From fca014ed5cde862ef60149ed8de0671a46c45125 Mon Sep 17 00:00:00 2001
From: fjosw
221 def anti_symmetric(self): 222 """Anti-symmetrize the correlator around x0=0.""" 223 if self.N != 1: -224 raise Exception('anti_symmetric cannot be safely applied to multi-dimensional correlators.') +224 raise TypeError('anti_symmetric cannot be safely applied to multi-dimensional correlators.') 225 if self.T % 2 != 0: 226 raise Exception("Can not symmetrize odd T") 227 @@ -3343,7 +3460,7 @@ timeslice and the error on each timeslice.+243 def is_matrix_symmetric(self): 244 """Checks whether a correlator matrices is symmetric on every timeslice.""" 245 if self.N == 1: -246 raise Exception("Only works for correlator matrices.") +246 raise TypeError("Only works for correlator matrices.") 247 for t in range(self.T): 248 if self[t] is None: 249 continue @@ -3361,6 +3478,36 @@ timeslice and the error on each timeslice.
258 def trace(self): +259 """Calculates the per-timeslice trace of a correlator matrix.""" +260 if self.N == 1: +261 raise ValueError("Only works for correlator matrices.") +262 newcontent = [] +263 for t in range(self.T): +264 if _check_for_none(self, self.content[t]): +265 newcontent.append(None) +266 else: +267 newcontent.append(np.trace(self.content[t])) +268 return Corr(newcontent) +
Calculates the per-timeslice trace of a correlator matrix.
+258 def matrix_symmetric(self): -259 """Symmetrizes the correlator matrices on every timeslice.""" -260 if self.N == 1: -261 raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.") -262 if self.is_matrix_symmetric(): -263 return 1.0 * self -264 else: -265 transposed = [None if _check_for_none(self, G) else G.T for G in self.content] -266 return 0.5 * (Corr(transposed) + self) +@@ -3401,84 +3548,84 @@ timeslice and the error on each timeslice.270 def matrix_symmetric(self): +271 """Symmetrizes the correlator matrices on every timeslice.""" +272 if self.N == 1: +273 raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.") +274 if self.is_matrix_symmetric(): +275 return 1.0 * self +276 else: +277 transposed = [None if _check_for_none(self, G) else G.T for G in self.content] +278 return 0.5 * (Corr(transposed) + self)
268 def GEVP(self, t0, ts=None, sort="Eigenvalue", **kwargs): -269 r'''Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors. -270 -271 The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the -272 largest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing -273 ```python -274 C.GEVP(t0=2)[0] # Ground state vector(s) -275 C.GEVP(t0=2)[:3] # Vectors for the lowest three states -276 ``` -277 -278 Parameters -279 ---------- -280 t0 : int -281 The time t0 for the right hand side of the GEVP according to $G(t)v_i=\lambda_i G(t_0)v_i$ -282 ts : int -283 fixed time $G(t_s)v_i=\lambda_i G(t_0)v_i$ if sort=None. -284 If sort="Eigenvector" it gives a reference point for the sorting method. -285 sort : string -286 If this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned. -287 - "Eigenvalue": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. -288 - "Eigenvector": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state. -289 The reference state is identified by its eigenvalue at $t=t_s$. -290 -291 Other Parameters -292 ---------------- -293 state : int -294 Returns only the vector(s) for a specified state. The lowest state is zero. -295 ''' -296 -297 if self.N == 1: -298 raise Exception("GEVP methods only works on correlator matrices and not single correlators.") -299 if ts is not None: -300 if (ts <= t0): -301 raise Exception("ts has to be larger than t0.") +@@ -3531,18 +3678,18 @@ Returns only the vector(s) for a specified state. The lowest state is zero.280 def GEVP(self, t0, ts=None, sort="Eigenvalue", **kwargs): +281 r'''Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors. +282 +283 The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the +284 largest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing +285 ```python +286 C.GEVP(t0=2)[0] # Ground state vector(s) +287 C.GEVP(t0=2)[:3] # Vectors for the lowest three states +288 ``` +289 +290 Parameters +291 ---------- +292 t0 : int +293 The time t0 for the right hand side of the GEVP according to $G(t)v_i=\lambda_i G(t_0)v_i$ +294 ts : int +295 fixed time $G(t_s)v_i=\lambda_i G(t_0)v_i$ if sort=None. +296 If sort="Eigenvector" it gives a reference point for the sorting method. +297 sort : string +298 If this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned. +299 - "Eigenvalue": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. +300 - "Eigenvector": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state. +301 The reference state is identified by its eigenvalue at $t=t_s$. 