWxkJhWWfYAzOuZi/2N+5MzIPsIqcB9+umqXGf+/PmqXIeSi0s2VpaWA6TmSKcglZXknoZrc7Owv+lQ8gblDAklyJ4TgKsvz0eyMhYSq+t5lnQCUlFxrxG4LsuLipaq5A7MQkIJ8o4aJR2BhLGQWF0vfhEwiw39RuM/0oHq1mDyB2choQSxkBALidX1Gi2dgFTw70HjscDTgvr2BpkALCSUIBYSYiGxut6jpRNQgt4fcgFutgfRFGqSjkIUH7sd3rO4fGx1LCRW5x8IeP3SKShObw+9ELdFy9EabpUNwhkSSoB76Omweb3SMUgYCwkBfXiCoRG9PGIq7mzfi5AeHpDIQkIJ4HINASwkBACDJkknoBg9c9bFuLd5B8LRsHSUDuwjlAAWEgJ4MBoBQN6F0gkoBktHzcQf6z6XjnEcNhKKHwsJAZwhIQDoORLwZkmnoG744+hZOiwjYB+huNl9PrgHDZKOQTrAQkId6/+DJkqnoJOIQsH/5M/G0trN0lE6xz0kFCfPqJHSEUgnWEioQ95F0gmoCxHFhv8aMxPPBDdJR+kaCwnFics19BXuIaEOg7iPRI/abU78fPRUvF2j05mRr7CQUJxSzzlHOgLpBGdIqEP2YCCzn3QK+ppWhwc/HTUZb9dskY5ySlH2EYqDPTsb3vx86RikEywkdBRnSXSjyZWKm8+cgPeDxdJRuomNhGKXPnkyFBu/DVEHfibQUbz9VxfqPZlYMPxs/Lt2u3SU7mMfoTikT5sqHYF0hHtI6KhBF6LjO0tUOoll1aRmY8HgESiu2yUdJTbcQ0IxsqWlIfXcc6VjkI5whoSOSu8B9OcXCCkVmb1wbd5QFNfvkY4SO/YRilHapElQXC7pGKQjLCR0rDOukE5gSfuz+uOavv1Q0rBPOkqc2EgoNlyuoeOxkNCxzrgMUOzSKSxld85gXNMzgH1NB6WjxI132VAsFJcLqRP5DC06FgsJHSstFxh4gXQKy9jWcwSuzU7DoebD0lESwz0kFIPU886DPS1VOgbpDAsJnYjLNkmxqe8oXJ+poLq1RjpK4lhIKAZcrqHOsJDQiUbMAWy8AUtLnw4cj3neVtS11UtHUQf7CHWX3Y60yZOlU5AOsZDQiVKy+GwbDa0ZfB5+5AiiKdQkHUVFbCTUPSn5+XBk8enidCIWEuocl200sfL0SbgVFWgJt0pHURU3tVJ3cbmGusJCQp0bNguw84wANb02fAruCJWhPdIuHUV93ENC3aA4nciYPVs6BukUCwl1zusDhvCVjFqeO/ObuKdlJ8LRsHQUIjHp06fDkZ0tHYN0ioWEujb2OukEpvDYyBn478YvEDXzkfycIaFu8H/3aukIpGMsJNS106YB/kHSKQzt4dGz8FD9FukY2mMfoVNwjxiOlPx86RikYywk1DVFAc6eJ53CsB7In43FtZulYySFied+SCVZ3/2udATSORYSOrnR3wOcPFExFhHFhl+OmYWng5ukoySPjVMk1DVbZiY3s9IpsZDQyXl9wMjvSKcwjJDNgTvzp+PFGmvMjBzFQkJd811+OWwej3QM0jkWEjq1s+dLJzCENrsbPx01FW/VfC4dJemi3NRKXVEUbmalbmEhoVPrMQIYMEE6ha41u1Jw88hJeC+4VTqKDPYR6kLqxAlw9e8vHYMMgIWEuucczpJ0pd6TiQUjzsXa4DbpKES64+dmVuomFhLqnmGzgYy+0il0J5iShf84fRQ+q90pHUUWl2yoE86+fZE2aZJ0DDIIFhLqHpsdOPsG6RS6UpnRE9cNHo7i+lLpKOL4LBvqjP/qq6DY+G2GuoefKdR94+cBKTz2GQAO+Pvj2n4DsLOhTDoKkS7ZMjLgmztXOgYZCAsJdZ87DbjgVukU4kpzBuOaXjnY21QuHUU/uGRDx8m+/nrYMzOlY5CBsJBQbMbPA1JzpVOI2d5jGK7NTsPB5krpKLrC237p6+w5AWRd80PpGGQwLCQUG1cKMOGn0ilEfN7nLFzvc6CqtUY6iv6wj9DXBG68ETavVzoGGQwLCcVu3PVAem/pFEm1bsBY3JDSjtq2OukousRn2dBXnH37wv8dnu5MsWMhodg5PcDE/5ROkTQf5Z2Lm5x1aAw1SUfRLy7Z0JdyfnwLFKdTOgYZEAsJxWfMNUBmP+kUmlt1+kT8WKlES7hVOoq+sY8QAPdppyHjkkukY5BBsZBQfBwuYNLt0ik09frwybg9tA/tkXbpKESGkHPbrTx3hOLGzxyK3+jvA/6B0ik08cIZ03B3yy6Eo2HpKIbAu2zIO2oU0qdMkY5BBsZCQvGzO4Bpv5ZOobplI2fgN03bEOVWTaJuy/mpNe++I/WwkFBiRswBBpvnVdGfR8/Cg/VbpGMYDo+Ot7bU889H6rnnSMcgg2MhocTN/B1gd0unSNjv8mfj/2o3S8cwJi7ZWJeiIOc/rXPXHWmHhYQSlz0YuOAn0iniFlFs+NWYWXgyuEk6imFxhsS6fHPnwnvmGdIxyARYSEgdE38G+PpLp4hZyObAz/OnY0UNZ0YSw0ZiRY4ePZC78A7pGGQSLCSkDqcXmFEonSIm7XYXfjZ6Kt6o+Vw6iuFxhsSaet57L+zp6dIxyCRYSEg9Q2cAp8+QTtEtza4U3DLyQqyu2SodxRxYSCwnY+ZMpE/+hnQMMhEWElLXjAcAh74fqtXgycCNI87Fx8Ft0lFMhI3ESux+P3rcc7d0DDIZFhJSl3+Arp9zU5vixw1D81FUu1M6iqlwycZaevz8LjiysqRjkMmwkJD6LrgN6HGmdIoTHE7vgWsHj8CWut3SUYgMK+3CC5HJ59WQBlhISH0OF/CtpYDDI53kiHJ/P1w7YBB2NpRJRzElzpBYgy01FT1/9UvpGGRSLCSkjdzhwNRfSacAAOwNDMI1vXKxp/GAdBQiQ8u9/Wdw9uwpHYNMioWEtHPOAvFj5Xf0GIprApkob64UzWF2URunSMwuZdw4+K66SjoGmRgLCWlHUYDL/gqkZIsMv6X3mbje58Lh1mqR8S2FfcTUFLcbve77DRQ+IoA0xEJC2krvAVz6cNKHLeo/BjekhRFsq0362FbE5yKbW4+77oRr4EDpGGRyLCSkvWGzgDHXJG24jwedgxtdDWhob0zamJbHV86mlXn55fBzqYaSgIWEkmP6/UDWYM2HWX3aRPzYVoXmcIvmY9FRnCExJ/eI4ej5y3ulY5BFsJBQcrhSO24Ftjk1G+KNYd/Az8L70RZp02wM6gInSEzHnpmJvn96GDa3WzoKWQQLCSVPnzHATG0ewLfijGn4edtuhKIhTa5PZCk2G3r//vdw9e0jnYQshIWEkmvc9cD4G1S95JNnTcevmrYhEo2oel3qPh6MZi6BW25G2sQJ0jHIYlhIKPmmPwAMmqTKpf46aiZ+18An9krjHhLzSPvGNxC46SbpGGRBLCSUfHYH8O0nAP/AhC7zv/mz8Je6z9XJRAmJ8i4bU3AO6I/ehQ/wvBESwUJCMlKygKufA1zpMX9oFAruGzMLjwc3axCM4sLvX4aneL3o+6eHYU+P/d8kkRpYSEhO7nDgW0sApfufhmHFjnvGzMTzNSwjesIlG+Pr9etfwzP0dOkYZGEsJCRr6Axg8j3detd2uwt35H8Tr7GM6A9nSAwt65prkHnJbOkYZHEsJCRv4s+As7590ndpcXrxk5EXYWXNliSFolhwD4lxZc6Zg9w7C6RjELGQkE5c+ggwoPPbDBvd6bjpjPPxYfCLJIciMrf0aVPR67f/zU2spAssJKQPTg9w9d+AXqOOeXOt14d5w8ZiXe0OoWDUHTyHxHhSzz8ffR58EIrdLh2FCAALCemJJwP4/ktA9mkAgKq0HFw/5ExsrisRDkZkLt78fPT98yNQXC7pKERHsJCQvqQGgB++goP9xuHagYOxvWGvdCLqBt5lYxzu4cPRb/Ei2Lxe6ShEx2AhIf3J7IuWuY+igQ/JMwwu2RiDa9Ag9H90Kc8aIV1iISFdGpg5EEumLYHf7ZeOQt3AQqJ/zt690f/xx+DIypKOQtQpFhLSrSH+IVg0bREyXBnSUehUeJeGrtlzAuj/+GNw9uwpHYWoSywkpGvDs4fjsYsfQ5aHr+r0jHtI9MuWmYn+Sx+Fa8AA6ShEJ8VCQro3NGsolk1fhh4pPaSjUFc4QaJLdp8P/Zcu5ZHwZAgsJGQIgzIH4YkZT6Bfej/pKNQJzpDoj6NXLwx49hl4zzpTOgpRt7CQkGH0SeuDJ6Y/gcGZg6Wj0HFYSPTFNXgwBv7tWbjz8qSjEHUbCwkZSk5KDh6f/jiGZw2XjkJfxyUb3fCOGoWBzzzNDaxkOCwkZDh+jx+PT38cE/p0/uwbSj7e9qsPqRMnov/jj8Hu80lHIYoZCwkZUqozFY9MfgRXDr1SOgqBSzZ64Pv2t9Hvr3+BLSVFOgpRXFhIyLDsNjvuOfce3DHuDtgUfipL4gyJIEVB7u0/Q6/f/BqKwyGdhihu/CpOhvfDM36Ihy56CF4Hn80hhoVEhOLxoM8f/oDsG26QjkKUMBYSMoXJ/Sfj8emPI8ebIx3Fkrhkk3z2QAADnnwCGRd/UzoKkSpYSMg0zsg+Ay9c8gLG5I6RjkKkKc+okRj0/HPwjhwpHYVINSwkZCoBbwCPXvworhlxjXQUS+EekiRRFGT9x/UY+PTTcPbpI52GSFUsJGQ6DpsDt4+/HQ9d9BDSnGnScSyBhUR79uxs9Fu8GD3uuAOK0ykdh0h1LCRkWlMHTMVzs5/Daf7TpKOYHveQaCvlvHMx6OWXkDaRZ++QebGQkKkNyBiAZ2Y+g8uGXCYdhSh2djtybrsV/R99FM7cXOk0RJpiISHT8zq8+M0Fv8EfLvoD/G6/dBxT4pKN+hy9emHAU08icOONUGz8Uk3mx89ysowpA6bgpTkvYVLfSdJRTIdLNupKmzoFea+8jJQxvGOMrIOFhCwl4A3gz1P+jF+c+wsepKYizpCoQ3G50OOee9DvkUdgz8yUjkOUVCwkZEnfGfodrLhkBUbljJKOYgosJInz5udj4PLlyPr+96SjEIlgISHL6p/RH0/OeBL3nHMP0p3p0nEMjUs28bNnZaHXb3+LAc8+A8/Q06XjEIlhISFLsyk2XDnsSrx2+WuYMXCGdByyEpsNvquvwuC33oTvisuhKJxmImtjISFCx96SwgsLsWjqIvRL7ycdx3C4ZBMbz1lnYeDzz6PXvfdyrwjRl1hIiL7m/D7n4+U5L2PeWfPgsrmk4xgGl2y6x56ZiZ6//CUGPv8cvGedKR2HSFdYSIiO47a78ZMxPzmyjKOAL/9PhTMkp6AoyJz7LeS9/Rb8V13Jc0WIOsF/FURd6JPWB4UXFuLZWc9ibI+x0nHIoNzDh2PAs8+g9333weHnwXxEXXFIByDSuzMDZ2LZ9GVYvXc1Hlr/EErrSqUj6U6UizYncA0ahMCNC5AxezYUu106DpHusZAQddPk/pMxqe8kvLj9RSz9fCkONh6UjqQbURvXbL7iPu00BG66EenTp3NphigGSjQa5Usbohi1h9vx6q5XsXTzUuxv2C8dR9w9ZfkY+fSn0jFEeUaMQPZNNyJ96lTewksUBxYSogSEIiG8UfIGlm5eaumlnLvL8jHKooXEM2okAjfdhPSLLpKOQmRoXLIhSoDD5sCcIXMwO2823il9B0s2L8HO4E7pWElnxVc13nFjEbjpJqRdcIF0FCJTYCEhUoHdZsfMvJmYmTcT/zrwLzxd/DTW7Ftjmc2eVrrtN+W8cxG46Saknn22dBQiU2EhIVLZeb3Pw3m9z8Oeuj147ovn8OquV1HfVi8dS1smLyT2QACZl14K3xWXwz1kiHQcIlPiHhIijTWHmvFmyZt4YfsL2Fq1VTqOJu7cn48xT5psD4nDgbRJk+D71hVIu/BCKA6+fiPSEgsJURLtrNmJ10pewxslb6CiqUI6jmoK9udjrEkKiWvIYPguvwKZcy6FIxCQjkNkGSwkRAIi0QjWlq/F67tex7t730VzqFk6UkIWHhiNcU+sk44RN1taGjJmzoTvW1fAO2qUdBwiS+IcJJEAm2LD+b3Px/m9z0dTexPe3fsuVu9djY8OfGTIcmLEVzWKy4WU8eOReeklSL/4Ytg8HulIRJbGGRIiHWkNt2LtgbVYXbYa75W9h+qWaulI3XJ7+WicvUz/MyTO/v2RNnEiUidOQOo558Dm9UpHIqIvcYaESEfcdjcu7HchLux3ISLRCDZWbsQ/y/6JtQfWYlvNNkSiEemIndLrqxrF60Xq2WcjdeJEpE2cANeAAdKRiKgLLCREOmVTbMjPzUd+bj4wFqhtrcW6g+vwycFP8MnBT3R1AJueziFxDRmMtAkdsyAp48fD5nJJRyKibmAhIYrTtGnTsHLlyqSNl+nOxJQBUzBlwBQAQFVzFT49+Ck2Vm7Elqot+KL6C7H9J1IHwNkzM+EeNgyeYcPgGTEcKePHw9m7t0gWIkoMCwlRHFasWIFVq1aJZsj2ZmP6oOmYPmg6ACAcCWN37W5sqdqCLVVbsLVqK7bXbE9KSdG8jigKnH37wjNsGNzDhsIzfDg8w4axfBCZCAsJUYyCwSCqq/W32dRus2OIfwiG+IdgzpA5AIBoNIqDjQdRWleK0rpS7Knb0/Hr2lKUN5artidFrSUbxeWCIxCAIycHriGD4Rk2HJ7hw+AeNgz2tDR1BiEiXeJdNkQxWrx4Mb7zne/A7/fDyP982sPtqGiuQGVTJSqbK1HZVInDzYc7ft1ciermajSFmtDU3oSmUBOaQ81dFpifHBqFCY+t73Ise2Ym7DkdRcMRyPny5y9/f+TtAdgzM7X66xKRzrGQEMVg1apVyMvLQ1ZWluELSTxaQi1HSkooEkL0y/9SWhVkNSmAwwnF6YDi+NoPlwuK0ykdnYh0jks2RDEIBoPIy8tDMBiUjiLC4/DA4/Agy5MlHYWITMYmHYDIKBYvXoy5c+dKxyAiMiUWEqJuKCoqwrhx46RjEBGZFpdsiLqhuroaRUVFR2713bVrFwCgsLAQeXl5nDkhIkoQN7USxaGoqAhjx4613KZWIiKtcMmGKEYrVqzA/fffDwAoKCgQPyCNiMgMOENCRERE4jhDQkREROJYSIiIiEgcCwkRERGJYyEhIiIicSwkREREJI6FhIiIiMSxkBAREZE4FhIiIiISx0JCRERE4lhIiIiISBwLCREREYljISEiIiJxLCREREQkjoWEiIiIxLGQEBERkTgWEiIiIhLHQkJERETi/h+1d5eEjkOaGQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -430,11 +429,275 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, + "source": [ + "# Correlated fits with a covariance of your own choosing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "##### generate a random data set" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, "outputs": [], - "source": [] + "source": [ + "def fitf(p, x):\n", + " return p[1] * anp.exp(-p[0] * x)\n", + "\n", + "num_samples = 400\n", + "N = 10\n", + "x_random = norm.rvs(size=(N, num_samples)) # generate random numbers\n", + "\n", + "r = np.zeros((N, N))\n", + "for i in range(N):\n", + " for j in range(N):\n", + " r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix\n", + "\n", + "errl = np.sqrt([10.0, 2.5, 25.0, 2.8, 4.2, 4.7, 4.9, 5.1, 3.2, 4.2]) # set y errors\n", + "for i in range(N):\n", + " for j in range(N):\n", + " r[i, j] *= errl[i] * errl[j] # element in covariance matrix\n", + "\n", + "c = cholesky(r, lower=True)\n", + "y = np.dot(c, x_random)\n", + "x = np.arange(N)\n", + "\n", + "\n", + "data = []\n", + "for i in range(N):\n", + " data.append(pe.Obs([[np.exp(-(i + 1)) + np.exp(-(i + 1)) * o for o in y[i]]], ['ens']))\n", + "\n", + "data[2] = data[2]+0.05\n", + "\n", + "[o.gamma_method() for o in data]\n", + "\n", + "corr = pe.covariance(data, correlation=True)\n", + "covdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))\n", + "\n", + "chol_inv = pe.obs.invert_corr_cov_cholesky(corr,covdiag)\n", + "chol_inv_keys = [\"\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAFiCAYAAADvB4OvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsfElEQVR4nO3d32/j6H4e8EfyzmjO2Rmb1uL86Jx1gaW6QZqcK3mM3iUXKwFpiiI3kgfpbbFiA6RFsGikoxxgZ3qAREdMEDRFgUQa9K5FMBZ7VRRFIe4fUNjmTYsW6KlooG42Jy1G845nkR1P1mIvvOSK+v1SovRKej4AsWvJfEnKmkevvu9LMuF5ngciIlo7yVXvABERRcMAJyJaUwxwIqI1xQAnIlpTDHAiojXFACciWlMMcCKiNcUAJyJaUwxwIqI1pXSA7+/vI5PJoFgswjAMGIaB/f197O/vBz8Xi0VkMhns7+8DABzHQT6fx/7+PprN5lL20zRNVCoVGIYBy7JmXm/Uvq5i/5cl7mNzHAf7+/twHGfhbW8Svk6b451V78A4Qgik02mcn59D07Tg8bOzMwgh0Gg0Qr97eHgIIQSy2Sza7XYQ6HFrNptot9tot9swDAPtdhuFQmGmdUft67L3f5kWdWyu60LX9ZHPpdPpudpeJ5Neh2m26XXaZMoGeLfbhWEYofAeR9M0VCoVdLvd4PeX9QZttVooFosAEPpQkTFqXzf5H9g8x+Y4ztjgymaz6HQ68+za2pj0OkyzTa/TplO2hOL3pmf16NEjuK4b4x6N5rruRoetamzbXvUuKIGvAwEKBzhwG8qz0nWdQbrhHMdBpVJZ9W6sHF8H8ilbQpHpfQO3ZZRR61iWhW63CyEETk9P8ezZs6GyjOM4eP78OTKZDDqdDjKZDEql0sTtOY6DRqOBbreLWq2GdruNw8NDPHr0CJVKBWdnZ6jX60E7hmEEvaY4vr66rot6vY5MJhM8ViqVQsfqui4ajUbwO51OB/V6PXjetm1UKhW4rovPPvsMZ2dnOD8/B3BbHpr2fP9rI/t69g9qnp+fI5/Ph8YSLMtCu90OtuX/f71eh6ZpcF0XhmEMve6zHLcfiGdnZ3j27BkATH3PDJrURrvdRqvVQrfbDd4D/phJLpdb6Osw7W806nVqNptotVqwbRuapuH8/By6rqNSqcA0Tei6DsMwUC6XJ74GtALemslms56u61N/T9d1r1AoeJ1OJ3isUCh4pVIp9HvtdnuovWw26zUajZn2R9f1kb+radrQ4+VyeeS+j2pjXLujnJ+fe5qmeS9fvgwea7VaXqFQCP1ONpsNrdfpdDxd10PreZ7nAfBKpZL38uVLr9VqDe3zpOdneT0Hj21wXz3v9vVrtVpDxwpg5OP96/W3LXPcmqZ5pVJp6ntmknFtFAqF0H6fn597ACb+zfz2orwO0/6Go96fhUIh9Fq1222pY6flU7qEsgj9gzxHR0dDtUPDMIa+jlar1VAPLYpR5Zz+3vEiFYvFod52u92GECL0O4ZhhNbTdR3ZbHbo+P12NE1DoVAY+sYw6fmor+fglLZcLhf0LmUMvu4yx51Op9Htdqe+Z6Ztf1QblmWFetv+t8Wzs7PQ+ot6Hab9DUe9P589ewbXdYNvAe12O/LAPC3HRgf40dFR6OdRpRPXdYdq7dlsdiUDolG4rgvXdYeOtf/rtX+cg1/XASCfz+Pk5GTo8cPDw4nbHfV81NezP2CEEHAcB0IIdLvdifswTZTjnvaemcWoNvxlkkW/DtP+hoM0TcNnn30WnGNRrVYjbZeWR9ka+CJM+wfjh4pt20M9oXXpefjHMGk6mf874wZ5hRAQQoRer2kDwqOen+f1tCwLtVotqLdGCc5x+yNz3IvY7qg2Zh1gX+TrEGVQP5vNolQqBfVwUttGB/g0fujlcjnpQdMo+ksai+L3dl3XHXsM/nH2z5Mf3KfBx6f94x31fNTXs9lsolKpBINnAIJBv1nWHTdAGuW4V2nRr0OUYxNCIJPJ4OzsDIZhrE1HRpYQAicnJ2i1WjOXqEzTDF5TIcTQoO605+Ow0SWUabLZLDRNG+otAouZZzsY2HHMPvFn34x6E/rH4B/nqGM6PT2d+czRaaK+noZhoF6vh75F9IdW/8wMmVBa1nEvSlyvg4xarYZyuYxWq4Vmsyl1aYh14TgOTk5OpMpTpmkCuJ3ZVSqVkM1mQ2Mr056Py9oFuMyLPhigo3rArVYL9Xo99Jw/9UtmnwblcrlQYAsh4Lru3HXdUZ49e4aTk5OhOnP/z61WC41GI7SvjuPAcZxg2lv/vk76tjDp+UW+nqO28ejRI5yengLA2Pp2/3oyxz1qm1G+NS2ijf71orwO0/6Go9otFot4/PgxgNtvL41GAx9//HEs3xxXyS8TyZzFWqvVQt9wcrlc6AN12vOxWfU0mFmcn5975XLZKxQKHgAPgFcoFLxyuey12+2h3y2VSh4AT9d1r1wue573zRQ+f93z8/Ohder1utdoNGaavje4ncGpYy9fvvQKhULQZqvV8hqNhgfAy+Vy3vn5+ch9Hbf/03Q6nWB7/rbG7XO9Xvfq9bpXLpdD09j8aWMAvGw2G0xDm/X5aa/nuGM7Pz8P9r3dbgd/U/9v3P+6djodL5fLBccw7u8x6rlxxx3lPTPumCe1USqVvPPzc6/dbgfv5Ww2G+zrIl6HaX+jUa9T/z72t+Xvoz81ctO0Wq2hKaajdDodb1RUAvDa7fbU5+OU+HpDREQr9ebNG7x9+zby+p7nIZFIhB5LpVJIpVIjf98fMPZPdBrHtm3k83kMRuX+/n5wktek5+Ms1W31ICYRqeHNmzf41oM08NWXkdu4f/8+vvjii9BjT548wdOnT+fcu9H8Of/jxiP85+PEACeilXv79i3w1Ze488PfBHbuyDdw8zf44r/9OS4vL7G7uxs8PK73vQjTwjnu8AYY4ESkkMSde0js3JVez0vuAAB2d3dDAb4I4wY7hRDQdX3q83Fau1koRETLpOt6cMG0QblcburzcWKAE5EyEsmdyIuscSUO13WDed2+arUaOp/AsqzQtMFpz8eFs1CIaOWurq6wt7eHe48MJN6JUEL56i3enDXw6tWrqSUU13VhWRaeP38Ox3FQLpdxdHQUzBZpNpuo1+tDJ975l9YFbk8EG7xA27Tn48AAJ6KV8wP8W3/vt5B4R37g0fvqGl/+lz+dKcA3CQcxiUgZyYjlEC/COptA2QBfxYVh4uDX0vyvY+t+caB8Ph/p+tSqqFQqwXXZ0+m0ctdDmUWz2QyuotjpdFCtVpW6KNc8otazwQBXR/+FYYDbM6HW8cpolUolVAczDGOtA9CyrLW9ma4QAh999BE+++wzaJoGx3FweHg4dPac6kzTDN28QwiBjz/+GK1Wa7U7Riuh5CyUlV0YZoH6L8jv8++LuS43i+i3iBssrFKlUsHjx4+D4Bt3BUfVtdvtoeuXb9LFppY5C2UTKBfgrusOXWTft269v7Ozs1BY+yPU6/gP7uTkBMfHx6vejciazSYKhQJc1w3eR3HP0Y2Df90N/z3kum7sJ4ssUyKZjLxsI+WOelzvdN16Gpqm4eXLl6EbG/jBsW7/4GzbXsuw8/nvKf8bkX+3m3XrEADf3Ldyf38flUoFtm2vXWlxEvbA5ShZAx9lGReGiVutVkOj0Vi7ASc/9NbpA7SfH+D+zS8AoF6v44MPPsDLly9XuWvSNE1DpVJBu92GaZrI5XI4Pj5eu/fUOLe96SiDmMr1RZdibY563cPbr8Eu4+ysRfJLD5ug/2bL/je6deuFVyoV6LqOVquFTqeDbrcrffNi2hzKBfgqLwwTF8uykMlk1m4qpOM4Q3eYX0fj3jfjrl+hKn98yC9n6bqO8/NzaJq2Mbc+SyQillASLKEoof/CMIP/8NaxDuv38Pyetz+bYx0+jLrdLhzHCY7Bn8vunzK8Lj1z/4pxgzd+FkKs1QeU67ojSyXLuPfi0uzsILET4USe3nYGuJKn0vsn8fihZ1kW2u322g3W+OHXH3T+RW7WsWa5rnOngdvXvf/6FJZlodForN1Uwnw+j1arFXr/rOM5EoP8U+nTf/8nSN65J71+72/eoPufPt26U+mVDHBgNReGWSQhBD744IORA3+KvuQT+Rf/sSwL5XIZ+Xx+7b4R+WcwAsCLFy/W7j0F3L6varUa3nvvvaCOv64dgn5+gL/3D34/coC/+I8/ZoATES2bH+Df+Yc/jRzg/+8//GjrAly5QUwiIpqNcoOYRLS9os4D39YzMRngRKSMqGdV8kxMIqIVY4DLYYATkTIY4HIY4ESkDP9MzCjrbSOlK//X19d4+vQprq+vV70rc9mE49iEYwB4HLRZlJ4H7s8NXfe5nZtwHJtwDACPQ1X+8fzgNxtI3v2W9Pq9t1/iL/7c2JjXY1YsoRCRMjiNUA4DnIiUwUFMOUsN8F6vh88//xwPHjxAIpGY+vtXV1eh/66rTTiOTTgGgMcRJ8/z8Pr1azx8+BDJiD1iBricpQb4559/joODA+n1oqyjok04jk04BoDHEafLy0u8//77kdZNJhNIJqd37oZXjLDOBlhqgD948AAAsPNLx0js3IltO7/149+OrW3fr//i92Jt/zvvxvf6+A7ejf9N7yXjf4sl334Z+za8CANrUu3H2vpyvH79Gh9++GHw75zit9QA98smiZ07SOzcjW07qW/fj61t37sxv0nvvxvf6+Pbvb8pAR7/Nry73463/VhbX65ZyqNj100mkIjQm46yzibgICYRKSORSET6AIiyjn/jGOD2OuvTbnlYLBbx+PHj4K5h/XRdh23baDQayOfz0HUd7XYbR0dHsd65igFORMpIRKyBe5LrmKYJ4JtbHdq2PfXORo7jjLz3aKFQQKvVCm6SbVkWdF1HpVKJ/baDDHAiUkYiEbGEItkDr9VquLi4CH7O5XLI5/MTA9wwjKFeerPZDD4EAODi4mKpd0faztnvRLS1XNeFEGJk0Po38B5lsDdt2/bKb4rNHjgRKWPeQczBefGpVAqpVCr0mOu6I9vw7zE6jn+PXr8N13WH7gt7cnKCdDqNbreLTqcT+31XpQNctvBPRDSrZCKBZIQBSe/rdQbnxT958gRPnz6dqQ0/eGdRr9eHyi3ZbBbAN0HfbDZRLBbRarVmajMKqQCPUvgnIprVvD3wy8vL0MWsBnvfk8wa3o7jjHy8v4cOAMfHxzAMY2y5ZhGkauC1Wi1UsM/lcmg2mwvfKSLaTn6AR1kAYHd3N7SMCvDBoPUJIcY+16/RaCCTyQw9PjhDxQ/tcSWbRZg5wKMU/q+vr3F1dRVaiIjG8U+lj7LMyp/HPSpYB2vao9i2PZSDQggUi8VQm349fZYPhaikAnyUSYX/Wq2Gvb29YFHxug1EtH2q1Wqo42lZVqi64LpuUDIe5LruUChrmoZyuRx6vNlsolAoxDqtcO5ZKJMK/9VqFZ988knw89XVFUOciMZKJG+XKOvJKJfLME0zKHucnp6GxvL8sypHTdLQdR3pdHro8Wq1Ggr9Fy9exDqACSwgwCcV/kdN4SEiGmeZp9L3h/PgHO9SqRTqkffrdDojH/d74cs0c4DPW/gnIpommUTEU+lj2Jk1MPNhz1v4JyKaZt5ZKNtG6nNrWuGfiGge/rVQpJc5LmG7zqQCvFwuQwgBy7JgWdZQ4Z+IiJZHehBzUuGfiGge855Kv214MSsiUkfUevaW1sAZ4ESkDN5STQ4DnIiUEfWu9JHuZL8BGOBEpIxlnsizCbZ0+jsR0fpbSQ/8t37820h9+35s7f/Jp38cW9u+u3/wu7G2/xu//L1Y2wcAPIj/Mgdvb7zYt5Haif9tHP9RxC/5Jt6rgSbfvJ67jWVdC2VTsIRCRMpgDVwOA5yIlMFZKHIY4ESkDA5iytnSyhER0fpjD5yIlMEauBwGOBEpw78aYZT1thEDnIiUsZNMYCfSDR0Y4EREK5WMGOA9BjgR0WpF7YFva4BzFgoR0ZpiD5yIlMEeuBwGOBEpgwEuhwFORMp4Jwm8E2kWSgw7swYY4ESkDPbA5TDAiUgZUacR3mxpgG/pFw8iovXHHjgRKWMnkcROUr5fuRPhjg6maULTNACAEALlcnni79u2jUajgXw+D13X0W63cXR0hEKhELnNebEHTkTK8GvgURYZpmkCAEqlEkqlErLZLAzDmLiOEAK2bcMwDBiGgUwmMxTesm3Oiz1wIlJG1EFM2XVqtRouLi6Cn3O5HPL5PBqNxsT1Li4ugh72otqcB3vgRKSMZfTAXdeFEGJkENu2HWm/42hzFuyBE9HGuLoK37g5lUohlQrfvNt13ZHrapoGIcTE9k9OTpBOp9HtdtHpdFCv1+ducx7sgRORMnYSicgLABwcHGBvby9YarXazNv2g3mcbDaLXC6HQqGAUqmETCaDYrE4V5vzYg+ciJQRdR64f0eey8tL7O7uBo8P9r4nmRa0uq6Hfj4+PoZhGBN72HGGN8AeOBEpZN4a+O7ubmgZFeCDQewTQox9DgAsywr97Ne7XdeN3Oa8VtID//Vf/B7effAgtvbv/sHvxta27w9/7w9jbf+LT38n1vYB4Lu/8kHs23j3Tvx9hF7yTuzbSN54sbZ/dyf+Mwlf79yPtf0vdnpzt/FOMhHpWigyZ2Lqug5N00YGby6XG7mOEALFYhGdTidYx+95++3JtrkI7IETkTKWNQ+8Wq2GZodYloVSqRT87LpuMK8buO1tl8vlUDg3m00UCoWgJz6tzTiwBk5EW6dcLsM0zaAscnp6Gpqv7Z912X8mZbVaDYX6ixcv0Gq1Zm4zDgxwIlLGsk7kARAK5/4zKoFvzqbs5/fCo7YZBwY4ESljJxExwBPbeTVCBjgRKWPeaYTbhgFORMpYZgllE0gHuF/E73Q6ABB7kZ6ItgcDXI5UgFcqleDcfwAwDAP5fB7tdnvhO0ZERJPNPA9cCAHHcUKnjRqGAdu2x17IhYhIxk4y6lzwVe/5akgd9tnZWSisB89IIiKax7JO5NkUM5dQNE3Dy5cvQ4/5Zx2NO9f/+voa19fXwc+Dl3okIurHGricub541Go1NBqNiXeo6L+048HBwTybI6INl4zY+97WaYSRA7xSqeDx48cTz/WvVqt49epVsFxeXkbdHBFtgXmvB75tIs0DtywLmUxm6oVaRt0Ng4iIFkO6B+7Xvf3wFkJwFgoRLUQykYi8bCOpAHccB47jIJvNwnVduK6LZrOJdDod1/4R0RbZAbCTiLCsesdXZOYSihACH330EYQQqFQqoeemXaGLiGgWyYgDkts6iDnXNEIiokWKOiC5rYOYW3r+EhHR+uPVCIlIGVEHJLd1EJMBTkTKSH49KBllvW3EACciZXAQUw4DnIiUwRKKnJUE+HfevYP7796Nrf3f+OXvxda274tPfyfW9v/0J/8y1vYB4Jf+7NPYt/HD7z6IfRsPH8T3XvK9+cqLtf0fPLgTa/sAEO8RLKb9nYgllCjrbALOQiEiWlMsoRCRMlhCkcMAJyJl8HrgchjgRKQM9sDlMMCJSBkcxJTDACciZSQi9sAT7IETEW0P0zSD20EKIWa6qqppmgCATqcDAGg0GsFztm2j0Wggn89D13W0220cHR2hUCgsfue/xgAnImUsaxDTD2L/xjS2bcMwjFAgD6pUKqjX68HPhmEgn8+j3W4DuP0QsG0blmVB13VUKpVYwxtggBORQpKIdl0T2RNaarUaLi4ugp9zuRzy+fzYABdCwHEcCCGCXrthGDg8PITrutB1HQBwcXEx9ibvceCJPESkjHlvanx1dRVarq+vh7bhum4oiPv5t4wc5ezsLHT7SD+0hRDzHfQc2AMnImXMO43w4OAg9PiTJ0/w9OnT0GPj7uGradrYMB51Qxs/7P0gB4CTkxOk02l0u110Op1QySUODHAiUsZO8naJsh4AXF5eYnd3N3g8lUrN3IYfvLOq1WpoNBpBTz6bzQL4JtCbzSaKxSJardbMbcpigBPRxtjd3Q0FuAyZ8K5UKnj8+HEwCAqEe+IAcHx8DMMwxpZrFoE1cCJSRjLxTRlFbpl9G4NB6xNCjH2un2VZyGQyQ9MOLcsK/eyH9riSzSIwwIlIGcmIA5gydXNd16Fp2shgzeVyE9f1695+z1sIEQyKFovFUJt+PX2WD4WoGOBEpIxovW/5gc9qtRqacWJZVqgc4rpuMFfc5zgOHMdBNpuF67pwXRfNZhPpdBqapqFcLofCutlsolAoxDqtkDVwIlLGvIOYsyqXyzBNMyh7nJ6ejjyr0i+TCCHw0UcfQQiBSqUy1BZw+6HQH/ovXryIdQATYIAT0Zbqr2EPnjFZKpVCPfJR0wgH+b3wZWKAE5EyeDlZOQxwIlJGInG7RFlvGzHAiUgZSSSQRIQeeIR1NgEDnIiUwR64HAY4ESnj9kSeaOttI84DJyJaUyvpgR+8m8Du/Rg/Mh/MfgGbqL77Kx/E2v4v/dmnsbYPAP/0n/wk9m3849/7Z7Fv4x8dvh/7Nvbu3Ym1/WXc0/HNV57y7bOEIoclFCJSBgcx5TDAiUgdEXvgW5rfDHAiUgcHMeUwwIlIGQlE60xvaX5zFgoR0bpiD5yIlMFrochhgBORMhKIOI1w4XuyHuYqoeTz+UXtBxERknMs2yhyD9yyrNAdLYiI5pVIJJCI0AWPss4miBTgQgipOzgTEc2C0wjlRPrmcXJyguPj40XvCxERSZDugdu2PfXOzb7r62tcX18HP19dXclujoi2CK+FIke6By6ECN15eZJarYa9vb1gOTg4kN5BItoeHMSUI3XczWZz6Oafk1SrVbx69SpYLi8vpXeQiLaHP4gZZdlGM5dQHMfBo0ePpBpPpVJIpeK/tCsRbQYOYsqZOcC73S4cxwmmDnY6HQCAaZrQdV2qZ05ERPObOcBzuVxo8NJxHDSbTZTL5Vh2jIi205Z2piOJVPu3LAu1Wg0AUKlUeEIPES2EX0KJsmyjSCfyFAoFlkyIaOF4JqYcXsyKiJSxzEFM0zShaRqA2+nRs5SDp60Tpc15bOv0SSJSUGKORYZpmgCAUqmEUqmEbDYLwzDmWidKm/NKeJ4X762q+1xdXWFvbw9/9fn/we7ubnwbSsT/ufTzL3uxtv+f/9eLWNsHeFd6GXHflT6j3Y21fQDovrmJtf3XV1f45Q9+gFevXkn/+/az4S/+8ueRsuHq6go/+Fvfn3nb+/v7uLi4CHrLwG0ZZlIcTlsnSpvzYg+ciJTh39AhyjIr13UhhAgFrW/chIxp60RpcxFYAyciZcx7LZTB6y2NOpnQdd2RbWiaBiHEyOemrROlzUVYSYB7yXfgJePb9Nub+KtC796J98vLD7/7INb2geWUN/7NH/yr2LfxfbMS+zZ+VX8v1vYf3o//n+L1V/GW/a5v5m8/4XlIRCg5+OsMXm/pyZMnePr06UxtpNNp6ctk++uM6nlHbVMGe+BEpA6vd7tEWQ/A5eVlqAYucymPKEE7bZ2475vAACciZSS8HhIRAtxfZ3d3d+og5rirqU660uq0daK0uQgcxCSiraLrOjRNG1m3Hnevg2nrRGlzERjgRKQOv4QSZZFQrVZDs0Msy0KpVAp+dl03mNc96zrTno8DA5yI1OF50RcJ5XIZQghYlgXLsnB6eopGoxE8b9t26OdZ1pn2fBxWciLPz38ebbL+rJYxC+VtL95t/M8Xb2JtHwD+7Vn8N9hYxiyUH2/ALJQffudbsbYPACLuE3leXyH7dw7mOpHn/15eRD6R57sHH0Ta9jrjICYRKeN2GmGUQcyl9UOVwgAnInXMOY1w27AGTkS0ptgDJyJ1sAcuhQFOROpggEthgBOROrwe0GOAz4oBTkTKmPdU+m3DQUwiojXFHjgRqYM1cCkMcCJSR4TT4oP1thADnIjUwR64FAY4ESmDp9LLYYATkTrYA5fCWShERGuKPXAiUgd74FIY4ESkDga4FAY4ESmDZ2LKYYATkTp6Ea+FEmWdDbCSAE++/RLJt/FtOrUT/2H1kndibf/hg7uxtg8A/+jw/di38f0l3O7s98v12Ldx89NyrO2//+BhrO2vDZ7II4WzUIiI1hRLKESkDg5iSmGAE5EyOIgphwFOROpgD1wKA5yI1OF5EQN8OwcxGeBEpA7vBujdRFtvC3EWChHRmorUA69UKshkMgCAdDqNQqGw0J0iou3k9XrwIpyUE2WdTSAV4EIIfPTRR/jss8+gaRocx8Hh4SG8La0/EdGC9SKWUKKsI8k0TWiaBuA2C8vl6Sd3maYJAOh0OgCARqMRPGfbNhqNBvL5PHRdR7vdxtHRkVSHWCrAK5UKHj9+HBxENptFu92WaYKIaDxFA9wP4lKpBOA2fA3DCAXyoEqlgnr9m7OEDcNAPp8PMlMIAdu2YVkWdF1HpVKRrmZIBXiz2USn04HrunBdF7lcDrlcbuzvX19f4/r6Ovj56upKaueIaLt4NzfwbuTDOMo6Mmq1Gi4uLoKfc7kc8vn82AAXQsBxHAghgg6vYRg4PDyE67rQdR0AcHFxETwfxcyDmK7rAkCwU7quwzAM2LY9dp1arYa9vb1gOTg4iLyjRESr4LpuKIj7Tcq/s7OzIDcBBKEthFjYvs3cA/d3RNM0ZLNZAEC9XscHH3yAly9fjlynWq3ik08+CX6+urpiiBPReHNejXDwW34qlUIqlZprl/pDuJ+maWPDWNO0oVz0w94PcgA4OTlBOp1Gt9tFp9MJlVxmIT2N8NGjR6Gd9Os4o6RSKezu7oYWIqKxer1v6uBSy22AHxwchL7112q12HbVD95Z1Wo1NBqN0BhiLpdDoVBAqVRCJpNBsViU2oeZe+D9nxr9NE0b+wlFRCTD693AizAg6a9zeXkZ6iiO6n1bloXnz59PbbNarQbVhlFkwtufAOIPggLDmXp8fAzDMMaWa0aRCnBd1+G6buighBChXjkRUWRexBLK16ffz/JNv1AoSM32GNd59ccCp7EsC5lMJhTe/uP9++GH9mDGTiJVQqnX66FPLsuykMvlZt4YEdEkfg88yhIXXdfHVhomzcIDvql7++EthAgGRYvFYqhNv54+y4eCTyrAC4UCMpkMTNOEaZo4PT3lPHAi2njVajU01mdZVqhH7bpuMFfc5zgOHMdBNpsNpl43m02k02lomoZyuRwK62aziUKhIDWtUPpU+sGvAUREC6PoiTzlchmmacKyLADA6enpyLMq/bMz/bPWhRCoVCpDbQG3Hwr9of/ixQu0Wi2p/eLVCIlIHQrf1Lj/1PnBGnqpVAp1bkdNIxzk98LnwQAnImWoeiamqhjgRKQOfx54lPW2EAOciNShaA1cVbyhAxHRmlpJD9y7+y14d78dX/uxtfyN5E28W3nzVfxHsXfvTuzb+FX9vdi3cfPT+QaCZvHTH5nTf2kOqT/6UaztA8Cv/cJ3Ym3/i+v5e8G8oYMcllCISB0soUhhgBOROnhTYykMcCJSBksochjgRKQOTiOUwlkoRERrij1wIlIHBzGlMMCJSBk8lV4OA5yI1KHwxaxUxAAnInWwhCKFg5hERGuKPXAiUsa8NzXeNgxwIlIGT+SRwwAnImV4PQ/eTZQAX8Yl7NTDACciZXg3vWgBHmGdTcAAJyJlsIQih7NQiIjWFHvgRKQMllDkMMCJSBkMcDkMcCJShndzgx6vhTIzBjgRKcPzIg5ieuyBExGtFEsocjgLhYhoTbEHTkTKULkHbpomNE0DAAghUC6XJ/6+bdtoNBrI5/PQdR3tdhtHR0coFAqR2xy0kgD3vl7W2d2dRKzt/+DBnVjbB4CYDwEA8PB+/G+x9x88jH0bqT/6Uazt/4t//tNY2wcA8ZNPYm3/+q+/mLsNr+dFPJEn3kQxTRMAUCqVANyGs2EYaDQaY9cRQsC2bViWBV3XUalUhsJbts1B7IETkTJ6Nz30IvSmo6wjo1ar4eLiIvg5l8shn89PDduLi4ugh72oNvuxBk5EyvBLKFGWuLiuCyHEyCC2bXulbbIHTkQb4+rqKvRzKpVCKpWaq03XdUc+rmkahBAT1z05OUE6nUa320Wn00G9Xp+7zX4McCJSxryDmAcHB6HHnzx5gqdPny5i14b4wTxONpsFAOi6DgBoNpsoFototVqR2xzEACciZcx7Is/l5SV2d3eDx0f1vi3LwvPnz6e2Wa1WgxAeZVrQ+sHtOz4+hmEYE3vYMuENMMCJSCHz9sB3d3dDAT5KoVAIzQaZZjCIfUKIsc8Btx8U/dvx692u60ZucxAHMYlIGSoOYuq6Dk3TRtatc7ncyHWEECgWi6F1/J63ruuR2hxFOsCbzSZM00Sz2USlUpEquBMRTdLr9SIvcapWq6HZIZZlBfO3gdtetT+vG7jtbZfL5VBvutlsolAoBD3xaW3OQqqEYpomSqVS6Myhjz/+eGJRnoho3ZXLZZimCcuyAACnp6eh+dr+WZf9Z1JWq9VQqL948SKUldPanIVUgLfb7dAOyk55ISKaROVT6fuzb7CGXiqVhnrPfi88apuzkCqhaJqGfD4fhPakYjwRkazbAL+JsGzn1QileuDPnj3D4eEh9vf3US6XkclkJnb5r6+vcX19Hfw8OMmeiKgfb2osR7oH7l+QxTRNtFqtiSWUWq2Gvb29YBmcZE9E1M/rRZyFwgCfrlKpQNd1tFotdDoddLtdHB4ejv39arWKV69eBcvl5eXcO0xEGyzqFMItLaHMHOD+xVf8OYq6ruP8/ByapgWjqINSqVQwsX6WCfZERDS7mWvgruuOvHKWYRiL3B8i2mKqXk5WVTP3wHO5HBzHGap5n5+fR5r+QkQ0yB/EjLJsI6lZKK1WC7VaDe+9914wB9y/PCIR0bxUngeuIqkA1zSNgU1EsfFuPHg38rdHi7LOJuDVCIlIGb1exBr4lpZQeDVCIqI1xR44ESnj9q70EUooMd+VXlUMcCJSRu8G6CXlw7h3E8POrAEGOBEpw7vpwUtyFsqsNjLAk2/iv2jW6537sba/jC+Eb76KfyvXX23GP6xf+4XvxNq++MknsbYPAH/y6R/H2r5383YBbXjwIvTAt3UWCgcxiYjW1Eb2wIloPfVuvIg18O3sgTPAiUgZrIHLYYATkTJ6nodehCmBPY89cCKi1brx4CUihDFLKEREq9W76aGX4OVkZ8VZKEREa4o9cCJShhexhLKt88AZ4ESkDAa4HAY4ESmDNXA5DHAiUobnRbwaIacREhGtVu/GQy/ClYB4JiYREY1lmiY0TQMACCFQLpcn/n6xWMTjx4+h63qwnk/Xddi2jUajgXw+D13X0W63cXR0JHWTeAY4ESnDu/HgIcqp9PH2wE3TBACUSiUAgG3bMAwDjUZj7DqO48CyrKHHC4UCWq0WhBCwbRuWZUHXdVQqFanwBhjgRKSQ2wBXbxZKrVbDxcVF8HMul0M+n58Y4IZhDPXSm81m8CEAABcXF0O9cxk8kYeIlNG78SIvAHB1dRVarq+v594n13UhhBgZtLZtj11vsDdt2zYePXo09/70Yw+ciJTh9XrwEolI6wHAwcFB6PEnT57g6dOnc+2T67ojH9c0DUKIsevpuh5qw3Vd5HK50O+cnJwgnU6j2+2i0+mgXq9L7RsDnIiUMe8slMvLS+zu7gaPp1Kphe3bID94Z1Gv14fKLdlsFsA3Qd9sNlEsFtFqtWbeBwY4EW2M3d3dUICPYlkWnj9/PrWtarUahOwos4a34zgjH+/voQPA8fExDMMYW64ZhQFORMrwehEHMSVO/ikUClKzPQaD1ieEGPtcv0ajgUwmM/S4ZVmh/fBD23XdiR8c/TiISUTquOnd3pVHckGMp9L787hH1cIHa9qj2LY91KMWQqBYLIba9Ovps3wo+BjgRKSMeWehxKVarYZmnFiWFZoO6LpuMFd8kOu6Q6GsaRrK5XLo8WaziUKhIDWtkCUUIlKGd+NFuq5JlOunyCiXyzBNMzgx5/T0NDQo6Z9VOersTF3XkU6nhx6vVquh0H/x4oXUACYAJLwlXgXm1atX0DQNP/vZz/DgwYPYtpN88zq2tn1f7Lwba/vL+KO8+Sr+rVxvyFXirq5vYm3/3//Xv4y1fQD409//17G27938DW7++wmEENjb25Na9+rqCnt7e3j+vb+Lbyd3pLf9170bPP6r/4FXr15NHcTcJEvtgb9+fRusH3744TI3S0RL9Pr1a+kA9/U8L9INinlT4yV4+PAhLi8v8eDBAyRmmKx/dXWFg4ODobmd62YTjmMTjgHgccTJ8zy8fv0aDx8+jNzGjefhJkIYR1lnEyw1wJPJJN5//33p9WaZ27kONuE4NuEYAB5HXKL2vH03XrQbzG/p1WQ5iElE6mAPXA4DnIiUwR64HKXngadSKTx58iTW6xkswyYcxyYcA8DjoM2y1GmERESj+NMIG/sf4lsRphF+2buB8fJnnEZIRLQqN4hYQln4nqwHBjgRKePG83AT4TQ2DmISEa3YjRetN72tg5gMcCJSBgNcjtKzUIiIaDz2wIlIGayBy2GAE5EyehFLKDFfTVZZDHAiUgZ74HIY4ESkDA5iymGAE5EybgM8Sg88hp1ZA5yFQkS0ptgDJyJlsIQihwFORMrgIKYcBjgRKcMDEOU22NsZ3wxwIlIIe+ByOIhJRLSm2AMnImVwEFMOA5yIlMESihwGOBEpgz1wOQxwIlKGyj1wIQROTk7QarXQbrdnWsc0TWiaFqxfLpelnp+GAU5EylD1aoSO4+Ds7AxCCHS73ZnWMU0TAFAqlQAAtm3DMAw0Go2Znp8F70pPRCvn35XeSPxt3E3IT4576/XQ8P537HeltywLtVoN5+fnU393f38fFxcXQQ8bABKJBPzInfb8LDiNkIiUceN5kReVuK4LIUQonH22bU99flYsoRCRMr5EL9KA5Nuvz9+8uroKPZ5KpZBKpRaxa1Jc1x35uKZpEEJMfX5WDHAiWrm7d+/i+9//Pv7dz/8ichv379/HwcFB6LEnT57g6dOnc+7d4qTTaXS73ZE97/7nZ8UAJ6KVu3fvHi4uLvD27dvIbXieh0QiEXpsVO/bsiw8f/58anvVahXZbDby/owyLZxlwhtggBORIu7du4d79+7Fvp1CoYBCoRDrNnRdH/m4EAK6rk99flYcxCQiWjBd16Fp2shady6Xm/r8rBjgREQzGlficF03mNftq1aroRkllmUFc75neX4WnAdORDSF67pB7dxxHJTLZRwdHQWlmGaziXq9jk6nE1rPNM2gJHJ6eop6vS71/DQMcCKiNcUSChHRmmKAExGtKQY4EdGaYoATEa0pBjgR0ZpigBMRrSkGOBHRmmKAExGtKQY4EdGaYoATEa0pBjgR0ZpigBMRran/Dxl9M/tGsUZHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.matshow(corr, vmin=-1, vmax=1)\n", + "plt.title('The full correlation matrix')\n", + "plt.set_cmap('RdBu')\n", + "plt.colorbar()\n", + "plt.draw()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### generate a block diagonal covariance matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "e=0\n", + "block_diag_corr_matrix = np.zeros((N,N))\n", + "for k in range(3):\n", + " if(k==0):\n", + " step = 4\n", + " block = pe.covariance(data[:4],correlation=True)\n", + " else:\n", + " step = 3\n", + " block = pe.covariance(data[:3],correlation=True) \n", + " block_diag_corr_matrix[e:e+step,e:e+step] += block\n", + " e+=step\n", + "\n", + "block_diag_chol_inv = pe.obs.invert_corr_cov_cholesky(block_diag_corr_matrix,covdiag)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAFiCAYAAAAX53hYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtjUlEQVR4nO3dT2wjWX4f8C/VO83ZnWmppMFme8ejJFPCAHY2J6qFAAYCBGgScRxkfSlK8DGHYcGwgTUGWDK0jenOAlkuuYCRPRgGaw45GUaLdQuCJGDNKYCBQFLlEsQINiwhUbyexGn2E3u8O2qvWDloXw2L4p+qIkvNx/p+gEI3WXyv/pD68cf3Xr3K+b7vg4iI1trG694BIiJKH4M9EVEGMNgTEWUAgz0RUQYw2BMRZQCDPRFRBjDYExFlAIM9EVEGLCXYu667jGqIiCglCwd7x3Hw+PHjxGX39/exvb0Nx3FmvtZ1XZRKJWxvb8OyrETbW9a+xFEul7G9vY1SqRR63nVdbG9vr+UXZdrv1euU5rGt82dimXieklk42LfbbQghEp34YrGIs7MzCCHmvrZQKKDb7SbYw+XvSxydTgeHh4cT1+3s7Cx1W6si7ffqdVrWsXmeN/H5df1MTDLtHESRpfO0LF9ZVkXtdhvtdjtRWU3TIr827Tc5zr4sUmehUECv11v6tlbJOv9BLnJsruvC8zzouh56PgufCWnaOYgiS+dpmRbK7G3bhmmaKBQKOD4+XtY+Ea21ZTYTqorn4O4tFOy73S6KxSKOjo4ghOAbuAIW+WlM6XNdF7Va7XXvxmvFc/B6LKUZp1KpoFarodPpoFgsJqpDCBHq8Do7O0Oz2YzUrOJ5HtrtNvb29gAAvV4PzWZz4uuazWbwOrnvs7axv78P13VRKBRQr9dhGMbc46jVatjb25tar+d5ME0Tp6enaDabqFQqwbrxc1AqlSZu07ZtdLtd7O3todfrYX9/Hzs7O+h2u6Ey886N/MM7PT3FJ598AgDo9/sQQuDk5ASffPLJreOIuo9xRHlv5h2L4zio1WrwPA+ffvopTk9PcXZ2BuCmmXHe+tFz8uzZs+Dc7u3thd6jaeadF/meye3J/zebTfT7/amfiTTew3Gz6uh2u+h0Ouj3+0FC1+12YZrmrb/3Rc6Bpmlz36NJfzuWZaHT6cBxHGiahrOzM+i6jlqthlarBV3XYZomqtXqzHOw9vyEOp2O3+12g8eFQsHXNC1RXZqm+cViMfTc2dmZr2ma/+LFi9Dzuq777XY79LpCoRB6Ta/X83VdD5WdVF+n0/ENw7i1L6PHVa1WQ9ubRW631+sFz7148cLXdf3W8cltjdY9bX86nU7ouW636+u6fuvY5PZGn49ybuR2KpVKaN8Nw/ArlUrodVH30fdvv1fTRHlv4hwLAL9SqfgvXrzwO51O6FzNWz9+bn3/5rM9fhzjxxbnvACY+Lwsk+TzLctGeQ9nmVaHYRihfT47O/MBRPp7insO5PpZ7+H4eZL7OXquut1urGNfd4mbcWQTjrRoU065XA49LhQKKBaLc3/ulctlmKYZek7XdRQKhVDZcrl8K1PsdrszR99YloWjo6NIWZ3chmEYoU4nTdOm/tqZ1Mk3PqqpWCzeGv3RbDZDdRYKBQghYNt26Piinhu5L/1+P7TvBwcHE9/PKPsYR5T3Js6xyHo0TYNhGLc682atN03zVn31en3iL8Vxyzgv45+JtN7DWdufVIdt27c+cwBwenoaKr+sz8a893DS384nn3wCz/OCXxfdbjfxoJF1tLQraGVA7HQ6icpPevMODg5mdvzKHv1JwbRUKgVlPc+D53k4ODgIvWb0Z+Qo2RTT7XaDD/U8cvjp+Hh6IPoIn9EPtaxPCIF+vx+7vqjnZtT4+Zm0naj7GFWU9ybJsezv78/c7qT1cjuPHj0KPV8oFOb2hSz7vIzuz7Lfw3km1SGXWZZ9Dua9h+M0TcOnn34K0zRhmibq9Xqi7a6rRMHetu2gjVEutVoNuq4v9UITTdNmZt7yD3DaMDghBIQQweuiDvOS7aO2bUfOimSGs+hwQ9u2sb+/jw8//BD9fn/iH9jR0VFov1zXvfULIuq5GRU1METZx6iivDdJjmXe+zBpvdyO4ziwLCtYHMeJlCEu87yM7k8a7+Esk+qI+rle5jlI8rdUKBRQqVSC9nv6UqIOWtlhM86yLJimCcdxEnfUjur1ejPfMBkgJn2o5B+BpmlBpuZ5XqRMvVaroVgsotfrwTTNSGN6R/clKcuyUKvVgg4mAEHH2CjZxGWaJvb393F2doazs7PQOYh6btLax6iivDdJjmXesU1aL7dTLBYj/6KTFjkvlmVNbCpM6z1My7LPQZJjE0Jgb28Pp6enME1z4WYcIQSOj4/R6XQiN0e1Wq1g34UQtzqG561PS+zMXggx9U2Qb9ay2slc15169SlwE/RkD/64k5OTYBSApmlTr3yclbnLdtoow8R0XYeu6xOvJI56Va5pmmg2m6Esd/QPRf5qkiMW2u02KpUK2u32xAt0opybuKLuY1RR3pu0jmWc3M54O/TovkwT57xEDWJ3ddzLksY5iKvRaKBaraLT6cCyLNi2nbgu13VxfHwcqymq1WoBuImFlUoFhUIh1Ocyb32aYgf7RqNxq01vlGEYsG079rQD43/sjuMEw/Fm6XQ6wZQNkuu6cF03GEIG3HTeHB8f32p7HX88vt/NZhOtVivSdBCdTgeNRiNUh+d5cBxn6odl1nmS6ya9ptlsTvwZP74/Uc7NtH2J8h7O2seoorw3cY5l3nmZtb7T6QTndvT1cTsZZ52XR48e4eTkBAAmtsmPlrmL9zCNOkbLJT0H87Y7vr5cLuPo6AjATfLVbrfx4YcfJt5/2SQU5yrfRqMR+oVSLBZDX3Lz1qcq6rAdOQQMwNThVJVKxdc0zQfgFwoFv1qtRqpbvq7dbvvtdttvNpu3yp6dnfmVSsUH4Ou6Hlov1zWbzaDs+LA0378ZsmYYht9sNv1OpxMautXtdn3DMIJ9bzabwTHJY44yjKvX6/mVSiU4jk6n41er1WB4aa/Xu3UscltnZ2fB/nW73WAIqGEYfrVaDQ2Hk+d5dDEMI/SaKOdm2nmtVqu+rutBvWdnZ5H3cdZ7Neu8TXtvoh6LHGon30M5dC/q+knbkZ/JeecrznvX6/X8YrEYHMekeuXzabyHk0Spo1Kp+GdnZ1P/VhY9B1Heo0nnaXQfR+uS+xj1b3eaTqdza/jrJL1ez58UUgH43W537vq05X6xMVKEEALlchnNZjNoV5Y/M9vtNizLwosXL17zXhKl64svvsCrV68Sl/d9H7lcLvRcPp9HPp+/9VrbttFoNIKLu6ZxHAelUgnjIXV7ezu4sG3W+rSb5ZY2ERrdjePj42CctSSHxTWbTViWlXiCKSIVfPHFF/jqgx3g5z9LXMfbb7+Nzz//PPTckydP8PTp0wX37jZ57cK0fgq5Pm0M9oopFotBG+74h8d13aCjmGhdvXr1Cvj5z/DG3/9N4N4b8Su4/ht8/l//FBcXF9jc3AyenpTVL8O8QH4XgR5gsFeOrutBR/A777wTGsIFYO5PTaJ1kXvjTeTu3Y9dzt+4BwDY3NwMBftFTUuyhBAzkzC5Pm0M9grSdT3S5ftEdHd0XYemaRObUeVoo3nr08QbjhORknIb9xIvcUxrZvE8Lxg3L9Xr9dB1EbZth4ZazlufJo7GISKlDAYDbG1t4c1HJnJfSdCM8/NX+OK0jcvLy5nNOJ7nwbZtPHv2DK7rolqt4uDgIBg1Y1kWms3mrSvs5bTKwM3Fb+O/wuetTwuDPREpRQb7r/6D30LuK/E7Vf2fX+Fn//mP5wb7dcM2eyJS0kaCJhngyw7arFmLYP+6JhZaJtn2J38SrsM83KVSaaF57l83eccx4GYs9KrNRTOPZVnBEN1er4d6vb5SE6ctKkn7OwCAwV5NoxMLATdXsS1jtru7VKvVQu12pmkqHyjjTA+9aoQQePz4MT799FNomgbXdbG/v3/rysdV1mq1QjeEEULgww8/THy/CVKf8qNxXuvEQksgRm7yIMlpolW9eXicWQJXUa1Ww9HRURAop83Kucq63W4oi593bwgV3dVonHWhdLD3PG/qlMsqZZWnp6ehwC576lX94zw+Pp45NfWqsywLhmEEM5YCdzMOepnkPCzyM7SOU2jkNjYSL1mk9FFPy3xVymI0TcOLFy9Cc93IAKPiH+eyblzzusjPlPy1pet68EtLJfJ+rNvb26jVapHvtqUSZvbxKN9mP8ldTSyUlkajgXa7rWRnmgyQqnzZjpPBXt5UBbi5d8D777+v1GyimqYF91FutVooFos4PDxU8jM1zU2WnqSDVukcN7G1PGqVA71sL76rq+qWSTZ/rIPRm47LX4oqZffyntCdTge9Xg/9fj/2DbxpvSgd7F/3xELLZts29vb2lBw66rpuKECqatrnRs5pogLZlyWb03RdD+5RvMht+lZNLpewGSfHZhzlRJl4SBUya5QZvRzRosqXVr/fh+u6wXHI6wXkpeGqZPxydsLxG6ALIZT5MvM8b2JzzV3d6/TO3LuH3L0EF1UNsxnslZ8uQV5QJYOkbdvodrtKdUbJIDkaEOUESaq2sao4Nl2ybTs0Z4lt22i320oNvyyVSuh0OqHPj2rXn0wjp0vY+Sffw8Ybb8YuP/ybL9D/9x9nbroE5YM98PomFloGIQTef//9iR2aqr41cvIo27ZRrVZRKpWU+6Ulrz4FgOfPnyv1mQJuPlej9zwQQiidPIySwf6df/qvEgf75//u9xnsiYhWmQz2X/9nP0gc7P/q3/6LzAV7pTtoiYgoGqU7aIkou5KOs8/qFbQM9kSkpKRXw/IKWiIihTDYx8NgT0RKYrCPh8GeiJQkr6BNUi6L1qan4urqCk+fPsXV1dXr3pWFrMNxrMMxAOtxHOtwDLQcazPOXo69VX3s7DocxzocA7Aex7EOxzBOHtMv/WYbG/e/Grv88NXP8Bd/aq7VOYmCzThEpCQOvYyHwZ6IlMQO2nhWNtgPh0P85Cc/wYMHD5DL5ea+fjAYhP5V1TocxzocA7Aex7Gqx+D7Pl6+fIl3330XGwkzbQb7eFY22P/kJz/B7u5u7HJJyqyidTiOdTgGYD2OY1WP4eLiAu+9916ishsbOWxszE8EbxdMUGYNrGywf/DgAQDg3t87RO7eG6lt57d+/3dSq1v69V/+Rqr1f/2t9M6P9N6D9LdB2fHy5Ut88MEHwd85pW9lg71susndewO5e/dT207+a2+nVrf0Vsof6LffSu/8SJubDPa0fFGaaKeW3cghlyBLT1JmHaxssCcimiWXyyX6sohbRt4gCbi5T8C824aWy2UcHR0Fd9Ibpes6HMdBu91GqVSCruvodrs4ODhI/W5uDPZEpKRcwjZ7P0aZVqsF4MvbhTqOM/eOX67rTrzXr2EY6HQ6wc3rbduGruuo1Wp3cttOBnsiUlIul7AZJ0Zm32g0cH5+HjwuFosolUozg71pmreyf8uygi8MADg/P7/zu4Zl8+oCIqI5PM+DEGJiUHYcZ2q58SzdcZyVuFk9M3siUtKiHbTj1x7k83nk8/ngsed5E8vLe/pOI++HLevwPO/WPZiPj4+xs7ODfr+PXq93J/c4TjXYx+3YICKKaiOXw0aCDlr/F2XGrz148uQJnj59Ore8DNJRNJvNW00+hUIBwJdfCpZloVwuo9PpRKozqdSCfZKODSKiqBbN7C8uLkIToY1m9bNEDfSu6058fjTzB4DDw0OYpjm1yWhZUmuzbzQaoQ6JYrEIy7LS2hwRZYwM9kkWANjc3Awt48F+PChLQoip60a1223s7e3den58pI4M8NOajZYllWCfpGPj6uoKg8EgtBARTSOnS0iyRCHHyU8KwuNt8JM4jnMrBgohUC6XQ3XK9v8oXyCLSC3YTzKrY6PRaGBraytYVnUuDyLKjnq9HkpQbdsOtVh4nhc0WY/zPO9WANc0DdVqNfS8ZVkwDCP1oZh3OhpnVsdGvV7HRx99FDweDAYM+EQ0VW7jZklSLqpqtYpWqxU0vZycnIT6HeXVsJMGn+i6jp2dnVvP1+v10BfE8+fPU++cBe442M/q2Bgf9kRENMtdTZcwGsjHx9BXKpVQpj+q1+tNfF5m93ctlWC/aMcGEdE8GxtIOF1CCjujgFQOe9GODSKieRYdjZM1qX3HzevYICJahJwbJ/aywLTKKkst2FerVQghYNs2bNu+1bFBRER3J9UO2lkdG0REi1h0uoSs4URoRKSmpO3vGW2zZ7AnIiXxtoTxMNgTkZLiTH0wXi6LGOyJSEl3dVHVusjo5QVERNmy8pn9b/3+7yD/tbdTq/9HH/9hanVL97//3VTr/41vfSPV+m+8cQfbIIruLubGWScrH+yJiCZhm308DPZEpCSOxomHwZ6IlMQO2ngy2npFRJQtzOyJSElss4+HwZ6IlCRnvUxSLosY7IlISfc2criX6OYlDPZERMrYSBjshwz2RETqSJrZZzXYczQOEVEGMLMnIiUxs4+HwZ6IlMRgHw+DPREp6SsbwFcSjcZJYWcUwGBPREpiZh8Pgz0RKSnp0MvrjAb7jP6gISLKFmb2RKSke7kN3NuIn6/ei3n3klarBU3TAABCCFSr1ZmvdxwH7XYbpVIJuq6j2+3i4OAAhmEkrnMZmNkTkZJkm32SJapWqwUAqFQqqFQqKBQKME1zZhkhBBzHgWmaME0Te3t7twJ93DqXgZk9ESkpaQdtnDKNRgPn5+fB42KxiFKphHa7PbPc+fl5kLkvq85FMbMnIiWlndl7ngchxMSg7ThOon1Oo86omNkTUSYNBoPQ43w+j3w+Hzz2PG9iOU3TIISYWffx8TF2dnbQ7/fR6/XQbDYXrnNRzOyJSEn3crnECwDs7u5ia2srWBqNRqTtyiA+TaFQQLFYhGEYqFQq2NvbQ7lcXqjOZWBmT0RKSjrOXt6p6uLiApubm8Hzo1n9LPOCsq7roceHh4cwTXNm5p52oAeY2RORohZts9/c3Awt48F+PGhLQoip6wDAtu3QY9k+73le4jqXYeUz+1//5W/grQcPUqv//ve/m1rd0g9/74ep1v/5x7+bav0A8INf+yD1bRDF8ZWNXKK5caJeQavrOjRNmxiki8XixDJCCJTLZfR6vaCMzOhlfXHrXBZm9kSkpLsYZ1+v10OjZGzbRqVSCR57nheMmwdusvhqtRoK5JZlwTCMIMOfV2daVj6zJyJ6XarVKlqtVtA0c3JyEhoPL6+WHb0Ctl6vh74Anj9/jk6nE7nOtDDYE5GS7uKiKgChQD56JSzw5VWwo2R2n7TOtDDYE5GS7uUSBvtcNme9ZLAnIiUtOvQyaxjsiUhJd9WMsy5SDfayk6LX6wHAnXRCEFE2MNjHk1qwr9VqwXwQAGCaJkqlErrdblqbJCKiKVIZZy+EgOu6ocuDTdOE4zhTJwIiIorj3kbSsfave89fj9QO+/T0NBTYx68mIyJaxF1cVLVOUmnG0TQNL168CD0nrxibNv/D1dUVrq6ugsfj048SEY1im308d/aDptFooN1uz7x7y+h0o7u7u3e1a0SkoI2EWX1Wh17eSbCv1Wo4OjqaOf9DvV7H5eVlsFxcXNzFrhGRohadzz5rUh9nb9s29vb25k70M36XGCIiWp5UM3vZTi8DvRCCo3GIaCk2crnESxalFuxd14XruigUCvA8D57nwbIs7OzspLVJIsqQewDu5RIsr3vHX5NUmnGEEHj8+DGEEKjVaqF182aDIyKKYiNhZ2tWO2jvbOglEdEyJe1szWoHbUavJSMiyhbOeklESkra2ZrVDloGeyJS0sYvOlyTlMsiBnsiUhI7aONhsCciJbEZJ56VD/Zff+sNvP3W/dTq/41vfSO1uqXPP/7dVOv/4+/961TrB4Af/Nofpb4NojjuJWzGSVJmHXA0DhFRBqx8Zk9ENAmbceJhsCciJXE++3gY7IlISczs42GwJyIlsYM2HgZ7IlJSLmFmn2NmT0RE41qtVnA7VSFEpJl7W60WAKDX6wEA2u12sM5xHLTbbZRKJei6jm63i4ODAxiGsfydH8FgT0RKuosOWhm05Q2YHMeBaZqh4D2uVquh2WwGj03TRKlUQrfbBXDzheE4Dmzbhq7rqNVqqQd6gMGeiBS1gWTz3MS5uKjRaOD8/Dx4XCwWUSqVpgZ7IQRc14UQIvg1YJom9vf34XkedF0HAJyfnwfr7wovqiIiJS16w/HBYBBarq6uQvV7nhcK2qPkLVcnOT09Dd1+VQZ4IcTiB70AZvZEpKRFh17u7u6Gnn/y5AmePn0aPJ52v2xN06YG7kk3bpJfDDLoA8Dx8TF2dnbQ7/fR6/VCzT5pYbAnIiXd27hZkpQDgIuLC2xubgbP5/P5SOVlkI6q0Wig3W4HvxAKhQKAL4O/ZVkol8vodDqR60yCwZ6IMmlzczMU7KOKE+hrtRqOjo6CDl4gnOEDwOHhIUzTnNpktCxssyciJW3kvmzKibdEq388KEtCiKnrRtm2jb29vVtDNW3bDj2WAX5as9GyMNgTkZI2EnbORm3n13UdmqZNDMLFYnFmWdlOLzN6IUTQ4Vsul0N1yvb/KF8gi2CwJyIlJcvq43Xq1uv10Mgb27ZDTTKe5wVj8SXXdeG6LgqFAjzPg+d5sCwLOzs70DQN1Wo1FNgty4JhGKkPxWSbPREpadEO2iiq1SparVbQ9HJycjLxaljZVCOEwOPHjyGEQK1Wu1UXcPMFMvoF8fz589Q7ZwEg5/u+n/pWEhgMBtja2sLpjy/w9oP4nShRXV79PLW6pT85+9+p1n8Xd6q6/DPeqYqWZzAY4OHDh7i8vIzdSSpjw3/68/+ZKDZ8/nKAf/grfyfRtlXGzJ6IlMQpjuNhsCciJeVyN0uSclnEYE9EStpADhtIkNknKLMOGOyJSEnM7ONhsCciJd1cVJWsXBZxnD0RUQasfGb/3oM3sLn5RopbSLPuGz/4tQ9Srj/9YZFbv/rbqW/jO9/7KPVtfPtbD1PfxqNvvpX6NojNOHGtfLAnIpqEHbTxMNgTkZoSZvYZjfUM9kSkJnbQxsNgT0RKyiFZkp7RWM/ROEREWcDMnoiUxLlx4mGwJyIl5ZBw6OXS90QNd9aMUyqV7mpTRJQBGwssWXQnmb1t26G7vRARLSqXyyGXILVPUmYdpB7shRCx7sZORBQFh17Gk/ovmuPjYxweHqa9GSIimiHVzN5xnLl3YZeurq5wdXUVPB4MBmntFhGtAc6NE0+qmb0QInQX9VkajQa2traCZXd3N81dIyLFsYM2ntSO27IsGIYR+fX1eh2Xl5fBcnFxkdauEdEakB20SZYsSqUZx3VdPHr0KFaZfD6PfD6fxu4Q0RpiB208qQT7fr8P13WD4Za9Xg8A0Gq1oOt6rIyfiIgWl0qwLxaLoY5Z13VhWRaq1WoamyOijMpokp5I6n0Vtm2j0WgAAGq1Gi+uIqKlkM04SZYsSv2iKsMw2GxDREvHK2jj4URoRKSku+qgbbVa0DQNwM1w8ijN0fPKJKlzUVkdckpEisstsETVarUAAJVKBZVKBYVCAaZpLlQmSZ3LkPN93099KwkMBgNsbW3hs88+w+bm5uvenczb+tXfTn0b3/neR6lv49vfepj6Nh59863Ut6G6wWCAhw8f4vLyMvbft4wNf/GXyWLDYDDAL30z2ra3t7dxfn4eZOHATTPQrLA5r0ySOpeBmT0RKUnevCTJEoXneRBChIKyNG2gybwySepcFrbZE5GSFp0bZ3z+rfELOz3Pm1he0zQIISaum1cmSZ3LwmBPkdxFE8uPPv7D1Ldx//vfTX0bbMa5GznfRy5B04csMz7/1pMnT/D06dO55Xd2dmJP2y7LTMrok9YZF4M9EanJH94sScoBuLi4CLXZR52uJUlQnlfmLu75wWBPRErK+UPkEgR7WWZzc3NmB+20GXtnzeY7r0ySOpeFHbRERBPoug5N0ya2s0+7T8e8MknqXBYGeyJSk2zGSbJEVK/XQ6NkbNtGpVIJHnueF4ybj1pm3vq0MNgTkZp8P/kSUbVahRACtm3Dtm2cnJyg3W4H6x3HCT2OUmbe+rTwoiqK5GOnl/o27mI0znfvYDTOH/yjv5v6NlS3jIuq/u/FeeKLqv7W7vuJtq0ydtASkZJuhl4m6aBdyfw2dQz2RKSmBYdeZg3b7ImIMoCZPRGpiZl9LAz2RKQmBvtYGOyJSE3+EBgy2EfFYE9ESlp0uoSsYQctEVEGMLMnIjWxzT4WBnsiUlPMqQ9C5TKIwZ6I1MTMPhYGeyJSEqdLiIfBnojUxMw+Fo7GISLKAGb2RKQmZvaxMNgTkZoY7GNhsCciJfEK2ngY7IlITcOEc+MkKbMGGOwpkm9/62Hq27h/B7cM/OHv/TD1bfzBn/1R6tsg8KKqmDgah4goA5jZE5Ga2EEbC4M9ESmJHbTxMNgTkZqY2cfCYE9EavL9hME+mx20DPZEpCb/GhheJyuXQRyNQ0SUAaln9rVaDXt7ewCAnZ0dGIaR9iaJKAP84RB+ggukkpRZB6kFeyEEHj9+jE8//RSapsF1Xezv78PPaHsZES3ZMGEzTpIyMbRaLWiaBuAmDlar1UhlAKDX6wEA2u12sM5xHLTbbZRKJei6jm63i4ODg9iJc2rBvlar4ejoKDjoQqGAbreb1uaIKGtWMNjLoF2pVADcBGrTNEPBe1ytVkOz2Qwem6aJUqkUxEshBBzHgW3b0HUdtVotUQtJasHesiz0ej14ngfP81AsFlEsFqe+/urqCldXV8HjwWCQ1q4R0Rrwr6/hX8cP3EnKRNVoNHB+fh48LhaLKJVKU4O9EAKu60IIESTGpmlif38fnudB13UAwPn5ebA+qVQ6aD3PA4DgIHRdh2macBxnaplGo4Gtra1g2d3dTWPXiIhS4XleKGiPmhX7Tk9Pg5gJIAjwQoil7l8qmb3ccU3TUCgUAADNZhPvv/8+Xrx4MbFMvV7HRx99FDweDAYM+EQ03YKzXo63HuTzeeTz+cS7MxqwR2maNjVwa5p2KybKLwYZ9AHg+PgYOzs76Pf76PV6oWafqFIdevno0aPg//KAp33D5fN5bG5uhhYioqmGwy/b7WMtN8F+d3c31JrQaDRS2U0ZpKNqNBpot9uh/s5isQjDMFCpVLC3t4dyuRx7P1LJ7Ee/kUZpmjb124+IKA5/eA0/QWerLHNxcRFKKsezetu28ezZs7n11ev1oAVjkjiBXg5skR28wO14enh4CNM0pzYZTZNasNd1HZ7nhU6CECKU7RMRJeYnbMb5xRQL81oQDMOINeplWpIr+y3nsW0be3t7oUAvnx/dDxngx+PrPKk14zSbzdC3om3bKBaLsXaOiGgamdknWdKg6/rU1otZIxGBL9vpZaAXQgQdvuVyOVSnbP+P8gUyKrVgbxgG9vb20Gq10Gq1cHJywnH2RLTW6vV6qF/Stu1Qpu55XjAWX3JdF67rolAoBEPVLcvCzs4ONE1DtVoNBXbLsmAYRuyhmDl/RS9pHQwG2NrawmeffcbO2hVw+pd/nfo2/sN//6vUt3EXtyW85G0J5xoMBnj48CEuLy9j/33L2PBX//HfYPOtr8Xf9l//FF//x/880bajaLVaQXA+OTkJjZyxLAvNZjO4UlYIgffff3/iaB0ZmoUQsCwreP758+eJRuNw1ksiUtOK3nB8dHqE8Tb/SqUSyvQnDb0cJ7P7RTHYE5GSVvEK2lXGYE9EapLj7JOUyyAGeyJS0wpOhLbKePMSIqIMYGZPkTz65ltrsY0/uIORMlu/+tup1v+d7300/0UL+va3HqZa/1+//OnCdfDmJfEw2BORmtiMEwuDPRGpiTccj4XBnoiUxGaceBjsiUhNHHoZC0fjEBFlADN7IlITO2hjYbAnIiVxuoR4GOyJSE0rOhHaqmKwJyI1sRknFnbQEhFlADN7IlLSojcczxoGeyJSEi+qiofBnoiU5A99+NdJgv1K3ok1dQz2RKQk/3qYLNgnKLMOGOyJSElsxomHo3GIiDKAmT0RKYnNOPEw2BORkhjs42GwJyIl+dfXGHJunMgY7IlISb6fsIPWZ2ZPRKQMNuPEw9E4REQZwMyeiJS0qpl9q9WCpmkAACEEqtXqzNc7joN2u41SqQRd19HtdnFwcADDMBLXOQmDPdGSfed7H6Va/48+/sNU6weA+9//bqr1X/3084Xr8Id+wouq0psuodVqAQAqlQqAm0Bumiba7fbUMkIIOI4D27ah6zpqtdqtQB+3zkkY7IlIScPrIYYJsvQkZaJqNBo4Pz8PHheLRZRKpbmB+fz8PMjcl1XnOLbZE5GSZDNOkiUNnudBCDExaDuO89rrZGZPRJk0GAxCj/P5PPL5fOL6PM+b+LymaRBCzCx7fHyMnZ0d9Pt99Ho9NJvNhescx2BPREpatIN2d3c39PyTJ0/w9OnTZexaiAzi0xQKBQCArusAAMuyUC6X0el0Etc5CYM9ESlp0YuqLi4usLm5GTw/ntXbto1nz57Nra9erwcBe5J5QVkGeenw8BCmac7M3OMGeoDBnogUtWhmv7m5GQr24wzDCI2KmWc8aEtCiKnrgJsvldHtyPZ5z/MS1zkJO2iJSEmr1kGr6zo0TZvYzl4sFieWEUKgXC6HysiMXtf1RHVOk2qwtywLrVYLlmWhVqvF7lAgIppmOBwmXtJSr9dDo2Rs2w7GxwM32bocNw/cZPHVajWUpVuWBcMwggx/Xp1RpdaM02q1UKlUQld9ffjhhzM7HYiIVFatVtFqtWDbNgDg5OQkNB5eXi07egVsvV4PfQE8f/48FCfn1RlVasG+2+2GDijJUCEiomlWdbqE0bg33uZfqVRuZeUyu09aZ1SpNeNomoZSqRQE+FmdDUREcd0E++sESzZnvUwts//kk0+wv7+P7e1tVKtV7O3tzfzpcXV1haurq+Dx+AUPRESjeMPxeFLN7OWEPq1WC51OZ2YzTqPRwNbWVrCMX/BARDTKHyYcjcNgv1y1Wg26rqPT6aDX66Hf72N/f3/q6+v1Oi4vL4Pl4uIirV0jonWQdNhlRptxUgn2cvIeOQ5U13WcnZ1B07SgR3lcPp8PLnKYd7EDERHFk0qbved5E2dpM00zjc0RUQat4hTHqyyVzL5YLMJ13Vtt9GdnZ4mHDRERjZIdtEmWLEptNE6n00Gj0cA777wTjLGX03YSES1qVcfZr6rUgr2maQzuRJQa/9qHfx3/FoNJyqwDznpJREoaDhO22We0GYezXhIRZQAzeyJSkj/04Q8TNOMkKLMOGOyJSEnDa2C4ET9wD69T2BkFMNgTkZL86yH8DY7GiYrBnmjJvv2th6nWf//73021fgD44e/9MNX6/etXS6jDh58gs8/qaBx20BIRZQAzeyJS0vDaT9hmn83MnsGeiJTENvt4GOyJSElD38cwwTDKoc/MnohIHdc+/FyCwM1mHCIidQyvhxjmOMVxVByNQ0SUAczsiUhJfsJmnKyOs2ewJyIlMdjHw2BPREpim308DPZEpCTfTzjrJYdeEhGpY3jtYwheQRsVgz0R0RK1Wi1omgYAEEKgWq3OfH25XMbR0RF0XQ/KSbquw3EctNttlEol6LqObreLg4MDGIYRa78Y7IlISf61Dx9JpktIL7NvtVoAgEqlAgBwHAemaaLdbk8t47oubNu+9bxhGOh0OhBCwHEc2LYNXddRq9ViB3qAwZ6IFHUT7FdrNE6j0cD5+XnwuFgsolQqzQz2pmneyv4tywq+MADg/Pz8VtYfFy+qIiIlDa/9xAsADAaD0HJ1dbXQ/nieByHExKDsOM7UcuNZuuM4ePTo0UL7MgkzeyJSkj8cws/lEpUDgN3d3dDzT548wdOnTxPvj+d5E5/XNA1CiKnldF0P1eF5HorFYug1x8fH2NnZQb/fR6/XQ7PZjL1/DPZEpKRFR+NcXFxgc3MzeD6fzy9t30bJIB1Fs9m81eRTKBQAfPmlYFkWyuUyOp1OrP1gsCeiTNrc3AwF+3G2bePZs2dz66nX60FAniRqoHddd+Lzo5k/ABweHsI0zalNRtMw2BORkvxhwg7aiBdiGYYRa9TLeFCWhBBT141qt9vY29u79bxt26H9kAHe87yZXzLj2EFLRGq6Ht7crSrmgpSmS5Dj5Ce13Y+3wU/iOM6tTF0IgXK5HKpTtv9H+QIZxWBPREpadDROGur1emjkjW3boSGUnucFY/HHeZ53K4BrmoZqtRp63rIsGIYReygmm3GISEn+tZ9onpsk8+lEVa1W0Wq1goukTk5OQh2u8mrYSVfV6rqOnZ2dW8/X6/XQF8Tz589jd84CQM5f0VmBLi8voWkafvzjH+PBgweve3eIIvsvn/001fqd//H/Uq0fAH70L3+Uav3+9d/g+r8dQwiBra2tWGUHgwG2trbw7Bu/gq9t3Iu97Z8Or3H0f/4cl5eXMzto183KZvYvX74EAHzwwQeveU+IKC0vX76MHeyloe8nunk4bzi+Yt59911cXFzgwYMHyEW4cGIwGGB3d/fW2FnVrMNxrMMxAOtxHKt6DL7v4+XLl3j33XcT13Ht+7hOELiTlFkHKxvsNzY28N5778UuN2/srCrW4TjW4RiA9TiOVTyGpBm9dO3fLEnKZdHKBnsiolmY2cfDYE9ESmJmH8/ajLPP5/N48uRJavNb3JV1OI51OAZgPY5jHY6BlmNlh14SEU0ih162tz/AVxMMvfzZ8Brmix9z6CURkQqukbAZZ+l7ogYGeyJS0rXv4zrBRGjsoCUiUsi1nyxLz2oHLYM9ESmJwT6etRmNQ0RE0zGzJyIlsc0+HgZ7IlLSMGEzToozHK80BnsiUhIz+3gY7IlISeygjYfBnoiUdBPsk2T2KeyMAjgah4goA5jZE5GS2IwTD4M9ESmJHbTxMNgTkZJ8AMOE5bKIwZ6IlMTMPh520BIRZQAzeyJSEjto42GwJyIlsRknHgZ7IlISM/t4GOyJSEmrmtkLIXB8fIxOp4NutxupTKvVgqZpQflqtRprfRQM9kSkpFWc9dJ1XZyenkIIgX6/H6lMq9UCAFQqFQCA4zgwTRPtdjvS+qhyvp/RBiwiUtJgMMDW1hbM3N/G/Vz8AYWv/CHa/v/C5eUlNjc3U9hDwLZtNBoNnJ2dzX3t9vY2zs/Pg8wdAHK5HGRonrc+Kg69JCIlXft+4mVVeJ4HIUQokEuO48xdHwebcYhIST/DMFFn66tfXHc7GAxCz+fzeeTz+WXsWmSe5018XtM0CCHmro+DwZ6IlHL//n08fPgQf/LZXySu4+2338bu7m7ouSdPnuDp06cL7t1y7OzsoN/vT8zoR9fHwWBPREp58803cX5+jlevXiWuw/d95HK50HPjWb1t23j27Nncuur1OgqFQuJ9mWReII8b6AEGeyJS0Jtvvok333wz1W0YhgHDMFLdhq7rE58XQkDX9bnr42AHLRHRa6LrOjRNm9g2XywW566Pg8GeiGjJpjWzeJ4XjJuX6vV6aGSNbdvBmPoo66PiOHsioiXxPC9o63ddF9VqFQcHB0FzkGVZaDab6PV6oXKtVitoljk5OUGz2Yy1PgoGeyKiDGAzDhFRBjDYExFlAIM9EVEGMNgTEWUAgz0RUQYw2BMRZQCDPRFRBjDYExFlAIM9EVEGMNgTEWUAgz0RUQYw2BMRZcD/B4mKoHTOgcTFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.matshow(block_diag_corr_matrix, vmin=-1, vmax=1)\n", + "plt.title('A block diagonal correlation matrix')\n", + "plt.set_cmap('RdBu')\n", + "plt.colorbar()\n", + "plt.draw()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "#### perform a fully correlated fit and a fit with a block diagonal covariance matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fit with 2 parameters\n", + "Method: Levenberg-Marquardt\n", + "`ftol` termination condition is satisfied.\n", + "chisquare/d.o.f.: 2.3597637233070254\n", + "fit parameters [0.9754457 0.28547338]\n", + "Fit with 2 parameters\n", + "inv_chol_cov_matrix handed over as kwargs.\n", + "Method: Levenberg-Marquardt\n", + "`ftol` termination condition is satisfied.\n", + "chisquare/d.o.f.: 2.3217921000302923\n", + "fit parameters [0.9766841 0.2933594]\n" + ] + } + ], + "source": [ + "fitpc = pe.least_squares(x, data, fitf, correlated_fit=True)\n", + "fitp_inv_block_diag_cov = pe.least_squares(x, data, fitf, correlated_fit = True, inv_chol_cov_matrix = [block_diag_chol_inv,chol_inv_keys])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### generate a block diagonal covariance matrix with modified weights for particular data points + perform the fit again" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fit with 2 parameters\n", + "inv_chol_cov_matrix handed over as kwargs.\n", + "Method: Levenberg-Marquardt\n", + "`ftol` termination condition is satisfied.