302 -303 if "sorted_list" in kwargs: -304 warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning) -305 sort = kwargs.get("sorted_list") -306 -307 if self.is_matrix_symmetric(): -308 symmetric_corr = self -309 else: -310 symmetric_corr = self.matrix_symmetric() -311 -312 G0 = np.vectorize(lambda x: x.value)(symmetric_corr[t0]) -313 np.linalg.cholesky(G0) # Check if matrix G0 is positive-semidefinite. +303 Other Parameters +304 ---------------- +305 state : int +306 Returns only the vector(s) for a specified state. The lowest state is zero. +307 ''' +308 +309 if self.N == 1: +310 raise Exception("GEVP methods only works on correlator matrices and not single correlators.") +311 if ts is not None: +312 if (ts <= t0): +313 raise Exception("ts has to be larger than t0.") 314 -315 if sort is None: -316 if (ts is None): -317 raise Exception("ts is required if sort=None.") -318 if (self.content[t0] is None) or (self.content[ts] is None): -319 raise Exception("Corr not defined at t0/ts.") -320 Gt = np.vectorize(lambda x: x.value)(symmetric_corr[ts]) -321 reordered_vecs = _GEVP_solver(Gt, G0) -322 -323 elif sort in ["Eigenvalue", "Eigenvector"]: -324 if sort == "Eigenvalue" and ts is not None: -325 warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning) -326 all_vecs = [None] * (t0 + 1) -327 for t in range(t0 + 1, self.T): -328 try: -329 Gt = np.vectorize(lambda x: x.value)(symmetric_corr[t]) -330 all_vecs.append(_GEVP_solver(Gt, G0)) -331 except Exception: -332 all_vecs.append(None) -333 if sort == "Eigenvector": -334 if ts is None: -335 raise Exception("ts is required for the Eigenvector sorting method.") -336 all_vecs = _sort_vectors(all_vecs, ts) -337 -338 reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)] -339 else: -340 raise Exception("Unkown value for 'sort'.") -341 -342 if "state" in kwargs: -343 return reordered_vecs[kwargs.get("state")] -344 else: -345 return reordered_vecs +315 if "sorted_list" in kwargs: +316 warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning) +317 sort = kwargs.get("sorted_list") +318 +319 if self.is_matrix_symmetric(): +320 symmetric_corr = self +321 else: +322 symmetric_corr = self.matrix_symmetric() +323 +324 G0 = np.vectorize(lambda x: x.value)(symmetric_corr[t0]) +325 np.linalg.cholesky(G0) # Check if matrix G0 is positive-semidefinite. +326 +327 if sort is None: +328 if (ts is None): +329 raise Exception("ts is required if sort=None.") +330 if (self.content[t0] is None) or (self.content[ts] is None): +331 raise Exception("Corr not defined at t0/ts.") +332 Gt = np.vectorize(lambda x: x.value)(symmetric_corr[ts]) +333 reordered_vecs = _GEVP_solver(Gt, G0) +334 +335 elif sort in ["Eigenvalue", "Eigenvector"]: +336 if sort == "Eigenvalue" and ts is not None: +337 warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning) +338 all_vecs = [None] * (t0 + 1) +339 for t in range(t0 + 1, self.T): +340 try: +341 Gt = np.vectorize(lambda x: x.value)(symmetric_corr[t]) +342 all_vecs.append(_GEVP_solver(Gt, G0)) +343 except Exception: +344 all_vecs.append(None) +345 if sort == "Eigenvector": +346 if ts is None: +347 raise Exception("ts is required for the Eigenvector sorting method.") +348 all_vecs = _sort_vectors(all_vecs, ts) +349 +350 reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)] +351 else: +352 raise Exception("Unkown value for 'sort'.") +353 +354 if "state" in kwargs: +355 return reordered_vecs[kwargs.get("state")] +356 else: +357 return reordered_vecs
347 def Eigenvalue(self, t0, ts=None, state=0, sort="Eigenvalue"): -348 """Determines the eigenvalue of the GEVP by solving and projecting the correlator -349 -350 Parameters -351 ---------- -352 state : int -353 The state one is interested in ordered by energy. The lowest state is zero. -354 -355 All other parameters are identical to the ones of Corr.GEVP. -356 """ -357 vec = self.GEVP(t0, ts=ts, sort=sort)[state] -358 return self.projected(vec) +@@ -3570,46 +3717,46 @@ The state one is interested in ordered by energy. The lowest state is zero.359 def Eigenvalue(self, t0, ts=None, state=0, sort="Eigenvalue"): +360 """Determines the eigenvalue of the GEVP by solving and projecting the correlator +361 +362 Parameters +363 ---------- +364 state : int +365 The state one is interested in ordered by energy. The lowest state is zero. +366 +367 All other parameters are identical to the ones of Corr.GEVP. +368 """ +369 vec = self.GEVP(t0, ts=ts, sort=sort)[state] +370 return self.projected(vec)
360 def Hankel(self, N, periodic=False): -361 """Constructs an NxN Hankel matrix -362 -363 C(t) c(t+1) ... c(t+n-1) -364 C(t+1) c(t+2) ... c(t+n) -365 ................. -366 C(t+(n-1)) c(t+n) ... c(t+2(n-1)) -367 -368 Parameters -369 ---------- -370 N : int -371 Dimension of the Hankel matrix -372 periodic : bool, optional -373 determines whether the matrix is extended periodically -374 """ -375 -376 if self.N != 1: -377 raise Exception("Multi-operator Prony not implemented!") -378 -379 array = np.empty([N, N], dtype="object") -380 new_content = [] -381 for t in range(self.T): -382 new_content.append(array.copy()) -383 -384 def wrap(i): -385 while i >= self.T: -386 i -= self.T -387 return i -388 -389 for t in range(self.T): -390 for i in range(N): -391 for j in range(N): -392 if periodic: -393 new_content[t][i, j] = self.content[wrap(t + i + j)][0] -394 elif (t + i + j) >= self.T: -395 new_content[t] = None -396 else: -397 new_content[t][i, j] = self.content[t + i + j][0] -398 -399 return Corr(new_content) +@@ -3643,15 +3790,15 @@ determines whether the matrix is extended periodically372 def Hankel(self, N, periodic=False): +373 """Constructs an NxN Hankel matrix +374 +375 C(t) c(t+1) ... c(t+n-1) +376 C(t+1) c(t+2) ... c(t+n) +377 ................. +378 C(t+(n-1)) c(t+n) ... c(t+2(n-1)) +379 +380 Parameters +381 ---------- +382 N : int +383 Dimension of the Hankel matrix +384 periodic : bool, optional +385 determines whether the matrix is extended periodically +386 """ +387 +388 if self.N != 1: +389 raise Exception("Multi-operator Prony not implemented!") +390 +391 array = np.empty([N, N], dtype="object") +392 new_content = [] +393 for t in range(self.T): +394 new_content.append(array.copy()) +395 +396 def wrap(i): +397 while i >= self.T: +398 i -= self.T +399 return i +400 +401 for t in range(self.T): +402 for i in range(N): +403 for j in range(N): +404 if periodic: +405 new_content[t][i, j] = self.content[wrap(t + i + j)][0] +406 elif (t + i + j) >= self.T: +407 new_content[t] = None +408 else: +409 new_content[t][i, j] = self.content[t + i + j][0] +410 +411 return Corr(new_content)
401 def roll(self, dt): -402 """Periodically shift the correlator by dt timeslices -403 -404 Parameters -405 ---------- -406 dt : int -407 number of timeslices -408 """ -409 return Corr(list(np.roll(np.array(self.content, dtype=object), dt))) + @@ -3678,9 +3825,9 @@ number of timeslices
411 def reverse(self): -412 """Reverse the time ordering of the Corr""" -413 return Corr(self.content[:: -1]) + @@ -3700,23 +3847,23 @@ number of timeslices
415 def thin(self, spacing=2, offset=0): -416 """Thin out a correlator to suppress correlations -417 -418 Parameters -419 ---------- -420 spacing : int -421 Keep only every 'spacing'th entry of the correlator -422 offset : int -423 Offset the equal spacing -424 """ -425 new_content = [] -426 for t in range(self.T): -427 if (offset + t) % spacing != 0: -428 new_content.append(None) -429 else: -430 new_content.append(self.content[t]) -431 return Corr(new_content) +@@ -3745,34 +3892,34 @@ Offset the equal spacing427 def thin(self, spacing=2, offset=0): +428 """Thin out a correlator to suppress correlations +429 +430 Parameters +431 ---------- +432 spacing : int +433 Keep only every 'spacing'th entry of the correlator +434 offset : int +435 Offset the equal spacing +436 """ +437 new_content = [] +438 for t in range(self.T): +439 if (offset + t) % spacing != 0: +440 new_content.append(None) +441 else: +442 new_content.append(self.content[t]) +443 return Corr(new_content)
433 def correlate(self, partner): -434 """Correlate the correlator with another correlator or Obs -435 -436 Parameters -437 ---------- -438 partner : Obs or Corr -439 partner to correlate the correlator with. -440 Can either be an Obs which is correlated with all entries of the -441 correlator or a Corr of same length. -442 """ -443 if self.N != 1: -444 raise Exception("Only one-dimensional correlators can be safely correlated.") -445 new_content = [] -446 for x0, t_slice in enumerate(self.content): -447 if _check_for_none(self, t_slice): -448 new_content.append(None) -449 else: -450 if isinstance(partner, Corr): -451 if _check_for_none(partner, partner.content[x0]): -452 new_content.append(None) -453 else: -454 new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice])) -455 