\n", + "chisquare/d.o.f.: 0.3401961132842267\n", + "fit parameters [0.99320618 0.33488345]\n" + ] + } + ], + "source": [ + "covdiag[2][2] = covdiag[2][2]/100. # weight the third data point less\n", + "block_diag_chol_inv_weighted = pe.obs.invert_corr_cov_cholesky(block_diag_corr_matrix,covdiag)\n", + "\n", + "fitp_inv_block_diag_cov_weighted = pe.least_squares(x, data, fitf, correlated_fit = True, inv_chol_cov_matrix = [block_diag_chol_inv_weighted,chol_inv_keys])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### compare the fully correlated fit to those with block-diagonal covariance matrices (and modified weights)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAF4CAYAAAB5Kdz6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABjQUlEQVR4nO3deXgb5bk28FuSbXn3WE6cOCuWQxKSsMkOW9kjQ9ihtUkLtNBC5MKhLdAeqW6/ltLTHiN1pS1QKXSjcEoi0Q0oFCtQoEDBtggQCEukkNUhieWRnXi35vsjzESyFsu2ZNny/bsuX4n0zvLMjJZH7zzzjkqSJAlERERElBTqdAdARERElEmYXBERERElEZMrIiIioiRickVERESUREyuiIiIiJKIyRURERFREjG5IiIiIkoiJldEREREScTkioiIiCiJmFwRERERJVHWZKzEZrNBEAQAgCiKMJvNCc1nsVhQVVUFANDpdKirq0tViERERERJoUr1vQVtNhsAKAmV2+2G0+mE3W6POY8oilizZg02b94MQRDg8XhQXV0N3gaRiIiIprqUJ1elpaXYsWOH0nMFACqVKm6i1NDQgKqqqrAeLrfbDaPRmMpQiYiIiCYspcmVz+dDVVVVRCKlUqnQ3NwcM1lSqVTwer3KMuIlVf39/ejv71ceB4NB+P1+lJWVQaVSJWEriIiIKNNJkoTu7m7MmzcPavXEStJTWnPl8/miPi8IAkRRjDuPx+OBXq+HXq9HQ0MD6uvroyZZTU1NuOeee5IWMxEREc1cu3fvxoIFCya0jEkpaB9Jp9PB7/dHbZOTK0EQYDAYAABWqxWVlZXo7OyMmL6xsRF33XWX8jgQCGDRokXYvXs3iouLUxA9ERERZZquri4sXLgQRUVFE15WWpKrWIlVqJqaGuX/ck9XtLorrVYLrVYbMX9xcTGTKyIiIhqTZJQUpXScK71eH/V5URRjtsV6XhCEmKcZiYiIiKaKlCdXsZKiWEXqcp3VyHlEUQzrzSIiIiKailI+QntjYyPcbrfy2OVywWQyKY99Pp8yFpbMarVi48aNYfMYjUalBouIiIhoqkr5OFfA0YFE5dN9LS0tsFqtSpvD4YDValWGXgh9Xr6isKOjI2yeeLq6ulBSUoJAIMCaKyIiIkpIMvOHSUmuJhOTKyIiIhqrZOYPvHEzERERURIxuSIiIiJKIiZXREREREnE5IqIiIgoiZhcERERESURkysiIiKiJErLvQVp+nK5XPD7/Whra0NtbS3q6urSHRIREdGUwuSKEibfkkgeYb+0tBRGoxGCIESdXhTFmG2p4nK5IAhCzNsrZZqZtr1ERNMBTwtSwkRRDLstUU1NDVpbW2NO29TUFLXN5/OhtrYW1dXVSY2vtrYWBoMBVqs17JZLEyGKImw2G2w2G2pra+FyuRKa3uFwoKGhAQ6HI2Ian88Hi8UCl8sFl8ul3IlgrMayvW63G9XV1aivr4/6eLqb7O1J1WuYiDKElGECgYAEQAoEAukOJeMJgiB1dnZGbbPb7VJbW1vMedva2iSDwZC0WNra2iSj0ShJkiR5vd6kLddkMin/7+zslADE3a66urqw9QOQmpublcderzdsu+vq6iSr1TrmuMazvU6nU6qrq4v5eLobz/aMZ9/Lkv0aJqL0Smb+wJ4rGhebzQar1RrztF9zc3PcG20n+3Sh3+9Xlinfx3KifD4ffD6f0rMkn36L1SMnzxPaiyQIAjwej/LYYrGgoaFBedzY2Bh2I/NEpWJ7ZxpRFCPuaToWk33Km4imD9Zc0Zi53W4IghAzKfD5fFi9evUkR5Uara2tEYlMrFOhANDW1qb8XxRFiKIYVg/lcrnCbkIeLwGl1LJYLOkOgYgyFJOrVOnef/QvVJ4AlB4HDPYBB9+LnGfeKUf/PfQhMHAkvE1YBOTrgCOHgMCe8DZtEVBWBQSHgSMHgaK5Yw7X4XCgra0NgiCEffkDRxMC+apAj8cDURRhMpkgiiJaW1sjiqntdntY7wxwrAarqqoKOp1OKY6PRZ5+9erV8Pv9ABAzmfN4PLDb7fB4PLDZbDAajUlJWvR6PTo7O8Oec7vdCRWPi6IIi8UCp9OpxCL3YPl8Png8nqjbZbFY4PF40NzcHHPZ0bbX7/fDYrFAp9OhublZqetyu90R2xCNy+VSkg05ZpvNhqamJlit1ri9a/K2VldXQ6fTAYDyeol3HN1uNywWC4xGI6qqquB0OpUYoj1vNBrh8/lgt9uxevVqtLS0YN26dTGPtbyPfT4f2traYLFYlF4+l8sFn88Hv98Pm80W9mMh1jrG+homohksCacpp5QpU3P13P9K0t3F4X+uW462Hdoe2XZ38bF5N6yJbNvy2NG21xyRbQ9ffbStN3B0veMk1xSF1vA4nU7lsdfrlQRBUP4ARK25ilb3YjAYwmqVnE5n3HoVg8EQtmyr1Rq3Pqa5uVmpQYrHZDKN+hdrPW1tbXHrzGSdnZ2S3W6XTCaT5HQ6leedTqcEIOw5o9EY9ri5uVmy2+2jbke07XU6nWHPyccrtD1ezVVzc3PYMfF6vWGxxRJ6bL1erxT6sTLacbTb7ZJer1f+Ly8n1vN6vT5sefI00bZHr9cr8Uerj5KP0Uix1jHW1zARTS/JzB8ytudKGh5ObwA1XwSWXRL+XJ5w9N/i+YDphdjzXv1g9J4rAFh5DbBgxCk3bdHRf3MKjq53nORf73a7XbkCTa/XK7/2o/XkjOTxeFBbWxv2nNvthiiKYT0M8eqEXC4XdDpdWE1LXV0dqqurYTabx7Flx9jt9nHPu379emzevHnUWpvQXpDS0lIACBsPLHQ/1NbWoqmpSWlP5pAKci9SouSeIZ/PB71eD7fbPWo9mNvths/nU7ZJr9crvW6JHke5feS6Rj7vcDggCELY8uSatmi9V06nU3mdGQyGsNq3WGKt44EHHhjTa5iIZraMTa4Gdu4EPvliS4uiubFPz2XnHjsFGM2s42O3Fcw6+heNWjOuU4Kh6uvr0dDQgHXr1gEYe02QnJiF8vl8Yyr+bWlpiZhep9MpNUzpKCS2WCzYsGHDmPdHTU2NkjyFJqmhptLppcbGRlit1oSTUDkRCyUniIkex5qamqjLHvm8XHweOhxGY2NjzCRHr9crp/ESFWsde/bsYQE7ESUsY5OrvvfeA045Jd1hTDty70Vra+u4rmIDIq+i0uv1YxrLqaqqKmLcJjkBmegX3MhasFjrD+1ZcTgcYbU9sequPB4P1qxZg7a2NuULXxAEpQBenj80Ieno6EhZD4hc4zQWJpMJlZWVqK2txbXXXjvq9Hq9PmZymOzjKC8vkbsCiKKIyspKbN68Wdnv8rGPlqDLdYWx1iH3vhIRJSJjh2IY7u5OdwjTkiiKY06GZC6XK+KUIHCsJyP0S7i1tTVsHR6PR+ktkIvlQ9s3btwY1iMWOr0cdzQjp7Pb7aP+hSZWcnIgCIJSiB56eil0+YIgQK/Xh52O83g8YUmq2WwOSzg8Hg8aGxtjxhtLtO3V6/VhCZV88UG8+UY+FgQBNTU12LhxY0IJkNFohE6nC9sn8qnCRI7jWMjLC30dyYXpI7dnZEI7Mj4gemIYax1yAhzvNUxEJFNJkiSlO4hk6urqQklJCQKBAIqLi9MdzrQjXzllt9vDhhVIRENDQ8zTSaFXjQHHRik3m82wWq0RV8mFXpklf4GFJj2h03s8HlgsFrS2tirjRsmJQSJX38UiiqJSMxXKarUqsYxcvtvthsfjgSAIMa++lK+IKysrixjSItGrBWNtb0NDA2pra5XHtbW1MJlMaGhoUOaxWq2oqakJexwaw1hvqTPyasHQeeMdR/lqQVEU0dDQMOrz8dYVuk/k7WloaEB1dbWSGMn7tKGhQXmuvr4eq1evhl6vD7vCMdo6RnsNE9H0lsz8IWOTK/HgQRTrdFCpM7ZzLulsNhvMZrOSVHR2diZ8+kb+QppIwThNDQ6HY9ynhImIpqtkJlcZm3l8eO55GJjA6MszTegXaiIjkY+0adOmhOqZaGoKvQ/iWK8yJCKicBmbXEmDg+jd+k66w5gWPB4PjEZjWC+V3W6H2+2Gy+VK6BL20W53Q1ObfMNjh8ORUME4ERHFlrFXC2Yftxh9W7cC11yd7lCmvGhJkV6vT7jmShTFjLndzUyVzPG1iIhmuoztuco9YQX63mHP1WQQBGHCg3sSERFlisxNrlacgL7330//SO1EREQ0o2RsclVyxRU4/qUXodJo0h0KERERzSAZm1xpioqgKSxMdxhEREQ0w2RscgUA+//3f3HwF79IdxhEREQ0g2R0chUMdOHwS/9OdxhEREQ0g2R0cpW7ahX633sP0sBAukMhIiKiGSJjx7kCgNxVKyENDqLv/Q+Qd+KqdIeTEVwuF/x+P9ra2lBbW8sBJ4mIiEbI7ORqxQogOxu9b73J5CoJfD4fACi3ySktLY0Y2T2UKIoJ35swWcZ602EiIqJky+jTgmqtFgt++QsU8Ys2KURRxMaNG5XHNTU1aG1tjTltrHsT+nw+1NbWorq6Oqnx1dbWwmAwwGq1wu12J2WZoijCZrPBZrOhtrYWLpcroekdDkfY/frGu7xo3G43qqurY97LUW6Xb2kzEaOtKxHRjnd9fT0sFsuE46PRcV8TpYGUYQKBgARACgQC6Q4l4wmCIHV2dkZts9vtUltbW8x529raJIPBkLRY2traJKPRKEmSJHm93qQt12QyKf/v7OyUAMTdrrq6urD1A5Cam5vHvbxY7HZ72LJGcjqdUl1d3ZiXO551JWLk8XY6nWH7hcbGarUmPC33NVFikpk/TErPlfxL3uFwwGazjTq92+1GfX09HA4H3G43LBbLuH7hA8DAnj1ov+ceDIviuOan6Gw2G6xWa8zTfqPdyDnZpwv9fr+yTL1en5Rl+nw++Hw+iJ+8duTTjbF65OR5QnvNBEFQbnw9nuVlipHHu66ujqdux0kURXi93oSn574mmnwpT67kZMpkMsFkMsFgMIx6ikEURbjdbjQ0NKChoQFVVVXjL5weHob4p8fQ+/bb45ufIrjdbgiCoNRejeTz+TLmRs6tra3w+/3KY71er9SeRdPW1qbsF1EUIYpi2BfbWJdHsYkz9AcTT/ERTX0pL2hvamrCjh07lMdGoxG1tbWw2+1x59uxY0dSejeyFy2CRhDQu+VNFJ5zzoSXl6iDPQdxsPdg2HPFOcVYULQA/cP98IqRvzxXlK0AAOwI7EDvUG9Y2/zC+SjRlsDf58f+I/vD2gqyC7C4eDGGg8Pw9/kxO3/2mON1OBxoa2uDIAiwWq1hbS6XS0luPR4PRFGEyWSCKIpobW2N+FVst9sjEmi5Bquqqgo6nW7UhEKefvXq1UoyEiuZ83g8sNvt8Hg8sNlsMBqNcXvNEqXX69HZ2Rn2nNvtTqgXQBRFWCwWOJ1OJZZElmexWODxeNDc3DzqOvx+PxwOB3Q6HVpaWlBbWxsztkT2pxxzdXU1dDodAET8qPF4PKiurobRaITVao25n+Mdb4/Hg/Xr10Ov18PpdCrP+f1++Hw+tLW1wWKxhPVAejwebNy4EVVVVWhra0N1dbWSuI71WMfbzlj7yeVyKUmNfExtNhuamprQ2NgY9cblcq97TU2NUv/mdDpRW1urJNXyfgmdP96+cLlc8Pl88Pv9sNlsyo8ceV1GoxFVVVVwOp2wWCzQ6XRh+9rlcqGpqUlZtk6nQ2VlJWpqapT5iSgJknCaMiav1ytFWwVG1KGM5HQ6Y9byjCbaOdOdJpO085b141reeN3/xv3Sqt+vCvuzvGg5Gk9gZ0Tbqt+vUua97qnrItr+vv3vkiRJ0v9t+7+INtOzR+thuvu7pfvfuH/cMcs1QKE1Q06nU3ns9XolQRCUPwBRj1O0Wh+DwRBWW+R0OuPWXBkMhrBlW63WuHUmzc3NSs1VPCaTadS/WOtpa2uLW2cm6+zsVOqUnE5nzOmiLa+5uVmy2+2jbofdbo/YfwaDQXlfjay5SmR/hh6j0PduaM1VovGNdrxHxqfX65V9Fa0eTxAE5XVot9snVE8Wazvltlj7aeQ2dHZ2xj2+cqx6vV5ZpnzMQ/fNyPfRaPsiVg2cvC75//I6Ru7rzs5OSa/XK+1msznuNhDNFMmsuUppz1Ws3glBEEbt0t+0aRN0Oh38fj+8Xm9Eb4qsv78f/f39yuOurq6IafJOPhn+PzwMSZKgUqkS34AJqF9aj/MXnh/2XHFOMQBgTsEcbLx8Y5S5jvrBp34QtecKAC4+7mKcPPvksLaC7AIAQF5WHuqXjv8KMflXsN1uV6640+v1yq/maD0vI3k8HtTW1oY953a7IYpiWA9DvLool8sFnU4X1nNZV1eH6urqqD0EYzFaj2k869evx+bNm0ftUQ09ZVpaWgogsgco1vLG0nMwch+uW7cOVqs1YhmJ7E+32w2fzxfWyzay90we4yxWD6JsrMcbONqjI09jMBiUOjWZKIpKL5P8eDzibedo+6murg7r16+Hz+eDXq/Hpk2bRt0X8vJC6wFH7htBEMJqBkfbF/HIy4gXlyAIcDqdqK+vR0NDQ8zPViIav7SMcyUnTbGEfvABR09Z1dfXK6cQQjU1NeGee+6Ju76iCy6AWquFNDgIVU7OBCJP3Oz82TFPz2k1WuUUYDSVJZUx23S5OuhydVHbNGrNuE4JhpI/cNetWwcAYz7lIidmoXw+35hO8ba0tERMr9PplBqmyR47Czh6um7Dhg1j3h81NTVoamqKSK7Gu7x4YtVvJbI/5YQhVGiS5na7UVVVBbvdHvbFXVtbG7bO5ubmMR9vOXb5NGI0JpMJDocDJpMJzc3N4647iredieyn0B8fiQpNCoHRL+YYbV/EU1NTk9B0BoMBBoNhTIXxRJS4tCRX8RIrIPJX7rXXXouGhoaoX6yNjY246667lMddXV1YuHBh2DS5J5yA3BNOmFjQM4TRaITP50Nra+uov8pjGXmM5F/riaqqqooYp0r+Ap9oYpXIeE1VVVVhPWQOhwPr1q1TEqFYdVcejwdr1qxBW1ub8hoWBCFiLLBElzdWfr8/ag9RIvtztMJ6o9EIs9kMr9cLi8WiJBfRasPGerxFUURlZSU2b96s7BP5OMnvebnOy+12Y8OGDeN+HcTbzkT2U0NDA6qrq+PWt01EIvsiVGg95Fj4fD6sW7cOTU1NSXv9EdExKb1aMNapAFEURz0tFEr+QIn2oajValFcXBz2F03PG2/g8AsvJBj5zCUfm/GcdnG5XBGnBIFjPQOhx6+1tTVsHR6PRznucrF8aPvGjRvDegtCp5fjjmbkdHa7fdS/0MRK/rKVe3c8Hk/YaZrQ5QuCAL1eH9ZT4fF4wpLUsSxvNCPfD06nM2wfyfskkf1pNBqh0+nCYpFPoYWy2+1wOBxxT1UlcrxD45OTTzmZGBkDcDSJ0+l0qKuri5pYJbrf4m1nIvtJPk1ut9vHPeRHvPdWIvtiPFeYjlyn3W5HXV2dcnpwpl55SZQyEy8Biy+0EFUWb7XRiqrl5xIpco9VkLb3m42S75pPjy34GchqtUYtlk5EvIEmOzs7JbPZLDmdTsnpdEpWq1UCoBTTms3msIJ0eXq73R61+Dp0enkAUUEQJKvVGvY6GbncsZBfdyP/QmMZufzm5mZlH5pMprBi4fEsLxa73a4ULXu93rCBIkP3h1x8Ptr+lKcxmUyS3W5Xltfc3CwZDAalyFouhtbr9XEL2+Md79D45MJteb3yOs1ms2Q2m5XPAavVGnYhxciC+bEc52jbOTLuePvJ6XQmVNQ/8jh4vV7JZDIp+0FeF4CwwWdH2xeSdPSiEavVquy/0OMUGvPIfS0XvYcOuCsIgmQwGBLaJqJMlsyC9pQnV/IXjczpdIZ9CXu93qhfnCOXkejVQbF2jv9Pf5LeXbFSGu7pGesmzBjycRhLMiuTv7CIkk1OMEJ5vV7lyjgiomSYViO0m81miKIIl8sFl8uFlpaWsCu23G53xBVcjY2Nyv3XbDYbOjo6ohazj0XeyScDw8Poe/fdCS0nU8nFwsD4Rg7ftGnThO4/RxRLtEFp9Xp9Wi5sICJKhEqSJCndQSRTV1cXSkpKEAgEwuqvpKEhvL/6NMy+/XaU3fylNEY49Xg8HqVeSObz+VBfX4/Gxkbo9fpRr2qLdTUnUTLIN8CWByTt6OgIuyiAiGiiYuUP45GWqwXTQZWVBeGaq6Epiz6MwUwW7QtKr9ejra0toflFUcyY293Q1DTeK1eJiNJhxvRcEREREcWSzPwh5TVX6TJyhHMAkIJB9H3wAYZ52TERERGlSMYmV+92RBauB7u7sePKq9D9/L8mPyAiIiKaETI2udpyYEvEc5qSEmiPX4LeMdyri4iIiGgsMja56hnsifp8nqEaPUyuiIiIKEUyNrn6iuErUZ/PN5yKAa+XdVdERESUEhk7FMNQcAi9Q73Iy8oLez6vuhrZ8+ZhcN8+aDgI4Zi5XC74/X60tbWhtrZ2XDeNJSIiymQZm1xd/ufLcNsZ/4UbVtwQ9nzOggVY8tzmNEU1vck3i5XHHCotLYXRaIw5UrYoipM+irbL5VJGmCciIkqHjD0tuDh3FjwHYtdWDXd3T2I0mUEURWzcuFF5XFNTg9bW1pjTxrp9js/nQ21tLaqrq5MaX21tLQwGA6xWK9xud9KWa7PZ4HK5lH/jEUURNpsNDocDDQ0Nysji0fh8PlgsljHH43a7UV1dHfN2Q3J7fX39mJc91nUlItrxrq+vH9e209hlyr5O1efGVFvvWI5XMt/rwLHPL5vNhtra2lE/71Jp2r9uJ3x3wilGvvHivf9XL5332HlSMBiMmKbT9bi07cSTpOH+/jREmDkEQYh5c2e73S61tbXFnLetrU0yGAxJi6WtrU0yGo2SJB29qW+ymEwmqbm5WXlcV1cXd7vq6urC1g8gbP5QRqNx3De7ttvtced1Op0J3+x8outKxMjj7XQ6Y+4XGt3Im93Hk0n7OtmfG1NxvWM9Xna7fdT3eqKvl9D3eWdnpwQg7uddKo3ndTuW90U00+rGzely8pHD6OjrwK7uXRFt2mXLIA0MoG/rO2mILDPYbDZYrdaYp/2am5vj3vct2acL/X6/sszQeyROlMPhCDvFWFtbG3Gj8VA+ny+s10wQBHiiXJ3qdruTGudUN/J419XV8dTtOImiCK/Xm/D0qdjXLpdLKROYTOm6Wfdkrnesx0uni39Lt0RfLz6fDz6fD+InF3vJ5RWxzkCk2lj3w1jfF6mWscnVqit/DbVKjW3+bRFtucuXQZWfj15PYvfOo3ButxuCIMS835vP58uIew3K2xnt+Vja2tqU/SKKIkRRjPoB4fP5UFVVlbRYZyJxhl7xOxVOlfj9/hm7/6eCsez7sbxeWltb4ff7lcd6vT4tSfR4TIX3RaiMLWgvzhXw4roXUaItiWhTZWUh7+ST0ON5A2VpiG0qcjgcaGtrgyAIsFqtYW0ul0u5KtDj8UAURZhMJoiiiNbW1ojkwW63R9ToyDVYVVVV0Ol0o75h5elXr16tvNljJXMejwd2ux0ejwc2mw1GozFur1mion2A6XS6sA+fePNaLBY4nc6IWBwOB0wmE2w2W8R8FosFHo8Hzc3No67D7/fD4XBAp9OhpaUFtbW1MX/pJbI/5Zirq6uVX8Mjrwb1eDyorq6G0WiE1WqNuZ/jHW+Px4P169dDr9fD6XQqz/n9fvh8PrS1tcFisYT17Hk8HmzcuBFVVVVoa2tDdXW1kriO9VjH285Y+8nlcikf3vIxtdlsaGpqQmNjI8xmc8R63G43LBYLampqlJoYp9OJ2tpa5UtL3i+h88fbF3KPkd/vh81mU37kyOsyGo2oqqqC0+mExWKBTqcL29culwtNTU3KsnU6HSorK1FTU6PMnwqx4jMajfD5fLDb7Vi9ejVaWlqwbt065ZjGex3Jy9TpdGhublZqGN1uNzo7O5X5Yx3r8a43Gvn1IQgCnE4n7HY7bDYbzGYzrFYrLBYLHA4HrFYrTCZTzHXHem8k8tqX66Oam5uVK7ljvV6i0ev1yn4L3cdjfU3Ix0Wv16O2thYAol5dHu8zaeR+iPdeGut2TpoJn1icYpRzpg9cJEn/scec7sAvfil9eMGFUWuykmHg44+lnq1bw/76d++WJEmShvv6Itp6tm5V5u3z+iLahj6pbRrs6Ihc7o4dkiRJUnBoSBr4+ONxxyyfYw+tGXI6ncpjr9crCYKg/AGIWnMV7fy/wWAIO3fvdDrj1jAYDIawZVut1rjn05ubm5Waq3hMJtOof/J67Ha7pNfrI9Yz2tums7NTqVNyOp0RbXIdgdVqjahlam5uluz22K9bmd1uj9h/BoNBWfbImqtE9mfoMfJ6vcp2htZcJRrfaMd7ZHx6vV7ZV9HqWwRBUF6HidSYJBpb6HbKbbH208ht6OzsjDi+I8mvIXmZbW1tkiAIYftm5PtotH0RqwYu9PUaWvM4cl93dnZKer1eaTebzXG3IdZ2jbUWJ1Z8oftHfixL5HUU+r6XP6OizT/yWE9kvdGMfD/r9fqwz9LQ91u8dY88XqO99p1OZ8RrLHR5462ZlF+rsepq44n2+aTX68NqqEb7TBq5H6K9l5KxnaGSWXOVsT1XAPCW92mY9/wZj1z6CGblzQprK/vSFzHr1i9DpVKlZN3ixk04dP/9Yc8VX3EF5v/IhqH9+/HRZyLHhzrhvaOnMNsbG9H75pthbfNsVpRceSW6nn4aH//PD8LaCj71KSz6zUMI9vZC3LgJs79y+7hilrN9u92uXHGn1+uVX83RftmM5PF4lF8rMrfbDVEUw35lxas3crlc0Ol0Yafk6urqUF1dHbWHYCzi1UuNFK2WIZHhJUJ/NZWWlgI49mt506ZNcX9RjeVX4sh9uG7dOlit1ohlJLI/3W43fD6fcoz0en1E75k8xtlovwjHeryBo79C5WnkX/ChRFEMOx7jPSUVbztH2091dXVYv349fD4f9Hr9qMcSgLK80HrAkftGEISwmsHR9kU88jLixSX3rtTX16OhoSGipzqVRsbncDjC9o88jdx7N9bXUehrJN6xTvZ65W2qrKyE3W5XPifkz1KXy5XQNkfrhU3ktT/yNZZI7/po1q9fj82bN4+73mzkPpNfa0ajcVyf8dHeS8nYzlTJ3ORq4emo2PZH7C0vROv+VqytXBvWrC4oAABIkpSSBEtYdy0KL7wg7DlNydFTlFlz5+K4x2Nf4lrR1IRgb/jte3LmzwcAFF9yCfJOOSV8uZ9sizovD8K6aycUt/yBu27dOgAY8ykX+cMklM/nG9MbtKWlJWJ6nU6n1DBNVnGp/KUXyu/3j1pAGqqmpgZNTU2oq6sbVxf7WMSqj0hkf8oJQ6jQWN1uN6qqqmC328O+uGtra8PWKZ+eGesx0uv1ymmYaEwmk3I6tbm5edz1FfG2M5H9FPrjI1EjXy+j7ZvR9kU8NTU1CU1nMBhgMBgSLgAeeZq/tbU1LAkEELWkYLT45PWHXvLf2NgIvV6P1tbWCb3X4x3rVKxXEATo9Xrlx4V82spqtYYlz/HWHU0ir/2xfCYlwmKxYMOGDUkpr5DJnzPA+D/jk72dqZTRydXs1vtQWbAUr+9/PSK5AoD9//MDBI8cwbx7k381RHZ5ObLLy6O2qbVa5K1cGXNerb4yZluWToesGC8wlUYTc52JkmsgWltbx33OeuQbQ/61nqiqqqqIonH5TTnRxCqR8ZqqqqpgNpthNBoj4o5VoA4c7bVbs2YN2tralA9KQRDCxgIL/UCVxwyz2WwwmUwT3ja/3x/1AzqR/Tla4arRaITZbIbX64XFYlG+RKPVho31eIuiiMrKSmzevFn5MJePk/xBK9d5ud1ubNiwYUK/pmNtZyL7qaGhAdXV1XHr2yYikX0RKrQecix8Ph/WrVuHpqamhJL+kT2+DocDNTU1E/7ylfd5tG0Y6+sIQMLF2Mler6yhoQF2u12pq9Pr9fB4PGFJQbx1R5Os1z6Q2OvF4XCE1Z8l60ehKIrK51MqP+OB8b8vkiljrxbE/GpAnYXTssvQsr8l6iTqggIc/ve/IUnSJAc3dclvgPF8uLhcrohTgsCxX4uhH3Stra1h6/B4PEriIRfLh7Zv3Lgx7Fdx6PRy3NGMnM5ut4/6F9otLfc4yZqbm8MStNDly79cQz9IPR6PkqTKCYr8ZzQaodfrYTablQ+UkfHGM/KLw+l0hu0jeZ8ksj+NRiN0Ol3YKSj5tEoou90Oh8MR91RVIsc7ND45+ZQ/zEfGABzd7zqdDnV1dVE/fBPdb/G2M5H9JH9h2u32cQ+lEe+9lci+GM8VXCPXabfbUVdXp5weHG8yMVHyPg/dHrk4OZHX0chTQ/IFN0Bix3q8643l2muvhdvtVj4D6uvrUV9fH5acxFu3LHRdo732RzOW14v8GpN7mTweT9j+m8jnU2iPbyLvNWBsp/+n3JWNE67ammLCCtJ2t0hPf/AXadXvV0n7D++PmLb7pX9L7y5bLvUlcdDJ6c5qtUYtRkxEvGLCzs5OyWw2S06nU3I6nZLVapUAKMW0ZrM5rDBVnt5ut0ctvg6dXh5AVBAEyWq1hhVJjlzueITGMbKAeeTym5ublX1oMpliFgtbrVZJr9dLer0+bNsSjddutytFwV6vN2zAvdD9IRefj7Y/5WlMJpNkt9uV5TU3N0sGg0EpspaLofV6fdzC9njHOzQ+eX/K65XXaTabJbPZrBTyWq3WsAspRhYcj+U4R9vOkXHH209OpzOhov6Rx8Hr9Uomk0nZD/K6AIQNPjvavpCkoxeNhL4eQ49TaMwj97VcFBw64K4gCJLBYEhom2RjLWiPFZ8kJXY8Yn1uyPsr9PUKQPksGm3ZE1lvLCMvHoj2uRhr3dHeG/Fe+6O9xkJjivb5NTImABF/4/18MhqNyv4zm80RA4LGe6+N3A/J3M54klnQntnJlSRJ3f3d0gf+D6JeFTh8+LD07oqVkv9Pf5rsMKck+cUtv8nGcpVIrA8RoomSE4xQXq834kpOmjzjuVqQxm66vvYnekVvunCE9kSJu1D4uAnHB9VRi9bVBQXIW7UKPa+/nobgpha5YBIY38i8mzZtmtD954hiiTYorV6vn7QLGyjStddem9RiZ4qOr/3pSyVJmVVw1NXVhZKSEgQCARRr1YB1MZ4724S/oQf3XXhfxPT9Ph+yZs2Cprg4DdFODR6PR6kXkvl8PtTX1ytXsYz2QVpfX68MekeUbPINsOUBHTs6OsKKboky1XR77csDfvp8PmXQ1OkiLH+YYE6Q2clVcTHwm4vhzsvBnYMf4dnPPIuKwop0h5hxRFGEw+GY8BhURERE6ZLM5CqzTwsCQOW5qNnzNlRQ4fX9kaf/JEnC3m/8NwJPPJmG4DKDIAhMrIiIiD6R+cmV/jwIPZ1YWrQwanKlUqkwsHsXDj//fBqCIyIiokyT+cnVgtXANXasnns6Wva3RB3TqmD1ahxpeZ3jXREREdGEZX5ylaUFTv4s6lZcj//51P9EnST/tNMwfPAQBnZ8NLmxERERUcbJ/OQKAA6+j6p//wqnzz416pAMeQYDoNFwSAYiIiKasMy9t2CowR6g9bd4qnwxDhWU4saVN4Y1awoLMf/nP0PeiSemKUAiIiLKFDOj52ruSUCugA/2vorfbf1d1Nqq4tpaZM+dm4bgiIiIKJPMjORKrQGOOxtndh5AR18HPuj8IGKSoc5O7P+fH6Df601DgERERJQpZkZyBQD683HqnreRq9Hi1X2vRjSr8/Mhulw4/MKLaQiOiIiIMsXMSa6Ovwha4/dQPfsUvNoeJbnSapFfU4Mjr0a2ERERESVqZhS0A0DpYuCs2/GFva+gd6g36iQFZ52Jg7/8FYIDA1Dn5ExygERERJQJJqXnymazweFwwOFwwGazjXn+2tra5ARy4D2ctdODNYvXRG0uOOssSH196H1jS3LWR0RERDNOynuu5GRKvjO22+1GQ0MD7HZ7QvO7XC643e7kBPPxVuDZb2Ozbi4GtYVYW7k2rFm7bBnKv/F15CyYn5z1ERER0YyjklJ8z5fS0lLs2LEDgiAcW6lKldCtZkRRxKZNm9DQ0JDwrWni3tX6SAfwoyp869S1+FA9DOcVzrFsChEREWWouPnDGKX0tKDP54MoimGJlSyR3qhNmzbh2muvjTtNf38/urq6wv5iKigD5p2KM3t68J7/PRzqPRQxydChQzj4wAMYDgRGjY+IiIhopJQnV9EIggBRFOPO63a7YTQaR11HU1MTSkpKlL+FCxfGn2HJGpy5520AwGvtr0U0SwMDOPSLX+LIa5FtRERERKNJy1AMOp0Ofr8/7jSiKEKv14+6rMbGRgQCAeVv9+7d8Wc44QrMOuULOL6kKup4V9nz5iFn8WIOyUBERETjkpahGEZLrBwOh1IAPxqtVgutVpv4yitOBipOxuc//Auy1NE3P/+sM3HklVcSXyYRERHRJ1LacxWr5yler5TH40FNTU0qwwI6d+Ka3iFcUXVF1OaCs87C4M5dGNizN7VxEBERUcZJac+VXq+HIAjw+XwRyVSseiq/3w+Px6MUvHs/udefzWaDXq9HXV3dxAPzPQ88eSdaSsoQzCnA6RWnhzUXnHEGSm+4ASrVxFdFREREM0vKh2Kw2WwQBEE5zedyudDc3KyMc+Xz+eByuWA2m6PO7/F4UF1dnZyhGGTibuDnq3D7KUb05JXgtxf/duwbRkRERBlj2gzFAABmsxmiKMLlcsHlcqGlpSVsAFG32x1zQFGXy4WmpiYAgMViSd5gosJCYNYynDMg4Y2P30D3QHfEJEOdneh87DEEBwaSs04iIiKaEVLeczXZEs48n2nEvm1/xcW6LPzkvJ/gouMuCmvu27YNO675NBb97rcoOPPMFEdNRERE6TSteq6mrOWXY57+Qiwp0eOlvS9FNGuXL0fW7Nk4/MKLaQiOiIiIpquZm1wd9yngqvuxbvnnsKx0WUSzSqVCwbnn4PBLkYkXERERUSwzN7kCgB4/PqsuxQ0rbojaXHjueRjwejkkAxERESVsZidX7z0J/N86fLivBZ6PPRHNBWedieJLL4XEonYiIiJKUFpGaJ8yjr8YgIRfv27D/uwcPHrZo2HNmqIizP/pT9ITGxEREU1LM7vnqmgOML8a5/T04u1Db8PfF3lbnuCRI+j657MckoGIiIgSMrOTKwBYuhZn73oTEiS8vPfliOaBPXuw92tfQ29raxqCIyIioumGydWySzFr0VlYKSzFi3sih13QLl2KrDlzOCQDERERJYTJ1dxVwHUbcdWyOswvnB/RrFKpUHjuuTj8r38lfAseIiIimrmYXAHAYB8+lzMPdxi+FrW58MILMLBzJwZ27JjkwIiIiGi6YXIFADteAB6+Egf3vIa2j9simgvOPBMFZ5+N4JGeNARHRERE08nMHopBVnkukJWH37b9HM8OHERzfTPUqmN5pzo3F4se2pDGAImIiGi6YM8VAGTnAVUX4MKOdhzoPYB3Dr0TMYk0PIyelhYMi+Lkx0dERETTBpMr2fLLceruN1GSU4Tndz8f0TwcCGDnjTehe/PmNARHRERE0wVPC8qWXYKs+dU4b9YyPLfrOXzV8NWwZn9WPqQVJ2LfU//EnjOMMRdTXqRFeXFuqqMlIiKiKYrJlSxfB6zfjIv3vIje7X9F31AfcrOOJUmPvrYLe6QFuOG1Z/HZnz2H/qycqIv52prjcWft0smKmoiIiKYYJlehJAnnqotw7hl3A1nhvU/Xn74IB4puhOamp/D46VnYvuQU3LFxC36+7hQsKS9Upisv0k521ERERDSFMLkKdfhjwHE+eq74BbbOOwGnVZymNJUX56L8jBOxe80alAi5wCcJ1ZLyQqyaX5KuiImIiGiKYUF7qKK5wILT8M9tf8Itz96CQ72HIiZZeP+vUFxbm4bgiIiIaDpgcjXSCVfg/F1boFap8dyu56JO0u/zAR+3T3JgRERENB0wuRrphMtROtCL1YXH4dmdz0Y0S8Egdt14E1SPb0xDcERERDTVMbkaSacHlq7FxcIytOxvQUdvR1izSq1GUW0tVC8+B5UUTFOQRERENFUxuYrmuo1Yc9Y3cWr5qfD3+SOai9ZeDNXBA1jauTsNwREREdFUxuQqhtL+I/j96u/g+NLjI9ryq6shCaU4e99baYiMiIiIpjImV7E8Wo/g803wfOxBoD8Q1qTSaCBdeiX6NdEHEiUiIqKZi8lVLCuvQWD7M/jSP7+Ef370z4hm6eZb8cgJF6chMCIiIprKmFzFsvLTKO3rxuqi6FcNAkBx/xHgvXcnOTAiIiKayphcxTJrCVBxMi7qHUDL/paohe03bnsa6h98B5IkpSFAIiIimoqYXMVz6uexJm8BVFDBvdMd0fzveSdB1b4X/du2pSE4IiIimoqYXMVz2nrornHgqiVXQauJvCHzW7OqIBUVo+uf0U8bEhER0czD5Go0/d24p8KIq5ZcFdE0rNZA+tR56Hr6aZ4aJCIiIgBMrkb3xqPAH6/B7oNbseXAlohmybgW2iVLEDx8ePJjIyIioimHydVoVl4NBIfws39/Dz987YeR7adWY+ED90NTVDTpoREREdHUw+RqNEVzgePOxmVdnXjP/x68ojdiEmlgAN3PPQ9paCgNARIREdFUkjUZK7HZbBAEAQAgiiLMZnPc6UVRxKZNmwAAXq8XPp8PGzZsUJYx6U5ah3P+/hUULT0BT/mewlcNXw1r7nv/A+y57TYs/M1DKPzUp9ITIxEREU0JKe+5stlsAACTyQSTyQSDwYCGhoa481gsFhiNRphMJlitVuh0OtTX16c61NhWXIWcqgtw8ZzT8ZTvKQSlYFhz7qqVyFm8GF1PPJmmAImIiGiqSHly1dTUBJPJpDw2Go1wOBxx5/H5fHC5XMrjqqoqtLa2pizGUeUWA5//C6468SacMe8MHB7owVt7RADAW3tEBCWg+PLL0d3cjGBfX/riJCIiorRL6WlBn88HURSjns5zu90wGo1R52tubg573NLSEnPaSRMM4pTDAexXXYOLf/oa2gNHk6hv/WUrfvncdnzrtHOw5Mj9OPyvF1C8lvccJCIimqlSnlxFIwgCRFFMaBkulwuiKMLpdEZt7+/vR39/v/K4q6trzHEmRArimf/7BW49/EUcHdFKpTTtD/Thq8178MOrb8YCbU5q1k9ERETTQlquFtTpdPD7I+/VF0oURTgcDvh8PtTX18csZm9qakJJSYnyt3DhwhREDAyrNLhn8PqIxAoA5OFDf1lyKvLPOz8l6yciIqLpIS3J1WiJFXC0d8tkMilXFpaWlkbt7WpsbEQgEFD+du/enexwAQCv7/CjvV+LkYmVTALQHujDv59vQ4/Hk5IYiIiIaOpLaXKl1+ujPi+KYtw2i8USlkgZjUaIogi3O/LmyVqtFsXFxWF/qXCgO7FCde+fn8IBqy0lMRAREdHUl/LkShCEqLVXsQrUfT4fbDZbWO+WnGilbZwrAOVFuQlNt/js1eh98030x6g3IyIiosyW8tOCjY2NYT1OLpcrbGgGOZmSGQwGmM3msJ6tjRs3wmAwpPWKwdMqdagoyY1xUvDoycKKklyce/WFUJeUIPCXv0xmeERERDRFqCRJkkafbGJsNpuSLLW0tMBqtSptDocDVqsVXu+x28rIxewyr9cLq9WaUM9VV1cXSkpKEAgEkn6K8Jmt7bj1kaP1VKE7TU64HrzBgLWrKrD/+/+D7uZmLHn+OaiyJmUQfCIiIpqAZOYPk5JcTaZUJlfA0QTrnj970N5z7LmKklzcfcUKrF1VAQDo27YNgSefxKxbb4OmsCDpMRAREVFyMbmKI9XJFQAMDw7i1R9dBRsWYZfOj5e++DsUaZlEERERTVfJzB/SMhTDdKfJzsbSldX40fDfMZy3Dc/v2RwxzXBXFw5t2IChzs40REhERETpwuRqnDqXrcPxQz04WbsAj3/weES7NDiIg/f9Al1P/SMN0REREVG6MLkap8Gihfjh0PVYU3EpPAc88IresPassjIUnncexD8/jgw780pERERxMLmagN8MX4pT9Z/DN2q+gbLcsoh2ob4O/e9uQ9/WrWmIjoiIiNKBydUElfmewo3dvRByhYi2wnPOQda8CnQ+9tjkB0ZERERpwUGYJii34x1IH2zEz9RdWD5rFS7VX6q0qTQazPnmN6EpLkljhERERDSZ2HM1Qf4TPg9VXwDb97yM37/z+4j6quKLLkLBGaenKToiIiKabEyuJmiweBGw9GKsO7Qf2/zbsPVQZH1Vj8eDfd/+NgvbiYiIZgAmV8lw2nqcve89VGh12PTBpohmqb8fgcf/jN62tjQER0RERJOJyVUy6C+EZt2jqFv+WTyz4xkcHjgc1px/+unIXrwInRsjEy8iIiLKLEyukkGtBk64HHXL1+EPl/wBhTmFYc0qtRql165D9zPPcMR2IiKiDMfkKol0T38LK955CpIkISgFw9pKPn0NoFIh8HjkaO5ERESUOZhcJVNWLg63PITP/P3T2Lwr/H6DWaWlWOiwo/Rzn0tTcERERDQZmFwl02nrUdi9H8VDg3jk3UcimgvOOAPqggJeNUhERJTBmFwl05yVgP58fL6zA54DHrxz6J2ISfx/+AN2felLaQiOiIiIJgOTq2Q78ys4f9+HmJ9Xjke2RfZeZc+fj55X/4Pet99OQ3BERESUakyukm3JGmjufAfXrbwRno89GBgeCGsuvOACZC9YAP/Df0xTgERERJRKTK6STaUCiuZgXdWVeHLtw8jR5IQ3azQoveF6dD3zDAYPHEhTkERERJQqTK5SQZKg/d1lyH6+CfsO70PPYE9Ys/CZz0Ct1eLIK6+kKUAiIiJKFSZXqaBSASuvRuCtx3DVX6/E4x+Gj22lKSrCks1uCFdfnZ74iIiIKGWYXCXoQFcftu4NKH/bDxy9xc32A4fDnj/Q1Xd0hpqbUSIBF+XOw8PvPozB4cGw5WlKSiAND2Ng167J3hQiIiJKoax0BzBdPPraLty3+cOI5+/YuCXs8dfWHI87a5cC+Trg1Bvwxff+gr/Pysc/dvwDVy25Kmzaj61WHN78HKr++QxUWTwUREREmYDf6Am6/vRFqF0xZ9Tpyou0xx586qtY0r4F589ZhN9u/S2uqLoCatWxzkLhmmvQ+fAf0fX0Myi54vJUhE1ERESTjMlVgsqLc1FenDu2mYRFwC1u3HxgCx57/zEcGTyCopwipTn3hBNQcPbZ6HjoIRRffhlUKlWSoyYiIqLJxpqrSXBK/yDunbsmLLGSla1fj/7338eRl15KQ2RERESUbEyuJsN/HsDwk3fhrx88ji0HtoQ15Z+2GsWXXgppaDg9sREREVFSqaQMu4twV1cXSkpKEAgEUFxcnO5wjtq/FdKvP4V1K05DQfEC/G7t79IdEREREYVIZv7AnqvJMHcVVMsuw20dh9D6cSteb389YpKBXbvQ8bvfT35sRERElFRMribLuV/HeR/7sCK/Ag+8+QBGdhj2vvU2Dlit6H3rrTQFSERERMnA5GqyzK+G6opf4LZTvoK2j9vQ+nFrWHPxJWuRo9fj4P33pylAIiIiSgYOxTCZqm/EuZKEn+fk4dTyU8OaVBoNZt12G/Z94xvofest5J10UpqCJCIioolgz9UkU733JNY8fQ+ygkEMBsNviSP3Xh164ME0RUdEREQTxZ6ryVa2BNj/Nn797O14VdWP36/9vTJ4qEqjQcUPf4AsnS7NQRIREdF4sedqspWfAJxYjxO3vwTPAQ9e2PNCWHP+qaciZ/FiSIODMRZAREREU9mk9FzZbDYIggAAEEURZrM5oXkAwOv1AgDsdnvK4pt0538TZ/1qNU6fexru89yHc+afA41aozQP7t2LnZ//AubZrMivqUljoERERDRWKe+5kpMkk8kEk8kEg8GAhoaGuPNYLBaYzWaYzWYlqaqtrU11qJOnrAqqU67DHcMF2C5uxxO+J8KasyoqoBZKcODHP4kYsoGIiIimtpSP0F5aWoodO3YoPVcAoFKpYiYNoiiivr4eTqdTmcfj8aC6uhperxd6vT7u+qbkCO3RDPYCWbkwv2TBccXH4bZTbgtrPvzvl7H7lluw4P5foWjNmjQFSURENDNMmxHafT4fRFEMS6xkbrc75nytra3w+XzKYzmhEkUx2SGmT3YeoFLBOv8S3FZ5ZURzwafOQv4ZZ+DAz34GaZj3HSQiIpouUp5cRSMIQsxESRAEdHZ2wmAwKM/JiVi0Xqv+/n50dXWF/U0bg71Q/Xk9BjZ/H39670/oGjgWu0qlQvnX7wIkYGj//jQGSURERGORlqsFdTod/H5/wtM3NTXBbrdH7QFrampCSUmJ8rdw4cIkRppi2XnA+Y0IvOPCz1p+gg1vbQhrzjvxROif+Duy589PU4BEREQ0VmlJrsaSWFksFqxbtw4mkylqe2NjIwKBgPK3e/fuZIU5OQw3YnZpFW4O5uGRbY9gZ9fOsGaVWo3+Dz9E1z+fTVOARERENBYpTa5iFZ+LojhqYToAuFwuVFVVxR26QavVori4OOxvWtFkAbXfx40fvY3y7CL8uOXHEZN0btyE9m99C0OHDqUhQCIiIhqLlCdXgiBErb0yGo1x55XrrOQeK1EUY9ZwTXtL1yL38p/jzuq78K89/8KWA1vCmmf9121AVhYO3ndfeuIjIiKihKX8tGBjY2PYlYEulyvsFJ/P51PGwpJ5PB54PB4YDAb4fD74fD44HA7oMvW2MCoVUH0TLl5yFR487+c4efbJYc1ZpaWYffvtEF2Po+/dd9MUJBERESUi5eNcAUcHEpVPA7a0tMBqtSptDocDVqtVGYldFEVUVlZGvZowkVCnzThX0XifBx6/GWh4EYdycjErb5bSJA0Ownf1NciePw+LHI40BklERJR5kpk/TEpyNZmmdXLV1wX8qgab5h2P+1Qi/n7131GWV3aseds2aHRlyJ5TnsYgiYiIMs+0GUSUxii3GKj9PozbX4EqOIyftv00vPmEE5A9pxzD3d0I9vamKUgiIiKKh8nVVHPSOujmr8Zdhwfxd+/f8Xr762HN0sAAdlx9DQ49+Os0BUhERETxMLmaalQq4LKf4OoCPU4tW4UfvPYDDA4PHmvOyUHJNdeg47e/Rf/27WkMlIiIiKJhcjUVzT0R6huc+M6nvo/zF5yPYSn83oJl629Bzvz52H/P9xMq8iciIqLJw+RqCju+cx/u2v0BcjXasCRKrdVi7t3fRU9LCwJ/+1saIyQiIqKRstIdAMUhBYE3/4Q/FxXBjSO4f839UKlUAICCs85C2ZcbkLNocZqDJCIiolDsuZrKqi4ATv4c5r71OF7a+xKcHzjDmsvvuAP5hlN5apCIiGgKYXI11V30Q5w1BHxGo8NP236K9sPtYc3DgQB2fvZzOPzSS2kKkIiIiEIxuZrqCsqAy36Kr3d0ojArH9979Xvh9VfFxVAXFKD9O9/F8OHDaQyUiIiIACZX08PKq1F02+u4+6x7oIIKPUM9SpNKpULF/3wfwa4uHLD9KI1BEhEREcDkavrIzsU5+fPxIOaiICs/vGn+fJT/9zcgbtqEI6++mqYAiYiICODVgtPLoQ+hevlnaNFmYaMkwnqOFRq1BgAgrFuHw/9+GcOdnWkOkoiIaGZjcjWdLL0YOPUGqF/fgObZApaWLoXpJBMAQKVWY+H9v0pzgERERMTTgtPN2ntRnaPDzUM5eGDLA3j74NthzdLgIPZ9+9vo+sc/0hQgERHRzMbkarrRFgF1v8WtBw/ghKJF+OZL30TP4LECd2RlIdjTg/bv3YPB9vbYyyEiIqKUYHI1Hc07Fdl3bsW9a34JbZYW+3v2K00qlQoV3/se1Pn52PfNRkjBYBoDJSIimnmYXE1X2iIszp2Nx7OXQa8Ov3pQU1KCeffei57XX0fHQ79JU4BEREQzE5Or6WywB6p3HsehP9+MW/55Cz7s/FBpKjjjdJQ1mDAsiumLj4iIaAZSSRl2Y7quri6UlJQgEAiguLg43eGknu8F9D5yDW6oWoGB/FI8dvljKMguAABIkqTc6Dn0/0RERBQumfkDe66mO/15yLvwu/jpjm04eLgd3335u8rtceRkSvzLX7Hb1ABpeDidkRIREc0ITK4ywae+hsVLL8MPSg14duezeHTbo2HN2fPm4cjLL+PgrzgOFhERUapxENFMoFIBdb+DUa3BLZ77UJxTFNZccPppmP3Vr+Lgz3+O/FNOQeF556UpUCIioszHnqtM8cltcL6mKsOVb/wVCAZxeOCw0lxmWo/C88/H3q9/A/0+X5qCJCIiynxMrjJNng545y946G/X4/p/XI/ugW4AR2+PM+/HP0LRRRdBU1KS5iCJiIgyF68WzESv/BIfPfc9XHdcJU6euxq/uvBXyg2eD3T14UB3P9DpB4qLAU30M8PlRVqUF+dOZtRERERpk8z8gTVXmejM23Fcx3b8eJsTtw2/gp+0/QTm1WYAwKOv7cIDz74L++Yf4dW5K7DhpKujLuJra47HnbVLJzFoIiKizMDkKhOpVMClP8ZZOYUwz1mMpjd/iVNmn4KLjrsI15++CLUr5uCVuUfwl13hs80qzIHpHD3OWjIL5UXa9MROREQ0zTG5ylSabODiH+I6AEJ2AS7QrQQAlBfnwrOrE00HBUh54WeEOw4PoOnp9/DgDQasms+6LCIiovFgQXumkyRc+p+Hkf3oOmzd+yr+s+913PPEu/hkmNHwST/5954n3sVwMKNK8YiIiCYNk6tMp1IBl/8MCOzGQ81fxW1P/gTtgb6Yk0sA2gN9eH2Hf/JiJCIiyiBMrmaCOSuA65344b69KO3LT2iWA92xEzAiIiKKjcnVTLHwNBRc+zDMgY8Smry8iMMwEBERjQeTq5lkiRHGO5woL87GsQqrESQJswcPo1qnmdTQiIiIMgWTqxlGUzQL37/yRKgAqEYkWCoAKpUKt773NPZ+uQHBI0fSEiMREdF0xuRqBlq7qgIPnt2HuQgvWp9bkosHbzDgc9b/Rt7KlVBpOdYVERHRWE3K7W9sNhsEQQAAiKIIs9k86jyiKGLTpk1wOp1obm5OeF28/U18yu1vABR+8Ge88cJvcE+JHtpCDf73PAvmFFQAOHb7m94tW5Cz5HhoCgvSGTYREVFKTavb39hsNgCAyWQCALjdbjQ0NMBut8ecx+PxoLW1FaIowu/nkADJ9Ohru3Df5g8/eVSOa9Rn4++HN6C+UI+vvngLenbdAmlgNr625nh87dzF2POVryJrXgUWORxT6obPoUliPLxHIhERTbaU91yVlpZix44dSs8VcLSuJ5HVulwuNDU1oa2tLeH1secqvmhJSX77a9hbsgA/2GLGefMuwZXH3XCs52rrO9h9883IqqjAot88hKyysjRFHu5nzR+EJImx8R6JRESUiGnTc+Xz+SCKYlhiJXO73TAajRNeR39/P/r7jyULXV1dE15mJisvzo3syZl/EfQA/pxlRv5LP4XKcB06cARALvJWrcSiPz6MXV+6GTs//wUs+t1vkT1nTjpCDyPfIxEAhoMSnn13P+5/3ov/uqAKF62YC4366OjzvEciERFNtpQWtPt8vqjPC4IAURSTso6mpiaUlJQofwsXLkzKcmeiguwCqNq34D9/uBiXPH4xNu/cDADIXboUxz3yR6jz8iD1TY3BRcuLc7Fqfgn2dPbgy4+04f7nvQCA+5/34suPtGFPZw9WzS/hKUEiIpp0ablaUKfTJa2WqrGxEYFAQPnbvXt3UpY7Iy2oBr74DE7t7cG5Pb2481934tFtjwIAco47Dse5nMhZvBjD3d3o3bIlvbECeGZrO259xBNxO5/9gT7c+ogHz2xtT1NkREQ0k6UluUpmkbpWq0VxcXHYH01A+XJob3HDhlm4sQ+49/V78aOWH2E4OAyV6uipto4ND2Hn57+ArmeeSVuYw0Ep5AbU4XgDaiIiSqeUJld6vT7q86IoxmyjKaBoLtQ3/QNfv2YTvnnaN/HK3pfRN9SrNM++/b9QtHYt9t5xJzp+85uELk5Ittd3+HkDaiIimpJSnlwJghC19ioZxeyUQjkFQPlyXL/ss9goDqLgaQt2+7djR2AHVDk5mGe9F2VfbsCBH/0Y7Y3fmvQEK9EbS/MG1ERENNlSflqwsbERbrdbeexyuZQxr4CjRe/yWFgjcYyrKUCtQc4p1wNvu/Czv16L6578LF7c8yJUajXK77gD837yY2iXL1NOGU6WRG8szRtQExHRZEt5cmU2myGKIlwuF1wuF1paWsIGEHW73REDisoJl91uh8fjgcVigcvlSnWoFMsp1wE3P4vvdw2i5nAXbt98O+xv2hGUgii57DKU3XQTAMD/8B/R43ljUkI6rVKHipJcxErpVAAqSnJxWqVuUuIhIiKSTcrtbyYTBxFNoR4/gq4v4dc6HX7d0QrjYiN+ev5PAQDS0BB23fRF9GzZgvI774TuizdBpU5t7i5fLQggrLBdTrgevMGAtasqUhoDERFlhmTmD0yuaGyCw4BKjf/sfw09257AhTX/Bamo4uio+4ODOHjffeh46DcoPP98VDT9L7JKS1MazjNb23HPE++GFbdXlOTi7itWMLEiIqKEMbmKg8nVJOkLAPefAWmoD99aeQ7mzV+NL5/8ZWSrs9H9r3+h3fJNFF16CSruvjslqw+9jc9oI7RzIFEiIhoNk6s4mFxNoiMdkP72X3jo45dxv64Uy3XL8cNzmlAlVGGwvR3qggJoiovR9/4H0OorocrOTtqqeW9BIiJKJiZXcTC5mmSSBLQ8hLf/9T18e/5i7A32447qO/D5FZ8HAAT7+rD9wjXInjcP86z3QltVlZTVRrsBdTTsuSIiokQwuYqDyVWaHNqOvtwS/GLb75B7+BC+etZ3AW0hAKD37bexz/JNDO7Zg9l33QndF76Q8mJ3IiKisWByFQeTqzQb7IP08xOhys7DHwxXY7B0EW5ccSM0g8M4+LOfwf+Hh1F63XWY+93vpDtSIiIiRTLzh6wkxUR0VHYuVF96Bvj7V9Ht+T0eKi3BU9v/hu+cdQ8MjY0oXLMGmpISAMDAnr3Imj0Laq02zUETERElD8/NUPKVVQE3PYnbz78XGzt6kd+1Hzc+cyO+98r3kFN9KnKXLYMkSdh7553YceVVOPKf/6Q7YiIioqRhckWpoVIBp1yHZbe24OErN+Hbp38bRwK7kPXRy5AkCUPSEObd24Ss2bOx66YvYs8dd2Jgz950R01ERDRhTK4otfJKoSmtxGeXfxY/6suB6o9X4cVHLsXVj1+Kf2d/hIV/+D0q7m1Cb1sbdn3hC5CGhtIdMRER0YQwuaLJc/WDQP3vsVDci4UdH+GO5+/A+me/iF2f0qPqmacx/777oMrKwuDHByA+/jgTLSIimpaYXNHkUamAlddAf2sLfn3ynXigLw/+/gCu/8f1cO//F/JOXAUAOPz8c2j/9v+D74or0fX005CCwTQHTkRElDgOxUDpEwxiGBKe3fYnnP/kd5BX80X8vWIJVs47HfP29uHgfffhyIsvQbt8OSq+fw/yTjop3RETEVGG4lAMlBnUamgAXFJ5KVC9HYP/+TU2zBGwM1sD4/xzcfP/fg2VOxtw8L5fQJ2XBwAY3L8fWeXlHISUiIimLPZc0dRx5BAGXv45/vruo/i9rgy7pX6cWXEm7l9zP7I12ZCCQfguvQyq7CyUrV+P4ksuSer9ComIaObiCO1xMLnKAD1+DA90o1nchm3b/oI7xW4Mn3U7mocDOLNDh66HfofDL7yA7PnzobvpJpSuuxaqnJx0R01ERNMYk6s4mFxlmPeeAtzfg6d7J26cNwc6TR4+s+xafDr7TKj++Bf0bn0bVf/4B1QaDQY/PoDsOeXpjpiIiKYhJldxMLnKQMEgsN0NX8sD2NixBX8rLUOfNIwbll+Hu065A+qcHAzs2gXv2ktQcOaZKL3hehSeey5UGk26IyciommCyVUcTK4yXOdOHNEW4oldzRC2bMTanj58uNyIZlUQl+yaBbieRt/bbyNr7lyUfu5zmNVgSnfEREQ0DfBqQZq5ShejAMBnl38WCOYBrb/D9pd/jD/M0uFBtRqrb1yFdZrbseLVdgz7/QCA4cOH0d3sRvHFF0Gdn5/e+ImIKOOx54qmv8Be9Lz5KNzvbcLf5i/H64fexE1zz8HXl9+AI3NPRO9LL+Pg7XdClZeHogsuQPGll6DgnHOg1mrTHTkREU0RPC0YB5Mr2nd4HzSPXY85ezz4w+x5uL9Qi0s1J2DtngWY9eoHGHz/AxQa12Dhr34FaXgYGB7m1YZERDMcTwsSxTGvcB7wpc3AnhYY3/4TBnc245ksDx6v2AptvRaWwnpcUXkVJEnCkVdewd67vo7Cc85G4QUXovDcc6ApKUn3JhAR0TTGnivKfMEg0L4FHxWW4oU9L2LlKw7UtL+PJxafiCd6hnD1RxVY/N5hqN/fAWg0KF13LeZ+97uQ3xoqlSrNG0BERKnGniuisVCrgfkGHAfguJJKoOJc4MNmzPvgLxCk7fjBMj+6V6ixsLcEt3auwHlLj0dQCqL/nXex56tfRcGZZ6LgzLNQcOYZyCorS/fWEBHRFMeeK5rZBnow5Hse7whz8J+P23D8W3/Fhd5X8NLc4/FAv4T6rUWo3BlE7q6DAKDUagHAcCDAU4hERBmCPVdEyZKTj6zll+FkACfPrQH0VwMfvYR525+G4WAL/rS6HR+crUXxYQ3qDy3AF4pzMLTvTWw99DG0134NOUuqkG+oRp7hVORXVyN7wYJxn0YcDkp4fYcfB7r7UF6Ui9MqddCoeUqSiGi6Yc8VUTyBPTis1uCtrh1Qve3Ema/9Ae9kq/HFsrk440PgtP15WNKuQcneANQlJVj66itQqdXo3LgJ2fPmIXfVSmSVlo66mme2tuOeJ95Fe6BPea6iJBd3X7ECa1dVpHILiYgIHIohLiZXlFIDRzC4pxUf+J7BlvZWvFOswztSH3LFLvz+7Y+Qd9KJuCOrBzf99GNojwwBADTz5yF/5SrM+fa3kT2nHMHeXqhyc5Uerme2tuPWRzwY+UaU+6wevMHABIuIKMWYXMXB5IrSYfDg+8h+9+8Y3OfB/+veindVg+g7nAX9fgn6/cA1Bwqw5K5r8K8CDUp++SLyfQeQu3QZhhdX4bOSAYeGY98HcVZhDp64/WxUCHmTuEVERDMLk6s4mFzRlNDjR293O3wa4IP2Vlz5+qPQHHwPt5fkoHO/FsfvAxYfBHoGl+BHJ45+/8NLV83FAzdUT0LgREQzE5OrOJhc0ZQlSUD3fnTua8H2j7dgx9zlePC53dixc/mos9Yt6MBlKwKY+/ArKKg8HgWLKpE9bz6y589H3qqVkxD82LA4n4imG14tSDQdqVRAcQVKi6/E6uVXYjWAooF23LrTM+qsp3c40LRFxBcOBlG+fQtmB4DcQUBTkIOlv7wFfx34GPMffB1aTS5yjluCwoWVKJy3CIXnnIMsnQ7S4CCQlTUpA6KyOJ+IZjr2XBGl0XBQwtnW57A/0BdR0A4cLWqfW5KLl0xL0OV/D/sObcPeLA325Ragd9c7uNnzArTqfbh2dhEML2swzw/MDkiY1QUU9gHHfb4C7qpC9D2zH8vbjmBQV4jgLB3yZs/CwjUXIf+Kq3DkcDfU23zI0umQpdNBU1oKdW7uuLYn04rz2QNHNHNMu9OCNpsNgiAAAERRhNlsTsk8AJMrmn7khARAWFKScEIiSUB/FwbEPTjYvRsHS+biQM8BnLp1M2YdOYgnen1o2XUIRfuGkdOfg/yuQSzr0eLE0o9xcNUA7h6ag7v/Lxi2yOyyfCz533XY1LcHFX/ahmy1Fpp5xyGntAyzdXNQfvHlwJwKBA/5gd5eqIuLgYJCnPPTl8J6rELJieK/LRdOiwQlk3rgMilJzJRt4XZMPdMqubLZbACgJEdutxtOpxN2uz2p88iYXNF0NGlf5JKEIWkYg4e2I69rLwJde/Hq/jfQfaAdvcE89A/lIevQAVzTvgPC4m7cUKTCBf9UQ9cFFPcc/SvoAyprD+L3SwrQ93oB1rYd/Qh5a1YVLGffOmoIPzs/GyurhhB8wwttdiHyZi9CXlEptEUCcioqoM5L/1WRmdQDl0lJYqZsC7djappWyVVpaSl27Nih9EIBR2+EG2+145lHxuSKpqsp+QtQkoDBHgz2iejKzkXXQBfK299Fft9hbAtsx3s7t2HwQCcGtXPx5EcC/pN94aiLvC/7l3hk4Q7c/hs1ygPhbQvXDuPpZXnY0zqEC18PYiBHjSFtFrJysrF4uYD8i6vw84Mf4synAkBePlBcBlVONpZrslDxhUvwn952DL72AbJ7AU25Hqq8fMzN0WLuqhPRU1qAA/v3QCP2IqdoFrIKBORm56JQmI2sWbMhAZD6+xHUZOGcH7+QET1wmZYkZsK2cDumrmlT0O7z+SCKYliSJHO73TAajUmZhygTaNQqnFk1xW4MrVIBOQXIzilAGYCyvDKgpBIAsOKTP1nW6zvxnz9vHXWRg+d/Bz9ZGEDgpD3o6g6gt3AB+rsDWN6+C3mz87AkuB9Herfjw6LDkLJ0QFCNWb0D0Bb2YqBjO9p7OtA9NAi12A+NvwtZA8Po7euHqvQf2DC3HFf8IwtL2oGs4CsAgMMAes/y47kVGry2oxQ3bg6iPySewnl9qDjXj/PLF2DDL4J4a1YV2uP0wEkA2gN9+GPdtfj0ym7sXJ6Lp7z7cOprfZC0eYA2HzkqNVaValF+yXL8+MiHWPm3A0B2NlTFcwCNBssGB7DwUgNezwrgQNt2FBzoh0qYD+TkYTaApVXz0aMvw8u73kHhe4egyi+FqnAWsoJBnJxXgKLTVuGVwHYE3/BBI6mhKtMDajUWDw6ifMVS7NcO4sNt76OxdQkk5ODYV96xbQAkfGtTC8o6slCWn415qizk6hfjYL+I/v0HgCCgKp4LlVqNIklCQWkZ+rPVONzdAalvACptIdRZWmRBQpE2H6q8PHT1dwE9/VBpsqDKyYMKKuRBA3V+HoakYQwP9ANQQa3JAdRqaKCCOisbKo1G+ZKOdtHFcFDCPU+8G7UuUfpk6+554l3Urpg7pRNebsfMkfLkKhpBECCKYlLm6e/vR3//sY/Krq6uMcdJRBNXX7MI923ePmpx/jUXnBX3A/fUT/5iuR8A7ojSEByGvf8wBq/rxmD/YfRrSzDYewSFHe0o1GbhvGA3Kts/RM+Ffgzl6jCk1iLvcACVWQAWluKOdg92XL8Pz3UsTGh7dxaUQpPXB0jDkBDEQJYElRSEqr8f0rCEYFAE9h7G21kBnNQ+CJWkglrVDdWwhL6BQUiz38V/ylXI2apB9fsS1NJOaIKAOqjCkeUB7D11AK6ecjQ6w+vhPi4cQtHlB/CDBRX43q9VKArpYBMBCLUH8beqfHzw9knonB1vmA4V/AMa+L79AAoPebEzO4hln9mPOyrm4KaHNVjQcWzKAIAF53TgyeXZ2Pa+gM+9GB5T0cJeCGeLuLp0AR54YDhiTcuv3Ye75s7C+X/JwYrd4W0Vp3XitVXA0/vK0PDMseVKKqCgvB+L1wRwZsmZOBAYPeF99MIrsLLThxyoMP+kXuw8BdjQmYsvPikBKkBSqaBSqVBeNITFlwVRX5qD238TRM4gAJUaAFASlKBfK+GP81U48jpw2lbpaJsKyIUGC5cO4UiNCvccAdb/NQhAdfRHiEqFudnD0H9Gg1sLgcseG0ZpNwDV0QGCSyRg/3mVaNd8edTt+M2lV+AE0QeoNYAkYW5wGMdfp8V38oJY9eQQ5h2QAHUWJBVQIqmgPx1oPV6Ff3mHsOaV4NF1qtTIUamxaPYQ5l2oRX1WP27/4/DReDVHv/rnDg5hyWfy8MuSYQjPDaJyVxDQZAMqFYolNSpPBj5aocZj+/qx9vlhQJ0FqNX4oEiP9lW3jLodd9/3GVS8/T5O+FBSllsENaqWAuIp2bjP34Or/jl8NF5NFlQAqrKHsejqYtyRcwRrnP0o6AGQpQUAlA8HUXVhHp6ZF4RvSw9OfVuOV418qFG1CFCdkYv/13MY9X8bPHrcNNmAJKEyOAz9ZwV8L7sHK57oQ1mnpCx3VhBYcmYO3lhUEHObxiotQzHodDr4/f6kzNPU1IR77rknWaER0Thp1CrcfcUK3PqIBypEL86/+4oVqfslq9YgO68E2Xklx54rBjBnCQBAB0B3/EUxZ6/Dl4ArgK7Xd+KfCfTALfvKt1Fw2mKcCODEONP9AQBujt52FwDcFqVBkjArOIw/DA9g6Jv9kKBCUK3B8EAv8oaGgFwtHuvvwuCFnQgODyGYJyA4PITiviPIFUpwfbAH/61+G9g36mbgmcs/jSUGDVYE1cCy49DYtQNHSrzo7huApNMDUhDzerqRV7kQ5+b2Y0Hl++g8SYRUOAfIKUThYD/KivKRdXwFGve/jYOmfUBWPlBUAQSHsLK3F/jUSfjCkZ0ISB/i464+BEsrAZUKC/r7kF81Hyt1Kgxsfxd7S/1Afhmk3GLkDQ5iYUEuYKjCwue8ODD6puCFVSdg9rwFqBgYQp5+NuYuzMdZO7bi0AWdQG4JVLkCsocGsESbBZy2HFd3bUPP6bvQK6mBkgUAgDm9R5C1ehlO0gaws2s7AoU9QOFcIEuL7OEh5C0QoFmmwzl73kHgtA5IOYVAvg6q4SEsgwScvBIXHN6O4Mm7EegbBkqOJutlA/14KWcpEJl7RvhwYTnmLxkA8ssAaRhL+gaAlafg1CM7IC3bhcDcQaB4PqBSoXRwCNknVmDOHBUW976PrpWHgTwByClAYTCIvJJcYFklzuh4E90rDgEaLZA/C4CE43p7oFp2IqqC7Ti8eBe68weAwnJAnYWi4WHkLC9H8aIcLB58H91LuwFtIZBThHd75iVwNICP+xdjaUUHeob7gYIyQJONgmEJ2ZUlyF9Qgqrg++g5LgDkFADaYmiCQ8jVqIBFy3BCjxfDC9vR0w+gcA4AQDMwAM3ixZhT0ovO2R+hZ3EvkFcKZGmhlYCcinxgfjmW7H8PvYtEIDsPyC0BpCByBweBBStR1bsTqnn70Fs4DBTNBVSAenAI6kUVKJqVDeD5hLZtNCmtuXK73aitrY2olSotLYXVaoXJFDky9VjnidZztXDhQtZcEaXJdC9yTXR4jKlec/X02+249dHRx1B78HoDLjlxah+Xx17fiW8mkPDe++lV+OxpiychovHhdkxt06bmSq/XR31eFMWYbWOdR6vVQqvVjj9IIkqqtasqULti7tQrzk9Q2nvgkuSilXNRUZI7apJ40cq5kx3amCV6yrm+ZtFkhzYm3I6ZQ53Khev1egiCELWOKlZh+njmIaKpRS7Ov+qU+TizqmzKJyIjrV1VgQdvMGBuSfhgqnNLcqfNVVBykgiMLGefXkkikDnbwu2YOVKaXAFAY2Mj3G638tjlcoWd2vP5fMq4VonOQ0SUamtXVeDflgvxp/Vn4L7PnoI/rT8D/7ZcOC0SK1kmJImyTNkWbsfMMGkjtMun9FpaWmC1WpU2h8MBq9UKr9eb8DzxcJwrIqJwU3IMtXHKlG3hdkw902oQ0cnG5IqIiIjGKpn5Q8pPCxIRERHNJEyuiIiIiJKIyRURERFREjG5IiIiIkoiJldEREREScTkioiIiCiJmFwRERERJRGTKyIiIqIkYnJFRERElERMroiIiIiSiMkVERERURIxuSIiIiJKIiZXREREREnE5IqIiIgoiZhcERERESURkysiIiKiJGJyRURERJRETK6IiIiIkojJFREREVESMbkiIiIiSiImV0RERERJxOSKiIiIKImYXBERERElEZMrIiIioiRickVERESUREyuiIiIiJKIyRURERFREjG5IiIiIkoiJldEREREScTkioiIiCiJmFwRERERJRGTKyIiIqIkYnJFRERElERMroiIiIiSiMkVERERURJlpXoFNpsNgiAAAERRhNlsHnUeURSxadMmOJ1ONDc3pzhCIiIiouRJaXJls9kAACaTCQDgdrvR0NAAu90ecx6Px4PW1laIogi/35/K8IiIiIiSTiVJkpSqhZeWlmLHjh1KzxUAqFQqJLJKl8uFpqYmtLW1jWmdXV1dKCkpQSAQQHFx8VhDJiIiohkomflDymqufD4fRFEMS6xkbrc7VaslIiIiSquUnRb0+XxRnxcEAaIoJm09/f396O/vVx4HAgEARzNQIiIiokTIeUMyTuilvKB9JJ1Ol9RaqqamJtxzzz0Rzy9cuDBp6yAiIqKZoaOjAyUlJRNaRsLJlcvlwsaNG0edrrGxEQaDIWZ7sovUGxsbcddddymPg8Eg/H4/ysrKoFKpkrquUF1dXVi4cCF2797N2q4pgMdj6uExmVp4PKYeHpOpJRAIYNGiRdDpdBNeVsLJVV1dHerq6hJesF6vj/q8KIox28ZDq9VCq9WGPRetzitViouL+aaYQng8ph4ek6mFx2Pq4TGZWtTqiZejp6ygXa/XQxCEqLVXRqMxVaslIiIiSquUjtDe2NgYdmWgy+VSxrwCjha9y2NhjcQxroiIiGg6SmlyZTabIYoiXC4XXC4XWlpawgYQdbvdEQOKygmX3W6Hx+OBxWKBy+VKZZjjotVqcffdd0eckqT04PGYenhMphYej6mHx2RqSebxSOkgokREREQzDW/cTERERJRETK6IiIiIkojJFREREVESTfoI7dOdzWZTxtESRRFmszm9AZFyxanX6wWAiIskKL1qa2vR3Nyc7jBmPIvFgqqqKgBH75QxlnELKfkcDody/12v14vGxsZJHaNxJhNFEZs2bYLT6Yz62ZSM73kmV2Mgf4nLw0m43W40NDTwyzyNLBYLrFar8rihoYFf5lOIy+XijdrTTBRFrFmzBps3b4YgCPB4PKiurk7K/dNofGw2G0wmU9gX+Pr16+F0OtMb2Azg8XjQ2toKURSjDvmUrO95Xi04BqWlpdixY0fYrwuVSsUPqTQRRRH19fVwOp3KMZG/OLxeb1LvBEBjJ/86bGho4HskjRoaGlBVVRX269vtdnMw5zSK9gOQPwonl8vlQlNTE9ra2sKeT9b3PGuuEuTz+ZQu3JH4yzx9Wltbw+4CICdUoiimKSKSbdq0Cddee226w5jxHA4H6urq4PP5lM8qJlbpJQgCamtrlc8pn8/HH4NTQDK/55lcJSjabXyAo28SfpGnhyAI6OzsDLtRuPwG4AdVerFnZGqQP7c8Ho9yX9eGhgb+IEyzDRs2wOfzobS0FBaLJeqA2jT5kvk9z+RqgnQ6HW/VM4U0NTXBbrezMDTNkn2Ddhof+ctCEAQYDAbo9XpYrVbU19enObKZTRAEWCwW1NXVwWazwel08kf6FDae73kmVxPExGrqsFgsWLduXdj9K2nyyaehaOqoqalR/i//CmfvVfpYLBbo9Xo4nU54vV74/X5UV1enOyyKYTzf80yuEhTrVzh/oU8NLpcromiXJp/H4wn7Iqf0ivXZJAhCzFMglFpyXY982lyv16OtrQ2CIEzJ++jOJMn8nudQDAnS6/XKB9LInczakvSSf4HLPVbyJbZMeief3++Hx+NRjok89pjNZoNer2eP1iTT6/XQ6/Xw+XxhtYmiKDIJThOfzxe1bKGhoWHyg6EwyfyeZ8/VGDQ2NoZ1pbtcLp6CSjOPxwOPxwODwQCfzwefzweHwwGdTpfu0GYko9EIs9ms/MlfGGazmYlVmlitVmzcuFF57HK5YDQaw5ItmjxGo1G5wCBUW1sb3yOTKNapvmR9z3OcqzGSf4EDQEtLS9gAljS5RFFEZWVl1EJQvqzTz+VyYePGjXC5XDCbzaitrWUvb5rIo4EDQEdHBz+30kwURTQ1NaGsrEypgQsdVJRSx+fzKZ9NHo8HZrMZq1evDktsk/E9z+SKiIiIKIl4WpCIiIgoiZhcERERESURkysiIiKiJGJyRURERJRETK6IiIiIkojJFREREVESMbkiIiIiSiImV0RERERJxOSKiIiIKImYXBERERElEZMrIiIioiRickVERESURP8fQk8oEGqQDE0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_fit = np.arange(min(x) - 1, max(x)+ 1, 0.01)\n", + "y_fit_correlated = fitf([o.value for o in fitpc.fit_parameters], x_fit)\n", + "y_fit = fitf([o.value for o in fitp_inv_block_diag_cov.fit_parameters], x_fit)\n", + "y_fit_weighted = fitf([o.value for o in fitp_inv_block_diag_cov_weighted.fit_parameters], x_fit)\n", + "\n", + "plt.figure()\n", + "plt.errorbar(x,data,yerr=[o.dvalue for o in data])\n", + "plt.plot(x_fit, y_fit_correlated, '--',label = '$\\chi^2/\\mathrm{d.o.f.}$=' + str(round(fitpc.chisquare/fitpc.dof,2)) +': fully correlated')\n", + "plt.plot(x_fit, y_fit, '--',label = '$\\chi^2/\\mathrm{d.o.f.}$=' + str(round(fitp_inv_block_diag_cov.chisquare/fitp_inv_block_diag_cov.dof,2)) +': block-diag. cov matrix')\n", + "plt.plot(x_fit, y_fit_weighted, '--',label = '$\\chi^2/\\mathrm{d.o.f.}$=' +str(round(fitp_inv_block_diag_cov_weighted.chisquare/fitp_inv_block_diag_cov_weighted.dof,2)) + \n", + " ': block-diag. cov matrix + reduced weight 2. point')\n", + "plt.xlim(-0.5,10.0)\n", + "plt.ylim(-0.1,0.6)\n", + "plt.legend(fontsize=11)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- the fully correlated fit vs. the fit with a block diagonal covariance matrix\n", + " - the fits do not differ significantly $\\rightarrow$ the block diagonal covariance matrix can be a good estimator \n", + " (if a large fraction of the off-diagonal elements are small)\\\n", + " $\\rightarrow$ sparser matrices can be more easily/cheaply inverted/saved \n", + "- the fit with a block diagonal covariance matrix vs. the fit with \" and a decreased weight for the third data point\n", + " - the $\\chi^2/\\mathrm{d.o.f.}$ improves - decreasing/increasing the weights can be used for points that are known to be less/more 'trustworthy'" + ] } ], "metadata": { @@ -456,7 +719,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/pyerrors/fits.py b/pyerrors/fits.py index b58f62b6..10b53fff 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -14,7 +14,7 @@ from autograd import hessian as auto_hessian from autograd import elementwise_grad as egrad from numdifftools import Jacobian as num_jacobian from numdifftools import Hessian as num_hessian -from .obs import Obs, derived_observable, covariance, cov_Obs +from .obs import Obs, derived_observable, covariance, cov_Obs, invert_corr_cov_cholesky class Fit_result(Sequence): @@ -151,6 +151,14 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`. In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix). This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning). + inv_chol_cov_matrix [array,list], optional + array: shape = (no of y values) X (no of y values) + list: for an uncombined fit: [""] + for a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order + If correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit. + The matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be + used to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct + ordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict. expected_chisquare : bool If True estimates the expected chisquare which is corrected by effects caused by correlated input data (default False). @@ -165,6 +173,57 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): ------- output : Fit_result Parameters and information on the fitted result. + Examples + ------ + >>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set + >>> import numpy as np + >>> from scipy.stats import norm + >>> from scipy.linalg import cholesky + >>> import pyerrors as pe + >>> # generating the random data set + >>> num_samples = 400 + >>> N = 3 + >>> x = np.arange(N) + >>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers + >>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers + >>> r = r1 = r2 = np.zeros((N, N)) + >>> y = {} + >>> for i in range(N): + >>> for j in range(N): + >>> r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix + >>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors + >>> for i in range(N): + >>> for j in range(N): + >>> r[i, j] *= errl[i] * errl[j] # element in covariance matrix + >>> c = cholesky(r, lower=True) + >>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined + >>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built + >>> x_dict = {} + >>> y_dict = {} + >>> chol_inv_dict = {} + >>> data = [] + >>> for key in y.keys(): + >>> x_dict[key] = x + >>> for i in range(N): + >>> data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data + >>> [o.gamma_method() for o in data] + >>> corr = pe.covariance(data, correlation=True) + >>> inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data])) + >>> chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below + >>> y_dict = {'a': data[:3], 'b': data[3:]} + >>> # common fit parameter p[0] in combined fit + >>> def fit1(p, x): + >>> return p[0] + p[1] * x + >>> def fit2(p, x): + >>> return p[0] + p[2] * x + >>> fitf_dict = {'a': fit1, 'b':fit2} + >>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']]) + Fit with 3 parameters + Method: Levenberg-Marquardt + `ftol` termination condition is satisfied. + chisquare/d.o.f.: 0.5388013574561786 # random + fit parameters [1.11897846 0.96361162 0.92325319] # random + ''' output = Fit_result() @@ -297,15 +356,19 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): return anp.sum(general_chisqfunc_uncorr(p, y_f, p_f) ** 2) if kwargs.get('correlated_fit') is True: - corr = covariance(y_all, correlation=True, **kwargs) - covdiag = np.diag(1 / np.asarray(dy_f)) - condn = np.linalg.cond(corr) - if condn > 0.1 / np.finfo(float).eps: - raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") - if condn > 1e13: - warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) - chol = np.linalg.cholesky(corr) - chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True) + if 'inv_chol_cov_matrix' in kwargs: + chol_inv = kwargs.get('inv_chol_cov_matrix') + if (chol_inv[0].shape[0] != len(dy_f)): + raise TypeError('The number of columns of the inverse covariance matrix handed over needs to be equal to the number of y errors.') + if (chol_inv[0].shape[0] != chol_inv[0].shape[1]): + raise TypeError('The inverse covariance matrix handed over needs to have the same number of rows as columns.') + if (chol_inv[1] != key_ls): + raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.') + chol_inv = chol_inv[0] + else: + corr = covariance(y_all, correlation=True, **kwargs) + inverrdiag = np.diag(1 / np.asarray(dy_f)) + chol_inv = invert_corr_cov_cholesky(corr, inverrdiag) def general_chisqfunc(p, ivars, pr): model = anp.concatenate([anp.array(funcd[key](p, xd[key])).reshape(-1) for key in key_ls]) @@ -350,7 +413,6 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): fit_result = scipy.optimize.least_squares(chisqfunc_residuals_uncorr, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15) if kwargs.get('correlated_fit') is True: - def chisqfunc_residuals(p): return general_chisqfunc(p, y_f, p_f) diff --git a/pyerrors/obs.py b/pyerrors/obs.py index 101f6b1f..a1c2fd55 100644 --- a/pyerrors/obs.py +++ b/pyerrors/obs.py @@ -1544,6 +1544,92 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): return cov +def invert_corr_cov_cholesky(corr, inverrdiag): + """Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr` + and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`. + + Parameters + ---------- + corr : np.ndarray + correlation matrix + inverrdiag : np.ndarray + diagonal matrix, the entries are the inverse errors of the data points considered + """ + + condn = np.linalg.cond(corr) + if condn > 0.1 / np.finfo(float).eps: + raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") + if condn > 1e13: + warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) + chol = np.linalg.cholesky(corr) + chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True) + + return chol_inv + + +def sort_corr(corr, kl, yd): + """ Reorders a correlation matrix to match the alphabetical order of its underlying y data. + + The ordering of the input correlation matrix `corr` is given by the list of keys `kl`. + The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data + that the correlation matrix is based on. + This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr` + according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds + to the y data `yd` when arranged in an alphabetical order by its keys. + + Parameters + ---------- + corr : np.ndarray + A square correlation matrix constructed using the order of the y data specified by `kl`. + The dimensions of `corr` should match the total number of y data points in `yd` combined. + kl : list of str + A list of keys that denotes the order in which the y data from `yd` was used to build the + input correlation matrix `corr`. + yd : dict of list + A dictionary where each key corresponds to a unique identifier, and its value is a list of + y data points. The total number of y data points across all keys must match the dimensions + of `corr`. The lists in the dictionary can be lists of Obs. + + Returns + ------- + np.ndarray + A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys. + + Example + ------- + >>> import numpy as np + >>> import pyerrors as pe + >>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]]) + >>> kl = ['b', 'a'] + >>> yd = {'a': [1, 2], 'b': [3]} + >>> sorted_corr = pe.obs.sort_corr(corr, kl, yd) + >>> print(sorted_corr) + array([[1. , 0.3, 0.4], + [0.3, 1. , 0.2], + [0.4, 0.2, 1. ]]) + + """ + kl_sorted = sorted(kl) + + posd = {} + ofs = 0 + for ki, k in enumerate(kl): + posd[k] = [i + ofs for i in range(len(yd[k]))] + ofs += len(posd[k]) + + mapping = [] + for k in kl_sorted: + for i in range(len(yd[k])): + mapping.append(posd[k][i]) + + corr_sorted = np.zeros_like(corr) + for i in range(corr.shape[0]): + for j in range(corr.shape[0]): + corr_sorted[i][j] = corr[mapping[i]][mapping[j]] + + return corr_sorted + + def _smooth_eigenvalues(corr, E): """Eigenvalue smoothing as described in hep-lat/9412087 diff --git a/tests/fits_test.py b/tests/fits_test.py index 3ed8f5fb..28bf3bfc 100644 --- a/tests/fits_test.py +++ b/tests/fits_test.py @@ -152,6 +152,124 @@ def test_alternative_solvers(): chisquare_values = np.array(chisquare_values) assert np.all(np.isclose(chisquare_values, chisquare_values[0])) +def test_inv_cov_matrix_input_least_squares(): + + + num_samples = 400 + N = 10 + + x = norm.rvs(size=(N, num_samples)) # generate random numbers + + r = np.zeros((N, N)) + for i in range(N): + for j in range(N): + r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix + + errl = np.sqrt([3.4, 2.5, 3.6, 2.8, 4.2, 4.7, 4.9, 5.1, 3.2, 4.2]) # set y errors + for i in range(N): + for j in range(N): + r[i, j] *= errl[i] * errl[j] # element in covariance matrix + + c = cholesky(r, lower=True) + y = np.dot(c, x) + x = np.arange(N) + x_dict = {} + y_dict = {} + for i,item in enumerate(x): + x_dict[str(item)] = [x[i]] + + for linear in [True, False]: + data = [] + for i in range(N): + if linear: + data.append(pe.Obs([[i + 1 + o for o in y[i]]], ['ens'])) + else: + data.append(pe.Obs([[np.exp(-(i + 1)) + np.exp(-(i + 1)) * o for o in y[i]]], ['ens'])) + + [o.gamma_method() for o in data] + + data_dict = {} + for i,item in enumerate(x): + data_dict[str(item)] = [data[i]] + + corr = pe.covariance(data, correlation=True) + chol = np.linalg.cholesky(corr) + covdiag = np.diag(1 / np.asarray([o.dvalue for o in data])) + chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True) + chol_inv_keys = [""] + chol_inv_keys_combined_fit = [str(item) for i,item in