elif isinstance(partner, Obs): # Should this include CObs? -456 new_content.append(np.array([correlate(o, partner) for o in t_slice])) -457 else: -458 raise Exception("Can only correlate with an Obs or a Corr.") -459 -460 return Corr(new_content) +@@ -3801,28 +3948,28 @@ correlator or a Corr of same length.445 def correlate(self, partner): +446 """Correlate the correlator with another correlator or Obs +447 +448 Parameters +449 ---------- +450 partner : Obs or Corr +451 partner to correlate the correlator with. +452 Can either be an Obs which is correlated with all entries of the +453 correlator or a Corr of same length. +454 """ +455 if self.N != 1: +456 raise Exception("Only one-dimensional correlators can be safely correlated.") +457 new_content = [] +458 for x0, t_slice in enumerate(self.content): +459 if _check_for_none(self, t_slice): +460 new_content.append(None) +461 else: +462 if isinstance(partner, Corr): +463 if _check_for_none(partner, partner.content[x0]): +464 new_content.append(None) +465 else: +466 new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice])) +467 elif isinstance(partner, Obs): # Should this include CObs? +468 new_content.append(np.array([correlate(o, partner) for o in t_slice])) +469 else: +470 raise Exception("Can only correlate with an Obs or a Corr.") +471 +472 return Corr(new_content)
462 def reweight(self, weight, **kwargs): -463 """Reweight the correlator. -464 -465 Parameters -466 ---------- -467 weight : Obs -468 Reweighting factor. An Observable that has to be defined on a superset of the -469 configurations in obs[i].idl for all i. -470 all_configs : bool -471 if True, the reweighted observables are normalized by the average of -472 the reweighting factor on all configurations in weight.idl and not -473 on the configurations in obs[i].idl. -474 """ -475 if self.N != 1: -476 raise Exception("Reweighting only implemented for one-dimensional correlators.") -477 new_content = [] -478 for t_slice in self.content: -479 if _check_for_none(self, t_slice): -480 new_content.append(None) -481 else: -482 new_content.append(np.array(reweight(weight, t_slice, **kwargs))) -483 return Corr(new_content) +@@ -3854,35 +4001,35 @@ on the configurations in obs[i].idl.474 def reweight(self, weight, **kwargs): +475 """Reweight the correlator. +476 +477 Parameters +478 ---------- +479 weight : Obs +480 Reweighting factor. An Observable that has to be defined on a superset of the +481 configurations in obs[i].idl for all i. +482 all_configs : bool +483 if True, the reweighted observables are normalized by the average of +484 the reweighting factor on all configurations in weight.idl and not +485 on the configurations in obs[i].idl. +486 """ +487 if self.N != 1: +488 raise Exception("Reweighting only implemented for one-dimensional correlators.") +489 new_content = [] +490 for t_slice in self.content: +491 if _check_for_none(self, t_slice): +492 new_content.append(None) +493 else: +494 new_content.append(np.array(reweight(weight, t_slice, **kwargs))) +495 return Corr(new_content)
485 def T_symmetry(self, partner, parity=+1): -486 """Return the time symmetry average of the correlator and its partner -487 -488 Parameters -489 ---------- -490 partner : Corr -491 Time symmetry partner of the Corr -492 partity : int -493 Parity quantum number of the correlator, can be +1 or -1 -494 """ -495 if self.N != 1: -496 raise Exception("T_symmetry only implemented for one-dimensional correlators.") -497 if not isinstance(partner, Corr): -498 raise Exception("T partner has to be a Corr object.") -499 if parity not in [+1, -1]: -500 raise Exception("Parity has to be +1 or -1.") -501 T_partner = parity * partner.reverse() -502 -503 t_slices = [] -504 test = (self - T_partner) -505 test.gamma_method() -506 for x0, t_slice in enumerate(test.content): -507 if t_slice is not None: -508 if not t_slice[0].is_zero_within_error(5): -509 t_slices.append(x0) -510 if t_slices: -511 warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning) -512 -513 return (self + T_partner) / 2 +@@ -3911,70 +4058,70 @@ Parity quantum number of the correlator, can be +1 or -1497 def T_symmetry(self, partner, parity=+1): +498 """Return the time symmetry average of the correlator and its partner +499 +500 Parameters +501 ---------- +502 partner : Corr +503 Time symmetry partner of the Corr +504 partity : int +505 Parity quantum number of the correlator, can be +1 or -1 +506 """ +507 if self.N != 1: +508 raise Exception("T_symmetry only implemented for one-dimensional correlators.") +509 if not isinstance(partner, Corr): +510 raise Exception("T partner has to be a Corr object.") +511 if parity not in [+1, -1]: +512 raise Exception("Parity has to be +1 or -1.") +513 T_partner = parity * partner.reverse() +514 +515 t_slices = [] +516 test = (self - T_partner) +517 test.gamma_method() +518 for x0, t_slice in enumerate(test.content): +519 if t_slice is not None: +520 if not t_slice[0].is_zero_within_error(5): +521 t_slices.append(x0) +522 if t_slices: +523 warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning) +524 +525 return (self + T_partner) / 2
515 def deriv(self, variant="symmetric"): -516 """Return the first derivative of the correlator with respect to x0. -517 -518 Parameters -519 ---------- -520 variant : str -521 decides which definition of the finite differences derivative is used. -522 Available choice: symmetric, forward, backward, improved, log, default: symmetric -523 """ -524 if self.N != 1: -525 raise Exception("deriv only implemented for one-dimensional correlators.") -526 if variant == "symmetric": -527 newcontent = [] -528 for t in range(1, self.T - 1): -529 if (self.content[t - 1] is None) or (self.content[t + 1] is None): -530 newcontent.append(None) -531 else: -532 newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) -533 if (all([x is None for x in newcontent])): -534 raise Exception('Derivative is undefined at all timeslices') -535 return Corr(newcontent, padding=[1, 1]) -536 elif variant == "forward": -537 newcontent = [] -538 for t in range(self.T - 1): -539 if (self.content[t] is None) or (self.content[t + 1] is None): -540 newcontent.append(None) -541 else: -542 newcontent.append(self.content[t + 1] - self.content[t]) -543 if (all([x is None for x in newcontent])): -544 raise Exception("Derivative is undefined at all timeslices") -545 return Corr(newcontent, padding=[0, 1]) -546 elif variant == "backward": -547 newcontent = [] -548 for t in range(1, self.T): -549 if (self.content[t - 1] is None) or (self.content[t] is None): -550 newcontent.append(None) -551 else: -552 newcontent.append(self.content[t] - self.content[t - 1]) -553 if (all([x is None for x in newcontent])): -554 raise Exception("Derivative is undefined at all timeslices") -555 return Corr(newcontent, padding=[1, 0]) -556 elif variant == "improved": -557 newcontent = [] -558 for t in range(2, self.T - 2): -559 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): -560 newcontent.append(None) -561 else: -562 newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) -563 if (all([x is None for x in newcontent])): -564 raise Exception('Derivative is undefined at all timeslices') -565 return Corr(newcontent, padding=[2, 2]) -566 elif variant == 'log': -567 newcontent = [] -568 for t in range(self.T): -569 if (self.content[t] is None) or (self.content[t] <= 0): -570 newcontent.append(None) -571 else: -572 newcontent.append(np.log(self.content[t])) -573 if (all([x is None for x in newcontent])): -574 raise Exception("Log is undefined at all timeslices") -575 logcorr = Corr(newcontent) -576 return self * logcorr.deriv('symmetric') -577 else: -578 raise Exception("Unknown variant.") +@@ -4002,68 +4149,68 @@ Available choice: symmetric, forward, backward, improved, log, default: symmetri527 def deriv(self, variant="symmetric"): +528 """Return the first derivative of the correlator with respect to x0. +529 +530 Parameters +531 ---------- +532 variant : str +533 decides which definition of the finite differences derivative is used. +534 Available choice: symmetric, forward, backward, improved, log, default: symmetric +535 """ +536 if self.N != 1: +537 raise Exception("deriv only implemented for one-dimensional correlators.") +538 if variant == "symmetric": +539 newcontent = [] +540 for t in range(1, self.T - 1): +541 if (self.content[t - 1] is None) or (self.content[t + 1] is None): +542 newcontent.append(None) +543 else: +544 newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) +545 if (all([x is None for x in newcontent])): +546 raise Exception('Derivative is undefined at all timeslices') +547 return Corr(newcontent, padding=[1, 1]) +548 elif variant == "forward": +549 newcontent = [] +550 for t in range(self.T - 1): +551 if (self.content[t] is None) or (self.content[t + 1] is None): +552 newcontent.append(None) +553 else: +554 newcontent.append(self.content[t + 1] - self.content[t]) +555 if (all([x is None for x in