enumerate(x)] + + if linear: + def fitf(p, x): + return p[1] + p[0] * x + fitf_dict = {} + for i,item in enumerate(x): + fitf_dict[str(item)] = fitf + else: + def fitf(p, x): + return p[1] * anp.exp(-p[0] * x) + fitf_dict = {} + for i,item in enumerate(x): + fitf_dict[str(item)] = fitf + + fitpc = pe.least_squares(x, data, fitf, correlated_fit=True) + fitp_inv_cov = pe.least_squares(x, data, fitf, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys]) + fitp_inv_cov_combined_fit = pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys_combined_fit]) + for i in range(2): + diff_inv_cov = fitp_inv_cov[i] - fitpc[i] + diff_inv_cov.gamma_method() + assert(diff_inv_cov.is_zero(atol=0.0)) + diff_inv_cov_combined_fit = fitp_inv_cov_combined_fit[i] - fitpc[i] + diff_inv_cov_combined_fit.gamma_method() + assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12)) + +def test_least_squares_invalid_inv_cov_matrix_input(): + xvals = [] + yvals = [] + err = 0.1 + def func_valid(a,x): + return a[0] + a[1] * x + for x in range(1, 8, 2): + xvals.append(x) + yvals.append(pe.pseudo_Obs(x + np.random.normal(0.0, err), err, 'test1') + pe.pseudo_Obs(0, err / 100, 'test2', samples=87)) + + [o.gamma_method() for o in yvals] + + #dictionaries for a combined fit + xvals_dict = { } + yvals_dict = { } + for i,item in enumerate(np.arange(1, 8, 2)): + xvals_dict[str(item)] = [xvals[i]] + yvals_dict[str(item)] = [yvals[i]] + chol_inv_keys_combined_fit = ['1', '3', '5', '7'] + chol_inv_keys_combined_fit_invalid = ['2', '7', '100', '8'] + func_dict_valid = {"1": func_valid,"3": func_valid,"5": func_valid,"7": func_valid} + + corr_valid = pe.covariance(yvals, correlation = True) + chol = np.linalg.cholesky(corr_valid) + covdiag = np.diag(1 / np.asarray([o.dvalue for o in yvals])) + chol_inv_valid = scipy.linalg.solve_triangular(chol, covdiag, lower=True) + chol_inv_keys = [""] + pe.least_squares(xvals, yvals,func_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys]) + pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit]) + chol_inv_invalid_shape1 = np.zeros((len(yvals),len(yvals)-1)) + chol_inv_invalid_shape2 = np.zeros((len(yvals)+2,len(yvals))) + + # for an uncombined fit + with pytest.raises(TypeError): + pe.least_squares(xvals, yvals, func_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape1,chol_inv_keys]) + with pytest.raises(TypeError): + pe.least_squares(xvals, yvals, func_valid,correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape2,chol_inv_keys]) + with pytest.raises(ValueError): + pe.least_squares(xvals, yvals, func_valid,correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit_invalid]) + + #repeat for a combined fit + with pytest.raises(TypeError): + pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape1,chol_inv_keys_combined_fit]) + with pytest.raises(TypeError): + pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape2,chol_inv_keys_combined_fit]) + with pytest.raises(ValueError): + pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit_invalid]) def test_correlated_fit(): num_samples = 400 diff --git a/tests/obs_test.py b/tests/obs_test.py index c6ca1a23..91f20b2c 100644 --- a/tests/obs_test.py +++ b/tests/obs_test.py @@ -1063,6 +1063,27 @@ def test_covariance_reorder_non_overlapping_data(): assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14) +def test_sort_corr(): + xd = { + 'b': [1, 2, 3], + 'a': [2.2, 4.4], + 'c': [3.7, 5.1] + } + + yd = {k : pe.cov_Obs(xd[k], [.2 * o for o in xd[k]], k) for k in xd} + key_orig = list(yd.keys()) + y_all = np.concatenate([np.array(yd[key]) for key in key_orig]) + [o.gm() for o in y_all] + cov = pe.covariance(y_all) + + key_ls = key_sorted = sorted(key_orig) + y_sorted = np.concatenate([np.array(yd[key]) for key in key_sorted]) + [o.gm() for o in y_sorted] + cov_sorted = pe.covariance(y_sorted) + retcov = pe.obs.sort_corr(cov, key_orig, yd) + assert np.sum(retcov - cov_sorted) == 0 + + def test_empty_obs(): o = pe.Obs([np.random.rand(100)], ['test']) q = o + pe.Obs([], [], means=[]) From 4b1bb0872af63ac10b62485a58c17b97b7281926 Mon Sep 17 00:00:00 2001 From: s-kuberski Date: Sat, 14 Sep 2024 02:15:59 +0900 Subject: [PATCH 09/30] fix: corrected bug that prevented combined fits with multiple x-obs in some cases (#241) * fix: corrected bug that prevented combined fits with multiple x-obs in some cases * made test more complex * [Fix] Slightly increase tolerance for matrix function test. * Adapt test_merge_idx to compare lists --------- Co-authored-by: Simon Kuberski Co-authored-by: Fabian Joswig --- pyerrors/fits.py | 2 +- tests/fits_test.py | 14 ++++++++++++++ tests/linalg_test.py | 6 +++--- tests/obs_test.py | 6 +++--- 4 files changed, 21 insertions(+), 7 deletions(-) diff --git a/pyerrors/fits.py b/pyerrors/fits.py index 10b53fff..8ed540c5 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -256,7 +256,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): if sorted(list(funcd.keys())) != key_ls: raise ValueError('x and func dictionaries do not contain the same keys.') - x_all = np.concatenate([np.array(xd[key]) for key in key_ls]) + x_all = np.concatenate([np.array(xd[key]).transpose() for key in key_ls]).transpose() y_all = np.concatenate([np.array(yd[key]) for key in key_ls]) y_f = [o.value for o in y_all] diff --git a/tests/fits_test.py b/tests/fits_test.py index 28bf3bfc..2eeb6a49 100644 --- a/tests/fits_test.py +++ b/tests/fits_test.py @@ -1082,6 +1082,20 @@ def test_combined_resplot_qqplot(): fr = pe.least_squares(xd, yd, fd, resplot=True, qqplot=True) plt.close('all') +def test_combined_fit_xerr(): + fitd = { + 'a' : lambda p, x: p[0] * x[0] + p[1] * x[1], + 'b' : lambda p, x: p[0] * x[0] + p[2] * x[1], + 'c' : lambda p, x: p[0] * x[0] + p[3] * x[1], + } + yd = { + 'a': [pe.cov_Obs(3 + .1 * np.random.uniform(), .1**2, 'a' + str(i)) for i in range(5)], + 'b': [pe.cov_Obs(1 + .1 * np.random.uniform(), .1**2, 'b' + str(i)) for i in range(6)], + 'c': [pe.cov_Obs(3 + .1 * np.random.uniform(), .1**2, 'c' + str(i)) for i in range(3)], + } + xd = {k: np.transpose([[1 + .01 * np.random.uniform(), 2] for i in range(len(yd[k]))]) for k in fitd} + pe.fits.least_squares(xd, yd, fitd) + def test_x_multidim_fit(): x1 = np.arange(1, 10) diff --git a/tests/linalg_test.py b/tests/linalg_test.py index 329becb3..4fb952d3 100644 --- a/tests/linalg_test.py +++ b/tests/linalg_test.py @@ -276,10 +276,10 @@ def test_matrix_functions(): for (i, j), entry in np.ndenumerate(check_inv): entry.gamma_method() if(i == j): - assert math.isclose(entry.value, 1.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value) + assert math.isclose(entry.value, 1.0, abs_tol=2e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value) else: - assert math.isclose(entry.value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value) - assert math.isclose(entry.dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue) + assert math.isclose(entry.value, 0.0, abs_tol=2e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value) + assert math.isclose(entry.dvalue, 0.0, abs_tol=2e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue) # Check Cholesky decomposition sym = np.dot(matrix, matrix.T) diff --git a/tests/obs_test.py b/tests/obs_test.py index 91f20b2c..726ecffa 100644 --- a/tests/obs_test.py +++ b/tests/obs_test.py @@ -554,11 +554,11 @@ def test_merge_idx(): for j in range(5): idll = [range(1, int(round(np.random.uniform(300, 700))), int(round(np.random.uniform(1, 14)))) for i in range(10)] - assert pe.obs._merge_idx(idll) == sorted(set().union(*idll)) + assert list(pe.obs._merge_idx(idll)) == sorted(set().union(*idll)) for j in range(5): idll = [range(int(round(np.random.uniform(1, 28))), int(round(np.random.uniform(300, 700))), int(round(np.random.uniform(1, 14)))) for i in range(10)] - assert pe.obs._merge_idx(idll) == sorted(set().union(*idll)) + assert list(pe.obs._merge_idx(idll)) == sorted(set().union(*idll)) idl = [list(np.arange(1, 14)) + list(range(16, 100, 4)), range(4, 604, 4), [2, 4, 5, 6, 8, 9, 12, 24], range(1, 20, 1), range(50, 789, 7)] new_idx = pe.obs._merge_idx(idl) @@ -1457,4 +1457,4 @@ def test_missing_replica(): for op in [[O1O2, O1O2b], [O1O2O3, O1O2O3b]]: assert np.isclose(op[1].value, op[0].value) - assert np.isclose(op[1].dvalue, op[0].dvalue, atol=0, rtol=5e-2) \ No newline at end of file + assert np.isclose(op[1].dvalue, op[0].dvalue, atol=0, rtol=5e-2) From b43a2cbd347209f6cf43c74ca359ccbde7b3ff25 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Mon, 14 Oct 2024 23:27:24 +0200 Subject: [PATCH 10/30] [ci] Add python 3.13 to pytest workflow. (#242) * [ci] Add python 3.13 to pytest workflow. * [ci] Remove py and pyarrow from pytest workflow --- .github/workflows/pytest.yml | 4 +--- setup.py | 1 + 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index 52ce74c7..36981809 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -17,7 +17,7 @@ jobs: fail-fast: false matrix: os: [ubuntu-latest] - python-version: ["3.9", "3.10", "3.11", "3.12"] + python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] include: - os: macos-latest python-version: "3.10" @@ -40,8 +40,6 @@ jobs: pip install pytest-cov pip install pytest-benchmark pip install hypothesis - pip install py - pip install pyarrow pip freeze - name: Run tests diff --git a/setup.py b/setup.py index af6a01b7..76efe7e2 100644 --- a/setup.py +++ b/setup.py @@ -36,6 +36,7 @@ setup(name='pyerrors', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3.12', + 'Programming Language :: Python :: 3.13', 'Topic :: Scientific/Engineering :: Physics' ], ) From 47fd72b814c6e93b03d006d2109f4915ed3e1c4f Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Sun, 3 Nov 2024 16:57:20 +0100 Subject: [PATCH 11/30] [Build] Release workflow added. (#244) --- .github/workflows/release.yml | 58 +++++++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) create mode 100644 .github/workflows/release.yml diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml new file mode 100644 index 00000000..2548255f --- /dev/null +++ b/.github/workflows/release.yml @@ -0,0 +1,58 @@ +name: Release + +on: + workflow_dispatch: + release: + types: [published] + +jobs: + build: + name: Build sdist and wheel + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + name: Checkout repository + + - uses: actions/setup-python@v5 + with: + python-version: "3.12" + + - name: Install pypa/build + run: >- + python3 -m + pip install + build + --user + + - name: Build wheel and source tarball + run: python3 -m build + + - name: Upload artifacts + uses: actions/upload-artifact@v4 + with: + name: python-package-distributions + path: dist/ + if-no-files-found: error + + publish: + needs: [build] + name: Upload to PyPI + runs-on: ubuntu-latest + environment: + name: pypi + url: https://pypi.org/p/pyerrors + permissions: + id-token: write + + steps: + - name: Download artifacts + uses: actions/download-artifact@v4 + with: + name: python-package-distributions + path: dist/ + + - name: Sanity check + run: ls -la dist/ + + - name: Publish to PyPI + uses: pypa/gh-action-pypi-publish@release/v1 From c057ecffdae82594e0bd6fa75ecca372858a7f93 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Sun, 3 Nov 2024 17:03:06 +0100 Subject: [PATCH 12/30] [Release] Updated changelog and bumped version --- CHANGELOG.md | 8 ++++++++ pyerrors/version.py | 2 +- 2 files changed, 9 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index b59bb577..d019608c 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,14 @@ All notable changes to this project will be documented in this file. +## [2.13.0] - 2024-11-03 + +### Added +- Allow providing lower triangular matrix constructed from a Cholesky decomposition in least squares function for correlated fits. + +### Fixed +- Corrected bug that prevented combined fits with multiple x-obs in some cases. + ## [2.12.0] - 2024-08-22 ### Changed diff --git a/pyerrors/version.py b/pyerrors/version.py index 9b9dc340..930e2cd6 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.13.0-dev" +__version__ = "2.13.0" From 0ce765a99d0bcd5f7ae04c4d97a792bf83bc92d9 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Sun, 3 Nov 2024 17:07:29 +0100 Subject: [PATCH 13/30] [Version] Bumped version to 2.14.0-dev --- pyerrors/version.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyerrors/version.py b/pyerrors/version.py index 930e2cd6..941c31df 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.13.0" +__version__ = "2.14.0-dev" From 30bfb55981f97b7c5e78c01b728b5f2277a74a25 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Tue, 26 Nov 2024 17:52:27 +0100 Subject: [PATCH 14/30] [Feat] Provide derivatives for pow (#246) * [Feat] Provide manual derivatives for __pow__ * [Feat] Also applied changes to rpow * [Test] Another pow test added. --- pyerrors/obs.py | 9 +++------ tests/obs_test.py | 12 ++++++++++++ 2 files changed, 15 insertions(+), 6 deletions(-) diff --git a/pyerrors/obs.py b/pyerrors/obs.py index a1c2fd55..0caecfdc 100644 --- a/pyerrors/obs.py +++ b/pyerrors/obs.py @@ -856,15 +856,12 @@ class Obs: def __pow__(self, y): if isinstance(y, Obs): - return derived_observable(lambda x: x[0] ** x[1], [self, y]) + return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)]) else: - return derived_observable(lambda x: x[0] ** y, [self]) + return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)]) def __rpow__(self, y): - if isinstance(y, Obs): - return derived_observable(lambda x: x[0] ** x[1], [y, self]) - else: - return derived_observable(lambda x: y ** x[0], [self]) + return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)]) def __abs__(self): return derived_observable(lambda x: anp.abs(x[0]), [self]) diff --git a/tests/obs_test.py b/tests/obs_test.py index 726ecffa..8b82213f 100644 --- a/tests/obs_test.py +++ b/tests/obs_test.py @@ -461,6 +461,18 @@ def test_cobs_overloading(): obs / cobs +def test_pow(): + data = [1, 2.341, pe.pseudo_Obs(4.8, 0.48, "test_obs"), pe.cov_Obs(1.1, 0.3 ** 2, "test_cov_obs")] + + for d in data: + assert d * d == d ** 2 + assert d * d * d == d ** 3 + + for d2 in data: + assert np.log(d ** d2) == d2 * np.log(d) + assert (d ** d2) ** (1 / d2) == d + + def test_reweighting(): my_obs = pe.Obs([np.random.rand(1000)], ['t']) assert not my_obs.reweighted From b1448a2703c69c169e864945a5015337ec572a5b Mon Sep 17 00:00:00 2001 From: Justus Kuhlmann <82444481+jkuhl-uni@users.noreply.github.com> Date: Thu, 5 Dec 2024 22:08:48 +0100 Subject: [PATCH 15/30] Fix plateaus in correlator (#247) --- pyerrors/correlators.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyerrors/correlators.py b/pyerrors/correlators.py index de1addfd..21a11533 100644 --- a/pyerrors/correlators.py +++ b/pyerrors/correlators.py @@ -862,7 +862,7 @@ class Corr: raise Exception("prange must be a list or array with two values") if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): raise Exception("Start and end point must be integers") - if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): + if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] <= prange[1]): raise Exception("Start and end point must define a range in the interval 0,T") self.prange = prange From d9085081202076e08b12359bb0480f27b3b3b1cc Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Wed, 18 Dec 2024 13:00:06 +0100 Subject: [PATCH 16/30] [docs] Simplify README --- README.md | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/README.md b/README.md index aa669ad5..7937da4d 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -[![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cpc.2023.108750-blue)](https://doi.org/10.1016/j.cpc.2023.108750) +[![](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cpc.2023.108750-blue)](https://doi.org/10.1016/j.cpc.2023.108750) # pyerrors `pyerrors` is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations. @@ -14,11 +14,6 @@ Install the most recent release using pip and [pypi](https://pypi.org/project/py python -m pip install pyerrors # Fresh install python -m pip install -U pyerrors # Update ``` -Install the most recent release using conda and [conda-forge](https://anaconda.org/conda-forge/pyerrors): -```bash -conda install -c conda-forge pyerrors # Fresh install -conda update -c conda-forge pyerrors # Update -``` ## Contributing We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our [contribution guideline](https://github.com/fjosw/pyerrors/blob/develop/CONTRIBUTING.md). From 3eac9214b40dc891e1053cc107d23cc8de00eb84 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Tue, 24 Dec 2024 15:35:59 +0100 Subject: [PATCH 17/30] [Fix] Ruff rules and more precise Excpetion types (#248) * [Fix] Fix test for membership should be 'not in' (E713) * [Fix] Fix module imported but unused (F401) * [Fix] More precise Exception types in dirac, obs and correlator --- pyerrors/__init__.py | 16 ++--- pyerrors/correlators.py | 142 ++++++++++++++++++------------------- pyerrors/dirac.py | 6 +- pyerrors/input/__init__.py | 16 ++--- pyerrors/input/dobs.py | 4 +- pyerrors/input/hadrons.py | 4 +- pyerrors/input/openQCD.py | 2 +- pyerrors/obs.py | 46 ++++++------ tests/correlators_test.py | 16 ++--- tests/dirac_test.py | 6 +- tests/obs_test.py | 28 ++++---- 11 files changed, 143 insertions(+), 143 deletions(-) diff --git a/pyerrors/__init__.py b/pyerrors/__init__.py index 2bfd688f..ca05aff4 100644 --- a/pyerrors/__init__.py +++ b/pyerrors/__init__.py @@ -481,12 +481,12 @@ from .obs import * from .correlators import * from .fits import * from .misc import * -from . import dirac -from . import input -from . import linalg -from . import mpm -from . import roots -from . import integrate -from . import special +from . import dirac as dirac +from . import input as input +from . import linalg as linalg +from . import mpm as mpm +from . import roots as roots +from . import integrate as integrate +from . import special as special -from .version import __version__ +from .version import __version__ as __version__ diff --git a/pyerrors/correlators.py b/pyerrors/correlators.py index 21a11533..0375155f 100644 --- a/pyerrors/correlators.py +++ b/pyerrors/correlators.py @@ -101,7 +101,7 @@ class Corr: self.N = 1 elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]): self.content = data_input - noNull = [a for a in self.content if not (a is None)] # To check if the matrices are correct for all undefined elements + noNull = [a for a in self.content if a is not None] # To check if the matrices are correct for all undefined elements self.N = noNull[0].shape[0] if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]: raise ValueError("Smearing matrices are not NxN.") @@ -141,7 +141,7 @@ class Corr: def gamma_method(self, **kwargs): """Apply the gamma method to the content of the Corr.""" for item in self.content: - if not (item is None): + if item is not None: if self.N == 1: item[0].gamma_method(**kwargs) else: @@ -159,7 +159,7 @@ class Corr: By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to """ if self.N == 1: - raise Exception("Trying to project a Corr, that already has N=1.") + raise ValueError("Trying to project a Corr, that already has N=1.") if vector_l is None: vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.]) @@ -167,16 +167,16 @@ class Corr: vector_r = vector_l if isinstance(vector_l, list) and not isinstance(vector_r, list): if len(vector_l) != self.T: - raise Exception("Length of vector list must be equal to T") + raise ValueError("Length of vector list must be equal to T") vector_r = [vector_r] * self.T if isinstance(vector_r, list) and not isinstance(vector_l, list): if len(vector_r) != self.T: - raise Exception("Length of vector list must be equal to T") + raise ValueError("Length of vector list must be equal to T") vector_l = [vector_l] * self.T if not isinstance(vector_l, list): if not vector_l.shape == vector_r.shape == (self.N,): - raise Exception("Vectors are of wrong shape!") + raise ValueError("Vectors are of wrong shape!") if normalize: vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r) newcontent = [None if _check_for_none(self, item) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content] @@ -201,7 +201,7 @@ class Corr: Second index to be picked. """ if self.N == 1: - raise Exception("Trying to pick item from projected Corr") + raise ValueError("Trying to pick item from projected Corr") newcontent = [None if (item is None) else item[i, j] for item in self.content] return Corr(newcontent) @@ -212,8 +212,8 @@ class Corr: timeslice and the error on each timeslice. """ if self.N != 1: - raise Exception("Can only make Corr[N=1] plottable") - x_list = [x for x in range(self.T) if not self.content[x] is None] + raise ValueError("Can only make Corr[N=1] plottable") + x_list = [x for x in range(self.T) if self.content[x] is not None] y_list = [y[0].value for y in self.content if y is not None] y_err_list = [y[0].dvalue for y in self.content if y is not None] @@ -222,9 +222,9 @@ class Corr: def symmetric(self): """ Symmetrize the correlator around x0=0.""" if self.N != 1: - raise Exception('symmetric cannot be safely applied to multi-dimensional correlators.') + raise ValueError('symmetric cannot be safely applied to multi-dimensional correlators.') if self.T % 2 != 0: - raise Exception("Can not symmetrize odd T") + raise ValueError("Can not symmetrize odd T") if self.content[0] is not None: if np.argmax(np.abs([o[0].value if o is not None else 0 for o in self.content])) != 0: @@ -237,7 +237,7 @@ class Corr: else: newcontent.append(0.5 * (self.content[t] + self.content[self.T - t])) if (all([x is None for x in newcontent])): - raise Exception("Corr could not be symmetrized: No redundant values") + raise ValueError("Corr could not be symmetrized: No redundant values") return Corr(newcontent, prange=self.prange) def anti_symmetric(self): @@ -245,7 +245,7 @@ class Corr: if self.N != 1: raise TypeError('anti_symmetric cannot be safely applied to multi-dimensional correlators.') if self.T % 2 != 0: - raise Exception("Can not symmetrize odd T") + raise ValueError("Can not symmetrize odd T") test = 1 * self test.gamma_method() @@ -259,7 +259,7 @@ class Corr: else: newcontent.append(0.5 * (self.content[t] - self.content[self.T - t])) if (all([x is None for x in newcontent])): - raise Exception("Corr could not be symmetrized: No redundant values") + raise ValueError("Corr could not be symmetrized: No redundant values") return Corr(newcontent, prange=self.prange) def is_matrix_symmetric(self): @@ -292,7 +292,7 @@ class Corr: def matrix_symmetric(self): """Symmetrizes the correlator matrices on every timeslice.""" if self.N == 1: - raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.") + raise ValueError("Trying to symmetrize a correlator matrix, that already has N=1.") if self.is_matrix_symmetric(): return 1.0 * self else: @@ -336,10 +336,10 @@ class Corr: ''' if self.N == 1: - raise Exception("GEVP methods only works on correlator matrices and not single correlators.") + raise ValueError("GEVP methods only works on correlator matrices and not single correlators.") if ts is not None: if (ts <= t0): - raise Exception("ts has to be larger than t0.") + raise ValueError("ts has to be larger than t0.") if "sorted_list" in kwargs: warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning) @@ -371,9 +371,9 @@ class Corr: if sort is None: if (ts is None): - raise Exception("ts is required if sort=None.") + raise ValueError("ts is required if sort=None.") if (self.content[t0] is None) or (self.content[ts] is None): - raise Exception("Corr not defined at t0/ts.") + raise ValueError("Corr not defined at t0/ts.") Gt = _get_mat_at_t(ts) reordered_vecs = _GEVP_solver(Gt, G0, method=method, chol_inv=chol_inv) if kwargs.get('auto_gamma', False) and vector_obs: @@ -391,14 +391,14 @@ class Corr: all_vecs.append(None) if sort == "Eigenvector": if ts is None: - raise Exception("ts is required for the Eigenvector sorting method.") + raise ValueError("ts is required for the Eigenvector sorting method.") all_vecs = _sort_vectors(all_vecs, ts) reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)] if kwargs.get('auto_gamma', False) and vector_obs: [[[o.gm() for o in evn] for evn in ev if evn is not None] for ev in reordered_vecs] else: - raise Exception("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.") + raise ValueError("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.") if "state" in kwargs: return reordered_vecs[kwargs.get("state")] @@ -435,7 +435,7 @@ class Corr: """ if self.N != 1: - raise Exception("Multi-operator Prony not implemented!") + raise NotImplementedError("Multi-operator Prony not implemented!") array = np.empty([N, N], dtype="object") new_content = [] @@ -502,7 +502,7 @@ class Corr: correlator or a Corr of same length. """ if self.N != 1: - raise Exception("Only one-dimensional correlators can be safely correlated.") + raise ValueError("Only one-dimensional correlators can be safely correlated.") new_content = [] for x0, t_slice in enumerate(self.content): if _check_for_none(self, t_slice): @@ -516,7 +516,7 @@ class Corr: elif isinstance(partner, Obs): # Should this include CObs? new_content.append(np.array([correlate(o, partner) for o in t_slice])) else: - raise Exception("Can only correlate with an Obs or a Corr.") + raise TypeError("Can only correlate with an Obs or a Corr.") return Corr(new_content) @@ -583,7 +583,7 @@ class Corr: Available choice: symmetric, forward, backward, improved, log, default: symmetric """ if self.N != 1: - raise Exception("deriv only implemented for one-dimensional correlators.") + raise ValueError("deriv only implemented for one-dimensional correlators.") if variant == "symmetric": newcontent = [] for t in range(1, self.T - 1): @@ -592,7 +592,7 @@ class Corr: else: newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) if (all([x is None for x in newcontent])): - raise Exception('Derivative is undefined at all timeslices') + raise ValueError('Derivative is undefined at all timeslices') return Corr(newcontent, padding=[1, 1]) elif variant == "forward": newcontent = [] @@ -602,7 +602,7 @@ class Corr: else: newcontent.append(self.content[t + 1] - self.content[t]) if (all([x is None for x in newcontent])): - raise Exception("Derivative is undefined at all timeslices") + raise ValueError("Derivative is undefined at all timeslices") return Corr(newcontent, padding=[0, 1]) elif variant == "backward": newcontent = [] @@ -612,7 +612,7 @@ class Corr: else: newcontent.append(self.content[t] - self.content[t - 1]) if (all([x is None for x in newcontent])): - raise Exception("Derivative is undefined at all timeslices") + raise ValueError("Derivative is undefined at all timeslices") return Corr(newcontent, padding=[1, 0]) elif variant == "improved": newcontent = [] @@ -622,7 +622,7 @@ class Corr: else: newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) if (all([x is None for x in newcontent])): - raise Exception('Derivative is undefined at all timeslices') + raise ValueError('Derivative is undefined at all timeslices') return Corr(newcontent, padding=[2, 2]) elif variant == 'log': newcontent = [] @@ -632,11 +632,11 @@ class Corr: else: newcontent.append(np.log(self.content[t])) if (all([x is None for x in newcontent])): - raise Exception("Log is undefined at all timeslices") + raise ValueError("Log is undefined at all timeslices") logcorr = Corr(newcontent) return self * logcorr.deriv('symmetric') else: - raise Exception("Unknown variant.") + raise ValueError("Unknown variant.") def second_deriv(self, variant="symmetric"): r"""Return the second derivative of the correlator with respect to x0. @@ -656,7 +656,7 @@ class Corr: $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$ """ if self.N != 1: - raise Exception("second_deriv only implemented for one-dimensional correlators.") + raise ValueError("second_deriv only implemented for one-dimensional correlators.") if variant == "symmetric": newcontent = [] for t in range(1, self.T - 1): @@ -665,7 +665,7 @@ class Corr: else: newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) if (all([x is None for x in newcontent])): - raise Exception("Derivative is undefined at all timeslices") + raise ValueError("Derivative is undefined at all timeslices") return Corr(newcontent, padding=[1, 1]) elif variant == "big_symmetric": newcontent = [] @@ -675,7 +675,7 @@ class Corr: else: newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4) if (all([x is None for x in newcontent])): - raise Exception("Derivative is undefined at all timeslices") + raise ValueError("Derivative is undefined at all timeslices") return Corr(newcontent, padding=[2, 2]) elif variant == "improved": newcontent = [] @@ -685,7 +685,7 @@ class Corr: else: newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) if (all([x is None for x in newcontent])): - raise Exception("Derivative is undefined at all timeslices") + raise ValueError("Derivative is undefined at all timeslices") return Corr(newcontent, padding=[2, 2]) elif variant == 'log': newcontent = [] @@ -695,11 +695,11 @@ class Corr: else: newcontent.append(np.log(self.content[t])) if (all([x is None for x in newcontent])): - raise Exception("Log is undefined at all timeslices") + raise ValueError("Log is undefined at all timeslices") logcorr = Corr(newcontent) return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) else: - raise Exception("Unknown variant.") + raise ValueError("Unknown variant.") def m_eff(self, variant='log', guess=1.0): """Returns the effective mass of the correlator as correlator object @@ -728,7 +728,7 @@ class Corr: else: newcontent.append(self.content[t] / self.content[t + 1]) if (all([x is None for x in newcontent])): - raise Exception('m_eff is undefined at all timeslices') + raise ValueError('m_eff is undefined at all timeslices') return np.log(Corr(newcontent, padding=[0, 1])) @@ -742,7 +742,7 @@ class Corr: else: newcontent.append(self.content[t - 1] / self.content[t + 1]) if (all([x is None for x in newcontent])): - raise Exception('m_eff is undefined at all timeslices') + raise ValueError('m_eff is undefined at all timeslices') return np.log(Corr(newcontent, padding=[1, 1])) / 2 @@ -767,7 +767,7 @@ class Corr: else: newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) if (all([x is None for x in newcontent])): - raise Exception('m_eff is undefined at all timeslices') + raise ValueError('m_eff is undefined at all timeslices') return Corr(newcontent, padding=[0, 1]) @@ -779,11 +779,11 @@ class Corr: else: newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) if (all([x is None for x in newcontent])): - raise Exception("m_eff is undefined at all timeslices") + raise ValueError("m_eff is undefined at all timeslices") return np.arccosh(Corr(newcontent, padding=[1, 1])) else: - raise Exception('Unknown variant.') + raise ValueError('Unknown variant.') def fit(self, function, fitrange=None, silent=False, **kwargs): r'''Fits function to the data @@ -801,7 +801,7 @@ class Corr: Decides whether output is printed to the standard output. ''' if self.N != 1: - raise Exception("Correlator must be projected before fitting") + raise ValueError("Correlator must be projected before fitting") if fitrange is None: if self.prange: @@ -810,12 +810,12 @@ class Corr: fitrange = [0, self.T - 1] else: if not isinstance(fitrange, list): - raise Exception("fitrange has to be a list with two elements") + raise TypeError("fitrange has to be a list with two elements") if len(fitrange) != 2: - raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") + raise ValueError("fitrange has to have exactly two elements [fit_start, fit_stop]") - xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) - ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) + xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None]) + ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None]) result = least_squares(xs, ys, function, silent=silent, **kwargs) return result @@ -840,9 +840,9 @@ class Corr: else: raise Exception("no plateau range provided") if self.N != 1: - raise Exception("Correlator must be projected before getting a plateau.") + raise ValueError("Correlator must be projected before getting a plateau.") if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): - raise Exception("plateau is undefined at all timeslices in plateaurange.") + raise ValueError("plateau is undefined at all timeslices in plateaurange.") if auto_gamma: self.gamma_method() if method == "fit": @@ -854,16 +854,16 @@ class Corr: return returnvalue else: - raise Exception("Unsupported plateau method: " + method) + raise ValueError("Unsupported plateau method: " + method) def set_prange(self, prange): """Sets the attribute prange of the Corr object.""" if not len(prange) == 2: - raise Exception("prange must be a list or array with two values") + raise ValueError("prange must be a list or array with two values") if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): - raise Exception("Start and end point must be integers") + raise TypeError("Start and end point must be integers") if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] <= prange[1]): - raise Exception("Start and end point must define a range in the interval 0,T") + raise ValueError("Start and end point must define a range in the interval 0,T") self.prange = prange return @@ -900,7 +900,7 @@ class Corr: Optional title of the figure. """ if self.N != 1: - raise Exception("Correlator must be projected before plotting") + raise ValueError("Correlator must be projected before plotting") if auto_gamma: self.gamma_method() @@ -941,7 +941,7 @@ class Corr: hide_from = None ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) else: - raise Exception("'comp' must be a correlator or a list of correlators.") + raise TypeError("'comp' must be a correlator or a list of correlators.") if plateau: if isinstance(plateau, Obs): @@ -950,14 +950,14 @@ class Corr: ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') else: - raise Exception("'plateau' must be an Obs") + raise TypeError("'plateau' must be an Obs") if references: if isinstance(references, list): for ref in references: ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') else: - raise Exception("'references' must be a list of floating pint values.") + raise TypeError("'references' must be a list of floating pint values.") if self.prange: ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) @@ -991,7 +991,7 @@ class Corr: if isinstance(save, str): fig.savefig(save, bbox_inches='tight') else: - raise Exception("'save' has to be a string.") + raise TypeError("'save' has to be a string.") def spaghetti_plot(self, logscale=True): """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. @@ -1002,7 +1002,7 @@ class Corr: Determines whether the scale of the y-axis is logarithmic or standard. """ if self.N != 1: - raise Exception("Correlator needs to be projected first.") + raise ValueError("Correlator needs to be projected first.") mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] @@ -1044,7 +1044,7 @@ class Corr: elif datatype == "pickle": dump_object(self, filename, **kwargs) else: - raise Exception("Unknown datatype " + str(datatype)) + raise ValueError("Unknown datatype " + str(datatype)) def print(self, print_range=None): print(self.__repr__(print_range)) @@ -1094,7 +1094,7 @@ class Corr: def __add__(self, y): if isinstance(y, Corr): if ((self.N != y.N) or (self.T != y.T)): - raise Exception("Addition of Corrs with different shape") + raise ValueError("Addition of Corrs with different shape") newcontent = [] for t in range(self.T): if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): @@ -1122,7 +1122,7 @@ class Corr: def __mul__(self, y): if isinstance(y, Corr): if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): - raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") + raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T") newcontent = [] for t in range(self.T): if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): @@ -1193,7 +1193,7 @@ class Corr: def __truediv__(self, y): if isinstance(y, Corr): if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): - raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") + raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T") newcontent = [] for t in range(self.T): if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): @@ -1207,16 +1207,16 @@ class Corr: newcontent[t] = None if all([item is None for item in newcontent]): - raise Exception("Division returns completely undefined correlator") + raise ValueError("Division returns completely undefined correlator") return Corr(newcontent) elif isinstance(y, (Obs, CObs)): if isinstance(y, Obs): if y.value == 0: - raise Exception('Division by zero will return undefined correlator') + raise ValueError('Division by zero will return undefined correlator') if isinstance(y, CObs): if y.is_zero(): - raise Exception('Division by zero will return undefined correlator') + raise ValueError('Division by zero will return undefined correlator') newcontent = [] for t in range(self.T): @@ -1228,7 +1228,7 @@ class Corr: elif isinstance(y, (int, float)): if y == 0: - raise Exception('Division by zero will return undefined correlator') + raise ValueError('Division by zero will return undefined correlator') newcontent = [] for t in range(self.T): if _check_for_none(self, self.content[t]): @@ -1284,7 +1284,7 @@ class Corr: if np.isnan(tmp_sum.value): newcontent[t] = None if all([item is None for item in newcontent]): - raise Exception('Operation returns undefined correlator') + raise ValueError('Operation returns undefined correlator') return Corr(newcontent) def sin(self): @@ -1392,13 +1392,13 @@ class Corr: ''' if self.N == 1: - raise Exception('Method cannot be applied to one-dimensional correlators.') + raise ValueError('Method cannot be applied to one-dimensional correlators.') if basematrix is None: basematrix = self if Ntrunc >= basematrix.N: - raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) + raise ValueError('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) if basematrix.N != self.N: - raise Exception('basematrix and targetmatrix have to be of the same size.') + raise ValueError('basematrix and targetmatrix have to be of the same size.') evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] diff --git a/pyerrors/dirac.py b/pyerrors/dirac.py index 48d1b547..016e4722 100644 --- a/pyerrors/dirac.py +++ b/pyerrors/dirac.py @@ -34,7 +34,7 @@ def epsilon_tensor(i, j, k): """ test_set = set((i, j, k)) if not (test_set <= set((1, 2, 3)) or test_set <= set((0, 1, 2))): - raise Exception("Unexpected input", i, j, k) + raise ValueError("Unexpected input", i, j, k) return (i - j) * (j - k) * (k - i) / 2 @@ -52,7 +52,7 @@ def epsilon_tensor_rank4(i, j, k, o): """ test_set = set((i, j, k, o)) if not (test_set <= set((1, 2, 3, 4)) or test_set <= set((0, 1, 2, 3))): - raise Exception("Unexpected input", i, j, k, o) + raise ValueError("Unexpected input", i, j, k, o) return (i - j) * (j - k) * (k - i) * (i - o) * (j - o) * (o - k) / 12 @@ -92,5 +92,5 @@ def Grid_gamma(gamma_tag): elif gamma_tag == 'SigmaZT': g = 0.5 * (gamma[2] @ gamma[3] - gamma[3] @ gamma[2]) else: - raise Exception('Unkown gamma structure', gamma_tag) + raise ValueError('Unkown gamma structure', gamma_tag) return g diff --git a/pyerrors/input/__init__.py b/pyerrors/input/__init__.py index 6910bd2a..257c5bd8 100644 --- a/pyerrors/input/__init__.py +++ b/pyerrors/input/__init__.py @@ -5,11 +5,11 @@ r''' For comparison with other analysis workflows `pyerrors` can also generate jackknife samples from an `Obs` object or import jackknife samples into an `Obs` object. See `pyerrors.obs.Obs.export_jackknife` and `pyerrors.obs.import_jackknife` for details. ''' -from . import bdio -from . import dobs -from . import hadrons -from . import json -from . import misc -from . import openQCD -from . import pandas -from . import sfcf +from . import bdio as bdio +from . import dobs as dobs +from . import hadrons as hadrons +from . import json as json +from . import misc as misc +from . import openQCD as openQCD +from . import pandas as pandas +from . import sfcf as sfcf diff --git a/pyerrors/input/dobs.py b/pyerrors/input/dobs.py index b8b005ff..aea9b7a9 100644 --- a/pyerrors/input/dobs.py +++ b/pyerrors/input/dobs.py @@ -79,7 +79,7 @@ def _dict_to_xmlstring_spaces(d, space=' '): o += space o += li + '\n' if li.startswith('<') and not cm: - if not '<%s' % ('/') in li: + if '<%s' % ('/') not in li: c += 1 cm = False return o @@ -671,7 +671,7 @@ def _dobsdict_to_xmlstring_spaces(d, space=' '): o += space o += li + '\n' if li.startswith('<') and not cm: - if not '<%s' % ('/') in li: + if '<%s' % ('/') not in li: c += 1 cm = False return o diff --git a/pyerrors/input/hadrons.py b/pyerrors/input/hadrons.py index 4390e3f0..525f564a 100644 --- a/pyerrors/input/hadrons.py +++ b/pyerrors/input/hadrons.py @@ -113,7 +113,7 @@ def read_hd5(filestem, ens_id, group, attrs=None, idl=None, part="real"): infos = [] for hd5_file in files: h5file = h5py.File(path + '/' + hd5_file, "r") - if not group + '/' + entry in h5file: + if group + '/' + entry not in h5file: raise Exception("Entry '" + entry + "' not contained in the files.") raw_data = h5file[group + '/' + entry + '/corr'] real_data = raw_data[:].view("complex") @@ -186,7 +186,7 @@ def _extract_real_arrays(path, files, tree, keys): for hd5_file in files: h5file = h5py.File(path + '/' + hd5_file, "r") for key in keys: - if not tree + '/' + key in h5file: + if tree + '/' + key not in h5file: raise Exception("Entry '" + key + "' not contained in the files.") raw_data = h5file[tree + '/' + key + '/data'] real_data = raw_data[:].astype(np.double) diff --git a/pyerrors/input/openQCD.py b/pyerrors/input/openQCD.py index 158bcaca..278977d2 100644 --- a/pyerrors/input/openQCD.py +++ b/pyerrors/input/openQCD.py @@ -47,7 +47,7 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs): Reweighting factors read """ known_oqcd_versions = ['1.4', '1.6', '2.0'] - if not (version in known_oqcd_versions): + if version not in known_oqcd_versions: raise Exception('Unknown openQCD version defined!') print("Working with openQCD version " + version) if 'postfix' in kwargs: diff --git a/pyerrors/obs.py b/pyerrors/obs.py index 0caecfdc..623c37fd 100644 --- a/pyerrors/obs.py +++ b/pyerrors/obs.py @@ -222,7 +222,7 @@ class Obs: tmp = kwargs.get(kwarg_name) if isinstance(tmp, (int, float)): if tmp < 0: - raise Exception(kwarg_name + ' has to be larger or equal to 0.') + raise ValueError(kwarg_name + ' has to be larger or equal to 0.') for e, e_name in enumerate(self.e_names): getattr(self, kwarg_name)[e_name] = tmp else: @@ -291,7 +291,7 @@ class Obs: texp = self.tau_exp[e_name] # Critical slowing down analysis if w_max // 2 <= 1: - raise Exception("Need at least 8 samples for tau_exp error analysis") + raise ValueError("Need at least 8 samples for tau_exp error analysis") for n in range(1, w_max // 2): _compute_drho(n + 1) if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: @@ -620,7 +620,7 @@ class Obs: if not hasattr(self, 'e_dvalue'): raise Exception('Run the gamma method first.') if np.isclose(0.0, self._dvalue, atol=1e-15): - raise Exception('Error is 0.0') + raise ValueError('Error is 0.0') labels = self.e_names sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 fig1, ax1 = plt.subplots() @@ -659,7 +659,7 @@ class Obs: with open(file_name + '.p', 'wb') as fb: pickle.dump(self, fb) else: - raise Exception("Unknown datatype " + str(datatype)) + raise TypeError("Unknown datatype " + str(datatype)) def export_jackknife(self): """Export jackknife samples from the Obs @@ -676,7 +676,7 @@ class Obs: """ if len(self.names) != 1: - raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") + raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") name = self.names[0] full_data = self.deltas[name] + self.r_values[name] @@ -711,7 +711,7 @@ class Obs: should agree with samples from a full bootstrap analysis up to O(1/N). """ if len(self.names) != 1: - raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") + raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") name = self.names[0] length = self.N @@ -1267,7 +1267,7 @@ def derived_observable(func, data, array_mode=False, **kwargs): if 'man_grad' in kwargs: deriv = np.asarray(kwargs.get('man_grad')) if new_values.shape + data.shape != deriv.shape: - raise Exception('Manual derivative does not have correct shape.') + raise ValueError('Manual derivative does not have correct shape.') elif kwargs.get('num_grad') is True: if multi > 0: raise Exception('Multi mode currently not supported for numerical derivative') @@ -1333,7 +1333,7 @@ def derived_observable(func, data, array_mode=False, **kwargs): new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): - raise Exception('The same name has been used for deltas and covobs!') + raise ValueError('The same name has been used for deltas and covobs!') new_samples = [] new_means = [] new_idl = [] @@ -1374,7 +1374,7 @@ def _reduce_deltas(deltas, idx_old, idx_new): Has to be a subset of idx_old. """ if not len(deltas) == len(idx_old): - raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) + raise ValueError('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) if type(idx_old) is range and type(idx_new) is range: if idx_old == idx_new: return deltas @@ -1382,7 +1382,7 @@ def _reduce_deltas(deltas, idx_old, idx_new): return deltas indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1] if len(indices) < len(idx_new): - raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old') + raise ValueError('Error in _reduce_deltas: Config of idx_new not in idx_old') return np.array(deltas)[indices] @@ -1404,12 +1404,12 @@ def reweight(weight, obs, **kwargs): result = [] for i in range(len(obs)): if len(obs[i].cov_names): - raise Exception('Error: Not possible to reweight an Obs that contains covobs!') + raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') if not set(obs[i].names).issubset(weight.names): - raise Exception('Error: Ensembles do not fit') + raise ValueError('Error: Ensembles do not fit') for name in obs[i].names: if not set(obs[i].idl[name]).issubset(weight.idl[name]): - raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) + raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) new_samples = [] w_deltas = {} for name in sorted(obs[i].names): @@ -1446,14 +1446,14 @@ def correlate(obs_a, obs_b): """ if sorted(obs_a.names) != sorted(obs_b.names): - raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") + raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") if len(obs_a.cov_names) or len(obs_b.cov_names): - raise Exception('Error: Not possible to correlate Obs that contain covobs!') + raise ValueError('Error: Not possible to correlate Obs that contain covobs!') for name in obs_a.names: if obs_a.shape[name] != obs_b.shape[name]: - raise Exception('Shapes of ensemble', name, 'do not fit') + raise ValueError('Shapes of ensemble', name, 'do not fit') if obs_a.idl[name] != obs_b.idl[name]: - raise Exception('idl of ensemble', name, 'do not fit') + raise ValueError('idl of ensemble', name, 'do not fit') if obs_a.reweighted is True: warnings.warn("The first observable is already reweighted.", RuntimeWarning) @@ -1555,7 +1555,7 @@ def invert_corr_cov_cholesky(corr, inverrdiag): condn = np.linalg.cond(corr) if condn > 0.1 / np.finfo(float).eps: - raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") + raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") if condn > 1e13: warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) chol = np.linalg.cholesky(corr) @@ -1636,7 +1636,7 @@ def _smooth_eigenvalues(corr, E): Number of eigenvalues to be left substantially unchanged """ if not (2 < E < corr.shape[0] - 1): - raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") + raise ValueError(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") vals, vec = np.linalg.eigh(corr) lambda_min = np.mean(vals[:-E]) vals[vals < lambda_min] = lambda_min @@ -1768,9 +1768,9 @@ def merge_obs(list_of_obs): """ replist = [item for obs in list_of_obs for item in obs.names] if (len(replist) == len(set(replist))) is False: - raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) + raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist))) if any([len(o.cov_names) for o in list_of_obs]): - raise Exception('Not possible to merge data that contains covobs!') + raise ValueError('Not possible to merge data that contains covobs!') new_dict = {} idl_dict = {} for o in list_of_obs: @@ -1821,7 +1821,7 @@ def cov_Obs(means, cov, name, grad=None): for i in range(len(means)): ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) if ol[0].covobs[name].N != len(means): - raise Exception('You have to provide %d mean values!' % (ol[0].N)) + raise ValueError('You have to provide %d mean values!' % (ol[0].N)) if len(ol) == 1: return ol[0] return ol @@ -1837,7 +1837,7 @@ def _determine_gap(o, e_content, e_name): gap = min(gaps) if not np.all([gi % gap == 0 for gi in gaps]): - raise Exception(f"Replica for ensemble {e_name} do not have a common spacing.", gaps) + raise ValueError(f"Replica for ensemble {e_name} do not have a common spacing.", gaps) return gap diff --git a/tests/correlators_test.py b/tests/correlators_test.py index d6d2012c..fc3528d2 100644 --- a/tests/correlators_test.py +++ b/tests/correlators_test.py @@ -129,7 +129,7 @@ def test_m_eff(): with pytest.warns(RuntimeWarning): my_corr.m_eff('sinh') - with pytest.raises(Exception): + with pytest.raises(ValueError): my_corr.m_eff('unkown_variant') @@ -140,7 +140,7 @@ def test_m_eff_negative_values(): assert m_eff_log[padding + 1] is None m_eff_cosh = my_corr.m_eff('cosh') assert m_eff_cosh[padding + 1] is None - with pytest.raises(Exception): + with pytest.raises(ValueError): my_corr.m_eff('logsym') @@ -155,7 +155,7 @@ def test_correlate(): my_corr = pe.correlators.Corr([pe.pseudo_Obs(10, 0.1, 't'), pe.pseudo_Obs(0, 0.05, 't')]) corr1 = my_corr.correlate(my_corr) corr2 = my_corr.correlate(my_corr[0]) - with pytest.raises(Exception): + with pytest.raises(TypeError): corr3 = my_corr.correlate(7.3) @@ -176,9 +176,9 @@ def test_fit_correlator(): assert fit_res[0] == my_corr[0] assert fit_res[1] == my_corr[1] - my_corr[0] - with pytest.raises(Exception): + with pytest.raises(TypeError): my_corr.fit(f, "from 0 to 3") - with pytest.raises(Exception): + with pytest.raises(ValueError): my_corr.fit(f, [0, 2, 3]) @@ -256,11 +256,11 @@ def test_prange(): corr = pe.correlators.Corr(corr_content) corr.set_prange([2, 4]) - with pytest.raises(Exception): + with pytest.raises(ValueError): corr.set_prange([2]) - with pytest.raises(Exception): + with pytest.raises(TypeError): corr.set_prange([2, 2.3]) - with pytest.raises(Exception): + with pytest.raises(ValueError): corr.set_prange([4, 1]) diff --git a/tests/dirac_test.py b/tests/dirac_test.py index 44812397..03605785 100644 --- a/tests/dirac_test.py +++ b/tests/dirac_test.py @@ -30,7 +30,7 @@ def test_grid_dirac(): 'SigmaYZ', 'SigmaZT']: pe.dirac.Grid_gamma(gamma) - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.dirac.Grid_gamma('Not a gamma matrix') @@ -44,7 +44,7 @@ def test_epsilon_tensor(): (1, 1, 3) : 0.0} for key, value in check.items(): assert pe.dirac.epsilon_tensor(*key) == value - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.dirac.epsilon_tensor(0, 1, 3) @@ -59,5 +59,5 @@ def test_epsilon_tensor_rank4(): (1, 2, 3, 1) : 0.0} for key, value in check.items(): assert pe.dirac.epsilon_tensor_rank4(*key) == value - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.dirac.epsilon_tensor_rank4(0, 1, 3, 4) diff --git a/tests/obs_test.py b/tests/obs_test.py index 8b82213f..2c642ad4 100644 --- a/tests/obs_test.py +++ b/tests/obs_test.py @@ -61,9 +61,9 @@ def test_Obs_exceptions(): my_obs.plot_rep_dist() with pytest.raises(Exception): my_obs.plot_piechart() - with pytest.raises(Exception): + with pytest.raises(TypeError): my_obs.gamma_method(S='2.3') - with pytest.raises(Exception): + with pytest.raises(ValueError): my_obs.gamma_method(tau_exp=2.3) my_obs.gamma_method() my_obs.details() @@ -199,7 +199,7 @@ def test_gamma_method_no_windowing(): assert np.isclose(np.sqrt(np.var(obs.deltas['ens'], ddof=1) / obs.shape['ens']), obs.dvalue) obs.gamma_method(S=1.1) assert obs.e_tauint['ens'] > 0.5 - with pytest.raises(Exception): + with pytest.raises(ValueError): obs.gamma_method(S=-0.2) @@ -490,12 +490,12 @@ def test_reweighting(): r_obs2 = r_obs[0] * my_obs assert r_obs2.reweighted my_covobs = pe.cov_Obs(1.0, 0.003, 'cov') - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.reweight(my_obs, [my_covobs]) my_obs2 = pe.Obs([np.random.rand(1000)], ['t2']) - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.reweight(my_obs, [my_obs + my_obs2]) - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.reweight(my_irregular_obs, [my_obs]) @@ -505,10 +505,10 @@ def test_merge_obs(): merged = pe.merge_obs([my_obs1, my_obs2]) diff = merged - my_obs2 - my_obs1 assert diff == -(my_obs1.value + my_obs2.value) / 2 - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.merge_obs([my_obs1, my_obs1]) my_covobs = pe.cov_Obs(1.0, 0.003, 'cov') - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.merge_obs([my_obs1, my_covobs]) @@ -531,11 +531,11 @@ def test_correlate(): assert corr1 == corr2 my_obs3 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(2, 102)]) - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.correlate(my_obs1, my_obs3) my_obs4 = pe.Obs([np.random.rand(99)], ['t']) - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.correlate(my_obs1, my_obs4) my_obs5 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)]) @@ -544,10 +544,10 @@ def test_correlate(): assert my_obs5.idl == corr3.idl my_new_obs = pe.Obs([np.random.rand(100)], ['q3']) - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.correlate(my_obs1, my_new_obs) my_covobs = pe.cov_Obs(1.0, 0.003, 'cov') - with pytest.raises(Exception): + with pytest.raises(ValueError): pe.correlate(my_covobs, my_covobs) r_obs = pe.reweight(my_obs1, [my_obs1])[0] with pytest.warns(RuntimeWarning): @@ -774,7 +774,7 @@ def test_gamma_method_irregular(): my_obs.gm() idl += [range(1, 400, 4)] my_obs = pe.Obs([dat for i in range(len(idl))], ['%s|%d' % ('A', i) for i in range(len(idl))], idl=idl) - with pytest.raises(Exception): + with pytest.raises(ValueError): my_obs.gm() # check cases where tau is large compared to the chain length @@ -1122,7 +1122,7 @@ def test_jackknife(): assert np.allclose(tmp_jacks, my_obs.export_jackknife()) my_new_obs = my_obs + pe.Obs([full_data], ['test2']) - with pytest.raises(Exception): + with pytest.raises(ValueError): my_new_obs.export_jackknife() From 997d360db37133b7dcbef8b9dbf1e3aff4d7c4bf Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Tue, 24 Dec 2024 17:52:08 +0100 Subject: [PATCH 18/30] [ci] Add ruff workflow (#250) * [ci] Add ruff workflow * [ci] Add src for ruff workflow * [ci] Rename ruff worklow * [ci] Adjust on for ruff workflow --- .github/workflows/ruff.yml | 15 +++++++++++++++ pyproject.toml | 3 +++ 2 files changed, 18 insertions(+) create mode 100644 .github/workflows/ruff.yml diff --git a/.github/workflows/ruff.yml b/.github/workflows/ruff.yml new file mode 100644 index 00000000..2288bd3c --- /dev/null +++ b/.github/workflows/ruff.yml @@ -0,0 +1,15 @@ +name: ruff +on: + push: + branches: + - master + - develop + pull_request: +jobs: + ruff: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - uses: astral-sh/ruff-action@v2 + with: + src: "./pyerrors" diff --git a/pyproject.toml b/pyproject.toml index 0c4facc3..657ec5bb 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,3 +1,6 @@ [build-system] requires = ["setuptools >= 63.0.0", "wheel"] build-backend = "setuptools.build_meta" + +[tool.ruff.lint] +ignore = ["F403"] From 9ff34c27d74a3312deda1219455568a7c065fa15 Mon Sep 17 00:00:00 2001 From: Justus Kuhlmann <82444481+jkuhl-uni@users.noreply.github.com> Date: Mon, 6 Jan 2025 10:46:49 +0100 Subject: [PATCH 19/30] Fix/sfcf ensname (#253) * correct strings in _get_rep_names, add option for rep_sep * doc * add test for rep name getters --- pyerrors/input/sfcf.py | 19 ++++++++++--------- tests/sfcf_in_test.py | 30 ++++++++++++++++++++++++++++++ 2 files changed, 40 insertions(+), 9 deletions(-) diff --git a/pyerrors/input/sfcf.py b/pyerrors/input/sfcf.py index e9f2837e..0431788a 100644 --- a/pyerrors/input/sfcf.py +++ b/pyerrors/input/sfcf.py @@ -127,7 +127,8 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= check_configs: list[list[int]] list of list of supposed configs, eg. [range(1,1000)] for one replicum with 1000 configs - + rep_string: str + Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string. Returns ------- result: dict[list[Obs]] @@ -199,9 +200,9 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list= else: ens_name = kwargs.get("ens_name") if not appended: - new_names = _get_rep_names(ls, ens_name) + new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r'))) else: - new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name) + new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r'))) new_names = sort_names(new_names) idl = [] @@ -646,22 +647,22 @@ def _read_append_rep(filename, pattern, b2b, cfg_separator, im, single): return T, rep_idl, data -def _get_rep_names(ls, ens_name=None): +def _get_rep_names(ls, ens_name=None, rep_sep='r'): new_names = [] for entry in ls: try: - idx = entry.index('r') + idx = entry.index(rep_sep) except Exception: raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.") if ens_name: - new_names.append('ens_name' + '|' + entry[idx:]) + new_names.append(ens_name + '|' + entry[idx:]) else: new_names.append(entry[:idx] + '|' + entry[idx:]) return new_names -def _get_appended_rep_names(ls, prefix, name, ens_name=None): +def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'): new_names = [] for exc in ls: if not fnmatch.fnmatch(exc, prefix + '*.' + name): @@ -670,12 +671,12 @@ def _get_appended_rep_names(ls, prefix, name, ens_name=None): for entry in ls: myentry = entry[:-len(name) - 1] try: - idx = myentry.index('r') + idx = myentry.index(rep_sep) except Exception: raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.") if ens_name: - new_names.append('ens_name' + '|' + entry[idx:]) + new_names.append(ens_name + '|' + entry[idx:]) else: new_names.append(myentry[:idx] + '|' + myentry[idx:]) return new_names diff --git a/tests/sfcf_in_test.py b/tests/sfcf_in_test.py index f92126f9..60a71433 100644 --- a/tests/sfcf_in_test.py +++ b/tests/sfcf_in_test.py @@ -387,3 +387,33 @@ def test_find_correlator(): found_start, found_T = sfin._find_correlator(file, "2.0", "name f_A\nquarks lquark lquark\noffset 0\nwf 0", False, False) assert found_start == 21 assert found_T == 3 + + +def test_get_rep_name(): + names = ['data_r0', 'data_r1', 'data_r2'] + new_names = sfin._get_rep_names(names) + assert len(new_names) == 3 + assert new_names[0] == 'data_|r0' + assert new_names[1] == 'data_|r1' + assert new_names[2] == 'data_|r2' + names = ['data_q0', 'data_q1', 'data_q2'] + new_names = sfin._get_rep_names(names, rep_sep='q') + assert len(new_names) == 3 + assert new_names[0] == 'data_|q0' + assert new_names[1] == 'data_|q1' + assert new_names[2] == 'data_|q2' + + +def test_get_appended_rep_name(): + names = ['data_r0.f_1', 'data_r1.f_1', 'data_r2.f_1'] + new_names = sfin._get_appended_rep_names(names, 'data', 'f_1') + assert len(new_names) == 3 + assert new_names[0] == 'data_|r0' + assert new_names[1] == 'data_|r1' + assert new_names[2] == 'data_|r2' + names = ['data_q0.f_1', 'data_q1.f_1', 'data_q2.f_1'] + new_names = sfin._get_appended_rep_names(names, 'data', 'f_1', rep_sep='q') + assert len(new_names) == 3 + assert new_names[0] == 'data_|q0' + assert new_names[1] == 'data_|q1' + assert new_names[2] == 'data_|q2' From 7eabd68c5f19ad299eb677314be17985f410ee0a Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Fri, 10 Jan 2025 09:36:05 +0100 Subject: [PATCH 20/30] [CI] Speed up test workflow install phase by using uv (#254) * [CI] Speed up install phase by using uv * [CI] Use uv in examples workflow * [CI] Fix yml syntax * [CI] Install uv into system env * [CI] Add system install for examples workflow --- .github/workflows/examples.yml | 12 ++++++------ .github/workflows/pytest.yml | 14 ++++++-------- 2 files changed, 12 insertions(+), 14 deletions(-) diff --git a/.github/workflows/examples.yml b/.github/workflows/examples.yml index b8220691..51322b2c 100644 --- a/.github/workflows/examples.yml +++ b/.github/workflows/examples.yml @@ -27,17 +27,17 @@ jobs: uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} + - name: uv + uses: astral-sh/setup-uv@v5 - name: Install run: | sudo apt-get update sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super - python -m pip install --upgrade pip - pip install wheel - pip install . - pip install pytest - pip install nbmake - pip install -U matplotlib!=3.7.0 # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files. + uv pip install wheel --system + uv pip install . --system + uv pip install pytest nbmake --system + uv pip install -U matplotlib!=3.7.0 --system # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files. - name: Run tests run: pytest -vv --nbmake examples/*.ipynb diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index 36981809..ff5d8223 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -30,17 +30,15 @@ jobs: uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} + - name: uv + uses: astral-sh/setup-uv@v5 - name: Install run: | - python -m pip install --upgrade pip - pip install wheel - pip install . - pip install pytest - pip install pytest-cov - pip install pytest-benchmark - pip install hypothesis - pip freeze + uv pip install wheel --system + uv pip install . --system + uv pip install pytest pytest-cov pytest-benchmark hypothesis --system + uv pip freeze --system - name: Run tests run: pytest --cov=pyerrors -vv From 6ed6ce6113d77f62d239dfa9f43a96787a1c97bc Mon Sep 17 00:00:00 2001 From: s-kuberski Date: Thu, 13 Feb 2025 19:43:56 +0100 Subject: [PATCH 21/30] [fix] Corrected an error message (#257) Co-authored-by: Simon Kuberski --- pyerrors/fits.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyerrors/fits.py b/pyerrors/fits.py index 8ed540c5..89f73e5b 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -293,7 +293,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): if len(key_ls) > 1: for key in key_ls: if np.asarray(yd[key]).shape != funcd[key](np.arange(n_parms), xd[key]).shape: - raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {xd[key].shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.") + raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {np.asarray(yd[key]).shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.") if not silent: print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1)) From 5f5438b56306237304d32264788d582fd9f06640 Mon Sep 17 00:00:00 2001 From: s-kuberski Date: Wed, 19 Feb 2025 18:15:55 +0100 Subject: [PATCH 22/30] [Feat] Introduce checks of the provided inverse matrix for correlated fits (#259) Co-authored-by: Simon Kuberski --- pyerrors/fits.py | 2 ++ tests/fits_test.py | 3 +++ 2 files changed, 5 insertions(+) diff --git a/pyerrors/fits.py b/pyerrors/fits.py index 89f73e5b..675bdca6 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -365,6 +365,8 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): if (chol_inv[1] != key_ls): raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.') chol_inv = chol_inv[0] + if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))): + raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.') else: corr = covariance(y_all, correlation=True, **kwargs) inverrdiag = np.diag(1 / np.asarray(dy_f)) diff --git a/tests/fits_test.py b/tests/fits_test.py index 2eeb6a49..283ff6a2 100644 --- a/tests/fits_test.py +++ b/tests/fits_test.py @@ -223,6 +223,9 @@ def test_inv_cov_matrix_input_least_squares(): diff_inv_cov_combined_fit.gamma_method() assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12)) + with pytest.raises(ValueError): + pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [corr,chol_inv_keys_combined_fit]) + def test_least_squares_invalid_inv_cov_matrix_input(): xvals = [] yvals = [] From dd4f8525f7325838da0f5be4ae829cdf4ccee09f Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Wed, 19 Feb 2025 18:23:56 +0100 Subject: [PATCH 23/30] [CI] Add ARM runner and bump macos runner python version to 3.12 (#260) --- .github/workflows/pytest.yml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index ff5d8223..a4c27116 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -20,7 +20,9 @@ jobs: python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] include: - os: macos-latest - python-version: "3.10" + python-version: "3.12" + - os: ubuntu-24.04-arm + python-version: "3.12" steps: - name: Checkout source From 17792418ed321be7f471cc27a291f5dc8671b385 Mon Sep 17 00:00:00 2001 From: s-kuberski Date: Tue, 25 Feb 2025 16:58:44 +0100 Subject: [PATCH 24/30] [Fix] Removed the possibility to create an Obs from data on several replica (#258) * [Fix] Removed the possibility to create an Obs from data on several replica * [Fix] extended tests and corrected a small bug in the previous commit --------- Co-authored-by: Simon Kuberski --- pyerrors/input/dobs.py | 3 +- pyerrors/input/json.py | 14 ++++--- pyerrors/obs.py | 15 ++++++- tests/json_io_test.py | 94 +++++++++++++++++++++++++----------------- tests/linalg_test.py | 14 +++---- tests/obs_test.py | 32 ++++++++++---- 6 files changed, 111 insertions(+), 61 deletions(-) diff --git a/pyerrors/input/dobs.py b/pyerrors/input/dobs.py index aea9b7a9..6907ec3c 100644 --- a/pyerrors/input/dobs.py +++ b/pyerrors/input/dobs.py @@ -529,7 +529,8 @@ def import_dobs_string(content, full_output=False, separator_insertion=True): deltas.append(repdeltas) idl.append(repidl) - res.append(Obs(deltas, obs_names, idl=idl)) + obsmeans = [np.average(deltas[j]) for j in range(len(deltas))] + res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans)) res[-1]._value = mean[i] _check(len(e_names) == ne) diff --git a/pyerrors/input/json.py b/pyerrors/input/json.py index ca3fb0d2..a0d3304a 100644 --- a/pyerrors/input/json.py +++ b/pyerrors/input/json.py @@ -133,10 +133,11 @@ def create_json_string(ol, description='', indent=1): names = [] idl = [] for key, value in obs.idl.items(): - samples.append([np.nan] * len(value)) + samples.append(np.array([np.nan] * len(value))) names.append(key) idl.append(value) - my_obs = Obs(samples, names, idl) + my_obs = Obs(samples, names, idl, means=[np.nan for n in names]) + my_obs._value = np.nan my_obs._covobs = obs._covobs for name in obs._covobs: my_obs.names.append(name) @@ -331,7 +332,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False): cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) if od: - ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl']) + r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']] + ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets]) ret._value = values[0] else: ret = Obs([], [], means=[]) @@ -356,7 +358,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False): taglist = o.get('tag', layout * [None]) for i in range(layout): if od: - ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl'])) + r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']]) + ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets])) ret[-1]._value = values[i] else: ret.append(Obs([], [], means=[])) @@ -383,7 +386,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False): taglist = o.get('tag', N * [None]) for i in range(N): if od: - ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl'])) + r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']]) + ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets])) ret[-1]._value = values[i] else: ret.append(Obs([], [], means=[])) diff --git a/pyerrors/obs.py b/pyerrors/obs.py index 623c37fd..87591cd9 100644 --- a/pyerrors/obs.py +++ b/pyerrors/obs.py @@ -82,6 +82,8 @@ class Obs: raise ValueError('Names are not unique.') if not all(isinstance(x, str) for x in names): raise TypeError('All names have to be strings.') + if len(set([o.split('|')[0] for o in names])) > 1: + raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.') else: if not isinstance(names[0], str): raise TypeError('All names have to be strings.') @@ -1407,6 +1409,8 @@ def reweight(weight, obs, **kwargs): raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') if not set(obs[i].names).issubset(weight.names): raise ValueError('Error: Ensembles do not fit') + if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1: + raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.') for name in obs[i].names: if not set(obs[i].idl[name]).issubset(weight.idl[name]): raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) @@ -1442,9 +1446,12 @@ def correlate(obs_a, obs_b): ----- Keep in mind to only correlate primary observables which have not been reweighted yet. The reweighting has to be applied after correlating the observables. - Currently only works if ensembles are identical (this is not strictly necessary). + Only works if a single ensemble is present in the Obs. + Currently only works if ensemble content is identical (this is not strictly necessary). """ + if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1: + raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.') if sorted(obs_a.names) != sorted(obs_b.names): raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") if len(obs_a.cov_names) or len(obs_b.cov_names): @@ -1755,7 +1762,11 @@ def import_bootstrap(boots, name, random_numbers): def merge_obs(list_of_obs): - """Combine all observables in list_of_obs into one new observable + """Combine all observables in list_of_obs into one new observable. + This allows to merge Obs that have been computed on multiple replica + of the same ensemble. + If you like to merge Obs that are based on several ensembles, please + average them yourself. Parameters ---------- diff --git a/tests/json_io_test.py b/tests/json_io_test.py index dafaaa41..a9263691 100644 --- a/tests/json_io_test.py +++ b/tests/json_io_test.py @@ -12,7 +12,7 @@ def test_jsonio(): o = pe.pseudo_Obs(1.0, .2, 'one') o2 = pe.pseudo_Obs(0.5, .1, 'two|r1') o3 = pe.pseudo_Obs(0.5, .1, 'two|r2') - o4 = pe.merge_obs([o2, o3]) + o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)]) otag = 'This has been merged!' o4.tag = otag do = o - .2 * o4 @@ -101,8 +101,8 @@ def test_json_string_reconstruction(): def test_json_corr_io(): - my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)] - rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list) + my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]) for o in range(8)] + rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]), my_list) for obs_list in [my_list, rw_list]: for tag in [None, "test"]: @@ -111,40 +111,51 @@ def test_json_corr_io(): for corr_tag in [None, 'my_Corr_tag']: for prange in [None, [3, 6]]: for gap in [False, True]: - my_corr = pe.Corr(obs_list, padding=[pad, pad], prange=prange) - my_corr.tag = corr_tag - if gap: - my_corr.content[4] = None - pe.input.json.dump_to_json(my_corr, 'corr') - recover = pe.input.json.load_json('corr') - os.remove('corr.json.gz') - assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]]) - for index, entry in enumerate(my_corr): - if entry is None: - assert recover[index] is None - assert my_corr.tag == recover.tag - assert my_corr.prange == recover.prange - assert my_corr.reweighted == recover.reweighted + for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]: + my_corr = mult * pe.Corr(obs_list, padding=[pad, pad], prange=prange) + my_corr.tag = corr_tag + if gap: + my_corr.content[4] = None + pe.input.json.dump_to_json(my_corr, 'corr') + recover = pe.input.json.load_json('corr') + os.remove('corr.json.gz') + assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]]) + for index, entry in enumerate(my_corr): + if entry is None: + assert recover[index] is None + assert my_corr.tag == recover.tag + assert my_corr.prange == recover.prange + assert my_corr.reweighted == recover.reweighted def test_json_corr_2d_io(): - obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(4)] + obs_list = [np.array([ + [ + pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]), + pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321)]), + ], + [ + pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321),]), + pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]), + ], + ]) for i in range(4)] for tag in [None, "test"]: obs_list[3][0, 1].tag = tag for padding in [0, 1]: for prange in [None, [3, 6]]: - my_corr = pe.Corr(obs_list, padding=[padding, padding], prange=prange) - my_corr.tag = tag - pe.input.json.dump_to_json(my_corr, 'corr') - recover = pe.input.json.load_json('corr') - os.remove('corr.json.gz') - assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]]) - for index, entry in enumerate(my_corr): - if entry is None: - assert recover[index] is None - assert my_corr.tag == recover.tag - assert my_corr.prange == recover.prange + for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]: + my_corr = mult * pe.Corr(obs_list, padding=[padding, padding], prange=prange) + my_corr.tag = tag + pe.input.json.dump_to_json(my_corr, 'corr') + recover = pe.input.json.load_json('corr') + os.remove('corr.json.gz') + assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]]) + for index, entry in enumerate(my_corr): + if entry is None: + assert recover[index] is None + assert my_corr.tag == recover.tag + assert my_corr.prange == recover.prange def test_json_dict_io(): @@ -211,6 +222,7 @@ def test_json_dict_io(): 'd': pe.pseudo_Obs(.01, .001, 'testd', samples=10) * pe.cov_Obs(1, .01, 'cov1'), 'se': None, 'sf': 1.2, + 'k': pe.cov_Obs(.1, .001**2, 'cov') * pe.merge_obs([pe.pseudo_Obs(1.0, 0.1, 'test|r2'), pe.pseudo_Obs(1.0, 0.1, 'test|r1', samples=321)]), } } @@ -314,7 +326,7 @@ def test_dobsio(): o2 = pe.pseudo_Obs(0.5, .1, 'two|r1') o3 = pe.pseudo_Obs(0.5, .1, 'two|r2') - o4 = pe.merge_obs([o2, o3]) + o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)]) otag = 'This has been merged!' o4.tag = otag do = o - .2 * o4 @@ -328,7 +340,7 @@ def test_dobsio(): o5 /= co2[0] o5.tag = 2 * otag - tt1 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 222, 2)]) + tt1 = pe.Obs([np.random.rand(100), np.random.rand(102)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 226, 2)]) tt3 = pe.Obs([np.random.rand(102)], ['qe|r1']) tt = tt1 + tt3 @@ -337,7 +349,7 @@ def test_dobsio(): tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)]) - ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt)] + ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt), o4.reweight(o4)] print(ol) fname = 'test_rw' @@ -362,9 +374,12 @@ def test_dobsio(): def test_reconstruct_non_linear_r_obs(tmp_path): - to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)], - ["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], - idl=[range(1, 501), range(0, 500), range(1, 999, 9)]) + to = ( + pe.Obs([np.random.rand(500), np.random.rand(1200)], + ["e|r1", "e|r2", ], + idl=[range(1, 501), range(0, 1200)]) + + pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)]) + ) to = np.log(to ** 2) / to to.dump((tmp_path / "test_equality").as_posix()) ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix()) @@ -372,9 +387,12 @@ def test_reconstruct_non_linear_r_obs(tmp_path): def test_reconstruct_non_linear_r_obs_list(tmp_path): - to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)], - ["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], - idl=[range(1, 501), range(0, 500), range(1, 999, 9)]) + to = ( + pe.Obs([np.random.rand(500), np.random.rand(1200)], + ["e|r1", "e|r2", ], + idl=[range(1, 501), range(0, 1200)]) + + pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)]) + ) to = np.log(to ** 2) / to for to_list in [[to, to, to], np.array([to, to, to])]: pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix()) diff --git a/tests/linalg_test.py b/tests/linalg_test.py index 4fb952d3..9323cfcf 100644 --- a/tests/linalg_test.py +++ b/tests/linalg_test.py @@ -34,7 +34,7 @@ def test_matmul(): my_list = [] length = 100 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])) + my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])) my_array = const * np.array(my_list).reshape((dim, dim)) tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array for t, e in np.ndenumerate(tt): @@ -43,8 +43,8 @@ def test_matmul(): my_list = [] length = 100 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']), - pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))) + my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']), + pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))) my_array = np.array(my_list).reshape((dim, dim)) * const tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array for t, e in np.ndenumerate(tt): @@ -151,7 +151,7 @@ def test_multi_dot(): my_list = [] length = 1000 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])) + my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])) my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim)) tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array for t, e in np.ndenumerate(tt): @@ -160,8 +160,8 @@ def test_multi_dot(): my_list = [] length = 1000 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']), - pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))) + my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']), + pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))) my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array for t, e in np.ndenumerate(tt): @@ -209,7 +209,7 @@ def test_irregular_matrix_inverse(): for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]: irregular_array = [] for i in range(dim ** 2): - irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)])) + irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]) + pe.Obs([np.random.normal(0.25, 0.1, 10)], ['ens2'], idl=[range(1, 11)])) irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23') invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T diff --git a/tests/obs_test.py b/tests/obs_test.py index 2c642ad4..546a4bfd 100644 --- a/tests/obs_test.py +++ b/tests/obs_test.py @@ -333,7 +333,7 @@ def test_derived_observables(): def test_multi_ens(): names = ['A0', 'A1|r001', 'A1|r002'] - test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names) + test_obs = pe.Obs([np.random.rand(50)], names[:1]) + pe.Obs([np.random.rand(50), np.random.rand(50)], names[1:]) assert test_obs.e_names == ['A0', 'A1'] assert test_obs.e_content['A0'] == ['A0'] assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002'] @@ -345,6 +345,9 @@ def test_multi_ens(): ensembles.append(str(i)) assert my_sum.e_names == sorted(ensembles) + with pytest.raises(ValueError): + test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names) + def test_multi_ens2(): names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh'] @@ -498,18 +501,25 @@ def test_reweighting(): with pytest.raises(ValueError): pe.reweight(my_irregular_obs, [my_obs]) + my_merged_obs = my_obs + pe.Obs([np.random.rand(1000)], ['q']) + with pytest.raises(ValueError): + pe.reweight(my_merged_obs, [my_merged_obs]) + def test_merge_obs(): - my_obs1 = pe.Obs([np.random.rand(100)], ['t']) - my_obs2 = pe.Obs([np.random.rand(100)], ['q'], idl=[range(1, 200, 2)]) + my_obs1 = pe.Obs([np.random.normal(1, .1, 100)], ['t|1']) + my_obs2 = pe.Obs([np.random.normal(1, .1, 100)], ['t|2'], idl=[range(1, 200, 2)]) merged = pe.merge_obs([my_obs1, my_obs2]) - diff = merged - my_obs2 - my_obs1 - assert diff == -(my_obs1.value + my_obs2.value) / 2 + diff = merged - (my_obs2 + my_obs1) / 2 + assert np.isclose(0, diff.value, atol=1e-16) with pytest.raises(ValueError): pe.merge_obs([my_obs1, my_obs1]) my_covobs = pe.cov_Obs(1.0, 0.003, 'cov') with pytest.raises(ValueError): pe.merge_obs([my_obs1, my_covobs]) + my_obs3 = pe.Obs([np.random.rand(100)], ['q|2'], idl=[range(1, 200, 2)]) + with pytest.raises(ValueError): + pe.merge_obs([my_obs1, my_obs3]) @@ -542,6 +552,9 @@ def test_correlate(): my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)]) corr3 = pe.correlate(my_obs5, my_obs6) assert my_obs5.idl == corr3.idl + my_obs7 = pe.Obs([np.random.rand(99)], ['q']) + with pytest.raises(ValueError): + pe.correlate(my_obs1, my_obs7) my_new_obs = pe.Obs([np.random.rand(100)], ['q3']) with pytest.raises(ValueError): @@ -681,14 +694,14 @@ def test_gamma_method_irregular(): assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue) arr2 = np.random.normal(1, .2, size=N) - afull = pe.Obs([arr, arr2], ['a1', 'a2']) + afull = pe.Obs([arr], ['a1']) + pe.Obs([arr2], ['a2']) configs = np.ones_like(arr2) for i in np.random.uniform(0, len(arr2), size=int(.8*N)): configs[int(i)] = 0 zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0] idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1] - a = pe.Obs([zero_arr, zero_arr2], ['a1', 'a2'], idl=[idx, idx2]) + a = pe.Obs([zero_arr], ['a1'], idl=[idx]) + pe.Obs([zero_arr2], ['a2'], idl=[idx2]) afull.gamma_method() a.gamma_method() @@ -1022,7 +1035,7 @@ def test_correlation_intersection_of_idls(): def test_covariance_non_identical_objects(): - obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"]) + obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000)], ["ens|r1", "ens|r2"]) + pe.Obs([np.random.normal(1.0, 0.1, 732)], ['ens2']) obs1.gamma_method() obs2 = obs1 + 1e-18 obs2.gamma_method() @@ -1106,6 +1119,9 @@ def test_reweight_method(): obs1 = pe.pseudo_Obs(0.2, 0.01, 'test') rw = pe.pseudo_Obs(0.999, 0.001, 'test') assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0] + rw2 = pe.pseudo_Obs(0.999, 0.001, 'test2') + with pytest.raises(ValueError): + obs1.reweight(rw2) def test_jackknife(): From b2847a1f80bce588c986a443fd38d5fae6380e7c Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Sun, 9 Mar 2025 12:35:29 +0100 Subject: [PATCH 25/30] [Release] Bump version to 2.14.0 and update CHANGELOG --- CHANGELOG.md | 15 +++++++++++++++ pyerrors/version.py | 2 +- 2 files changed, 16 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index d019608c..7a61e766 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,21 @@ All notable changes to this project will be documented in this file. +## [2.14.0] - 2025-03-09 + +### Added +- Explicit checks of the provided inverse matrix for correlated fits #259 + +### Changed +- Compute derivative for pow explicitly instead of relying on autograd. This results in a ~4x speedup for pow operations #246 +- More explicit exception types #248 + +### Fixed +- Removed the possibility to create an Obs from data on several replica #258 +- Fix range in `set_prange` #247 +- Fix ensemble name handling in sfcf input modules #253 +- Correct error message for fit shape mismatch #257 + ## [2.13.0] - 2024-11-03 ### Added diff --git a/pyerrors/version.py b/pyerrors/version.py index 941c31df..d0979fd0 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.14.0-dev" +__version__ = "2.14.0" From 3c36ab08c87f7d7fb2c564037b7ddd35a3139c2d Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Sun, 9 Mar 2025 12:37:42 +0100 Subject: [PATCH 26/30] [Version] Bump version to 2.15.0-dev --- pyerrors/version.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyerrors/version.py b/pyerrors/version.py index d0979fd0..806254b1 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.14.0" +__version__ = "2.15.0-dev" From 934a61e124aa73fca8f281a6f9b55df9c2b5ea58 Mon Sep 17 00:00:00 2001 From: s-kuberski Date: Tue, 22 Apr 2025 10:19:14 +0200 Subject: [PATCH 27/30] [Fix] removed unnecessary lines that raised the flake8 error code F824 (#262) Co-authored-by: Simon Kuberski --- pyerrors/input/json.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/pyerrors/input/json.py b/pyerrors/input/json.py index a0d3304a..a2008f9c 100644 --- a/pyerrors/input/json.py +++ b/pyerrors/input/json.py @@ -571,7 +571,6 @@ def _ol_from_dict(ind, reps='DICTOBS'): counter = 0 def dict_replace_obs(d): - nonlocal ol nonlocal counter x = {} for k, v in d.items(): @@ -592,7 +591,6 @@ def _ol_from_dict(ind, reps='DICTOBS'): return x def list_replace_obs(li): - nonlocal ol nonlocal counter x = [] for e in li: @@ -613,7 +611,6 @@ def _ol_from_dict(ind, reps='DICTOBS'): return x def obslist_replace_obs(li): - nonlocal ol nonlocal counter il = [] for e in li: @@ -694,7 +691,6 @@ def _od_from_list_and_dict(ol, ind, reps='DICTOBS'): def dict_replace_string(d): nonlocal counter - nonlocal ol x = {} for k, v in d.items(): if isinstance(v, dict): @@ -710,7 +706,6 @@ def _od_from_list_and_dict(ol, ind, reps='DICTOBS'): def list_replace_string(li): nonlocal counter - nonlocal ol x = [] for e in li: if isinstance(e, list): From dcb95265ac5c1c0dfd56d70e293290effd4d0399 Mon Sep 17 00:00:00 2001 From: JanNeuendorf <75676159+JanNeuendorf@users.noreply.github.com> Date: Tue, 22 Apr 2025 10:26:20 +0200 Subject: [PATCH 28/30] Fixed index in GEVP example (#261) Co-authored-by: Fabian Joswig --- examples/06_gevp.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/06_gevp.ipynb b/examples/06_gevp.ipynb index 3e6c12d5..3de14d5e 100644 --- a/examples/06_gevp.ipynb +++ b/examples/06_gevp.ipynb @@ -151,7 +151,7 @@ "\n", "$$C_{\\textrm{projected}}(t)=v_1^T \\underline{C}(t) v_2$$\n", "\n", - "If we choose the vectors to be $v_1=v_2=(0,1,0,0)$, we should get the same correlator as in the cell above. \n", + "If we choose the vectors to be $v_1=v_2=(1,0,0,0)$, we should get the same correlator as in the cell above. \n", "\n", "Thinking about it this way is usefull in the Context of the generalized eigenvalue problem (GEVP), used to find the source-sink combination, which best describes a certain energy eigenstate.\n", "A good introduction is found in https://arxiv.org/abs/0902.1265." From 8183ee2ef4428307ffbc0279b3bc50b61b9a5e8d Mon Sep 17 00:00:00 2001 From: Alexander Puck Neuwirth Date: Mon, 5 May 2025 10:52:22 +0200 Subject: [PATCH 29/30] setup.py: Drop deprecated license classifiers (#264) Closes: #263 --- setup.py | 1 - 1 file changed, 1 deletion(-) diff --git a/setup.py b/setup.py index 76efe7e2..8c42f4a6 100644 --- a/setup.py +++ b/setup.py @@ -30,7 +30,6 @@ setup(name='pyerrors', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', - 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', From d6e6a435a8203cb314af90bf397b8d5adfe53038 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Mon, 5 May 2025 17:09:40 +0200 Subject: [PATCH 30/30] [ci] Re-enable fail on warning for pytest pipeline. (#265) * [ci] Re-enable fail on warning for pytest pipeline. * [Fix] Use sqlite3 context managers in pandas module. * [Fix] Add closing context. --- .github/workflows/pytest.yml | 2 +- pyerrors/input/pandas.py | 11 +++++------ 2 files changed, 6 insertions(+), 7 deletions(-) diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index a4c27116..af98e210 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -43,4 +43,4 @@ jobs: uv pip freeze --system - name: Run tests - run: pytest --cov=pyerrors -vv + run: pytest --cov=pyerrors -vv -Werror diff --git a/pyerrors/input/pandas.py b/pyerrors/input/pandas.py index 13482983..af446cfc 100644 --- a/pyerrors/input/pandas.py +++ b/pyerrors/input/pandas.py @@ -1,6 +1,7 @@ import warnings import gzip import sqlite3 +from contextlib import closing import pandas as pd from ..obs import Obs from ..correlators import Corr @@ -29,9 +30,8 @@ def to_sql(df, table_name, db, if_exists='fail', gz=True, **kwargs): None """ se_df = _serialize_df(df, gz=gz) - con = sqlite3.connect(db) - se_df.to_sql(table_name, con, if_exists=if_exists, index=False, **kwargs) - con.close() + with closing(sqlite3.connect(db)) as con: + se_df.to_sql(table_name, con=con, if_exists=if_exists, index=False, **kwargs) def read_sql(sql, db, auto_gamma=False, **kwargs): @@ -52,9 +52,8 @@ def read_sql(sql, db, auto_gamma=False, **kwargs): data : pandas.DataFrame Dataframe with the content of the sqlite database. """ - con = sqlite3.connect(db) - extract_df = pd.read_sql(sql, con, **kwargs) - con.close() + with closing(sqlite3.connect(db)) as con: + extract_df = pd.read_sql(sql, con=con, **kwargs) return _deserialize_df(extract_df, auto_gamma=auto_gamma)