newcontent])): +556 raise Exception("Derivative is undefined at all timeslices") +557 return Corr(newcontent, padding=[0, 1]) +558 elif variant == "backward": +559 newcontent = [] +560 for t in range(1, self.T): +561 if (self.content[t - 1] is None) or (self.content[t] is None): +562 newcontent.append(None) +563 else: +564 newcontent.append(self.content[t] - self.content[t - 1]) +565 if (all([x is None for x in newcontent])): +566 raise Exception("Derivative is undefined at all timeslices") +567 return Corr(newcontent, padding=[1, 0]) +568 elif variant == "improved": +569 newcontent = [] +570 for t in range(2, self.T - 2): +571 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): +572 newcontent.append(None) +573 else: +574 newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) +575 if (all([x is None for x in newcontent])): +576 raise Exception('Derivative is undefined at all timeslices') +577 return Corr(newcontent, padding=[2, 2]) +578 elif variant == 'log': +579 newcontent = [] +580 for t in range(self.T): +581 if (self.content[t] is None) or (self.content[t] <= 0): +582 newcontent.append(None) +583 else: +584 newcontent.append(np.log(self.content[t])) +585 if (all([x is None for x in newcontent])): +586 raise Exception("Log is undefined at all timeslices") +587 logcorr = Corr(newcontent) +588 return self * logcorr.deriv('symmetric') +589 else: +590 raise Exception("Unknown variant.")
580 def second_deriv(self, variant="symmetric"): -581 r"""Return the second derivative of the correlator with respect to x0. -582 -583 Parameters -584 ---------- -585 variant : str -586 decides which definition of the finite differences derivative is used. -587 Available choice: -588 - symmetric (default) -589 $$\tilde{\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$ -590 - big_symmetric -591 $$\partial^2_0 f(x_0) = \frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$ -592 - improved -593 $$\partial^2_0 f(x_0) = \frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$ -594 - log -595 $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$ -596 """ -597 if self.N != 1: -598 raise Exception("second_deriv only implemented for one-dimensional correlators.") -599 if variant == "symmetric": -600 newcontent = [] -601 for t in range(1, self.T - 1): -602 if (self.content[t - 1] is None) or (self.content[t + 1] is None): -603 newcontent.append(None) -604 else: -605 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) -606 if (all([x is None for x in newcontent])): -607 raise Exception("Derivative is undefined at all timeslices") -608 return Corr(newcontent, padding=[1, 1]) -609 elif variant == "big_symmetric": -610 newcontent = [] -611 for t in range(2, self.T - 2): -612 if (self.content[t - 2] is None) or (self.content[t + 2] is None): -613 newcontent.append(None) -614 else: -615 newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4) -616 if (all([x is None for x in newcontent])): -617 raise Exception("Derivative is undefined at all timeslices") -618 return Corr(newcontent, padding=[2, 2]) -619 elif variant == "improved": -620 newcontent = [] -621 for t in range(2, self.T - 2): -622 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): -623 newcontent.append(None) -624 else: -625 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) -626 if (all([x is None for x in newcontent])): -627 raise Exception("Derivative is undefined at all timeslices") -628 return Corr(newcontent, padding=[2, 2]) -629 elif variant == 'log': -630 newcontent = [] -631 for t in range(self.T): -632 if (self.content[t] is None) or (self.content[t] <= 0): -633 newcontent.append(None) -634 else: -635 newcontent.append(np.log(self.content[t])) -636 if (all([x is None for x in newcontent])): -637 raise Exception("Log is undefined at all timeslices") -638 logcorr = Corr(newcontent) -639 return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) -640 else: -641 raise Exception("Unknown variant.") +@@ -4099,89 +4246,89 @@ Available choice:592 def second_deriv(self, variant="symmetric"): +593 r"""Return the second derivative of the correlator with respect to x0. +594 +595 Parameters +596 ---------- +597 variant : str +598 decides which definition of the finite differences derivative is used. +599 Available choice: +600 - symmetric (default) +601 $$\tilde{\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$ +602 - big_symmetric +603 $$\partial^2_0 f(x_0) = \frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$ +604 - improved +605 $$\partial^2_0 f(x_0) = \frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$ +606 - log +607 $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$ +608 """ +609 if self.N != 1: +610 raise Exception("second_deriv only implemented for one-dimensional correlators.") +611 if variant == "symmetric": +612 newcontent = [] +613 for t in range(1, self.T - 1): +614 if (self.content[t - 1] is None) or (self.content[t + 1] is None): +615 newcontent.append(None) +616 else: +617 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) +618 if (all([x is None for x in newcontent])): +619 raise Exception("Derivative is undefined at all timeslices") +620 return Corr(newcontent, padding=[1, 1]) +621 elif variant == "big_symmetric": +622 newcontent = [] +623 for t in range(2, self.T - 2): +624 if (self.content[t - 2] is None) or (self.content[t + 2] is None): +625 newcontent.append(None) +626 else: +627 newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4) +628 if (all([x is None for x in newcontent])): +629 raise Exception("Derivative is undefined at all timeslices") +630 return Corr(newcontent, padding=[2, 2]) +631 elif variant == "improved": +632 newcontent = [] +633 for t in range(2, self.T - 2): +634 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): +635 newcontent.append(None) +636 else: +637 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) +638 if (all([x is None for x in newcontent])): +639 raise Exception("Derivative is undefined at all timeslices") +640 return Corr(newcontent, padding=[2, 2]) +641 elif variant == 'log': +642 newcontent = [] +643 for t in range(self.T): +644 if (self.content[t] is None) or (self.content[t] <= 0): +645 newcontent.append(None) +646 else: +647 newcontent.append(np.log(self.content[t])) +648 if (all([x is None for x in newcontent])): +649 raise Exception("Log is undefined at all timeslices") +650 logcorr = Corr(newcontent) +651 return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) +652 else: +653 raise Exception("Unknown variant.")
643 def m_eff(self, variant='log', guess=1.0): -644 """Returns the effective mass of the correlator as correlator object -645 -646 Parameters -647 ---------- -648 variant : str -649 log : uses the standard effective mass log(C(t) / C(t+1)) -650 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. -651 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. -652 See, e.g., arXiv:1205.5380 -653 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) -654 logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2 -655 guess : float -656 guess for the root finder, only relevant for the root variant -657 """ -658 if self.N != 1: -659 raise Exception('Correlator must be projected before getting m_eff') -660 if variant == 'log': -661 newcontent = [] -662 for t in range(self.T - 1): -663 if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): -664 newcontent.append(None) -665 elif self.content[t][0].value / self.content[t + 1][0].value < 0: -666 newcontent.append(None) -667 else: -668 newcontent.append(self.content[t] / self.content[t + 1]) -669 if (all([x is None for x in newcontent])): -670 raise Exception('m_eff is undefined at all timeslices') -671 -672 return np.log(Corr(newcontent, padding=[0, 1])) -673 -674 elif variant == 'logsym': -675 newcontent = [] -676 for t in range(1, self.T - 1): -677 if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): +@@ -4215,39 +4362,39 @@ guess for the root finder, only relevant for the root variant655 def m_eff(self, variant='log', guess=1.0): +656 """Returns the effective mass of the correlator as correlator object +657 +658 Parameters +659 ---------- +660 variant : str +661 log : uses the standard effective mass log(C(t) / C(t+1)) +662 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. +663 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. +664 See, e.g., arXiv:1205.5380 +665 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) +666 logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2 +667 guess : float +668 guess for the root finder, only relevant for the root variant +669 """ +670 if self.N != 1: +671 raise Exception('Correlator must be projected before getting m_eff') +672 if variant == 'log': +673 newcontent = [] +674 for t in range(self.T - 1): +675 if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): +676 newcontent.append(None) +677 elif self.content[t][0].value / self.content[t + 1][0].value < 0: 678 newcontent.append(None) -679 elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0: -680 newcontent.append(None) -681 else: -682 newcontent.append(self.content[t - 1] / self.content[t + 1]) -683 if (all([x is None for x in newcontent])): -684 raise Exception('m_eff is undefined at all timeslices') +679 else: +680 newcontent.append(self.content[t] / self.content[t + 1]) +681 if (all([x is None for x in newcontent])): +682 raise Exception('m_eff is undefined at all timeslices') +683 +684 return np.log(Corr(newcontent, padding=[0, 1])) 685 -686 return np.log(Corr(newcontent, padding=[1, 1])) / 2 -687 -688 elif variant in ['periodic', 'cosh', 'sinh']: -689 if variant in ['periodic', 'cosh']: -690 func = anp.cosh -691 else: -692 func = anp.sinh -693 -694 def root_function(x, d): -695 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d -696 -697 newcontent = [] -698 for t in range(self.T - 1): -699 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0): -700 newcontent.append(None) -701 # Fill the two timeslices in the middle of the lattice with their predecessors -702 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: -703 newcontent.append(newcontent[-1]) -704 elif self.content[t][0].value / self.content[t + 1][0].value < 0: -705 newcontent.append(None) -706 else: -707 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) -708 if (all([x is None for x in newcontent])): -709 raise Exception('m_eff is undefined at all timeslices') -710 -711 return Corr(newcontent, padding=[0, 1]) -712 -713 elif variant == 'arccosh': -714 newcontent = [] -715 for t in range(1, self.T - 1): -716 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0): +686 elif variant == 'logsym': +687 newcontent = [] +688 for t in range(1, self.T - 1): +689 if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): +690 newcontent.append(None) +691 elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0: +692 newcontent.append(None) +693 else: +694 newcontent.append(self.content[t - 1] / self.content[t + 1]) +695 if (all([x is None for x in newcontent])): +696 raise Exception('m_eff is undefined at all timeslices') +697 +698 return np.log(Corr(newcontent, padding=[1, 1])) / 2 +699 +700 elif variant in ['periodic', 'cosh', 'sinh']: +701 if variant in ['periodic', 'cosh']: +702 func = anp.cosh +703 else: +704 func = anp.sinh +705 +706 def root_function(x, d): +707 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d +708 +709 newcontent = [] +710 for t in range(self.T - 1): +711 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0): +712 newcontent.append(None) +713 # Fill the two timeslices in the middle of the lattice with their predecessors +714 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: +715 newcontent.append(newcontent[-1]) +716 elif self.content[t][0].value / self.content[t + 1][0].value < 0: 717 newcontent.append(None) 718 else: -719 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) +719 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) 720 if (all([x is None for x in newcontent])): -721 raise Exception("m_eff is undefined at all timeslices") -722 return np.arccosh(Corr(newcontent, padding=[1, 1])) -723 -724 else: -725 raise Exception('Unknown variant.') +721 raise Exception('m_eff is undefined at all timeslices') +722 +723 return Corr(newcontent, padding=[0, 1]) +724 +725 elif variant == 'arccosh': +726 newcontent = [] +727 for t in range(1, self.T - 1): +728 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0): +729 newcontent.append(None) +730 else: +731 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) +732 if (all([x is None for x in newcontent])): +733 raise Exception("m_eff is undefined at all timeslices") +734 return np.arccosh(Corr(newcontent, padding=[1, 1])) +735 +736 else: +737 raise Exception('Unknown variant.')
727 def fit(self, function, fitrange=None, silent=False, **kwargs): -728 r'''Fits function to the data -729 -730 Parameters -731 ---------- -732 function : obj -733 function to fit to the data. See fits.least_squares for details. -734 fitrange : list -735 Two element list containing the timeslices on which the fit is supposed to start and stop. -736 Caution: This range is inclusive as opposed to standard python indexing. -737 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. -738 If not specified, self.prange or all timeslices are used. -739 silent : bool -740 Decides whether output is printed to the standard output. -741 ''' -742 if self.N != 1: -743 raise Exception("Correlator must be projected before fitting") -744 -745 if fitrange is None: -746 if self.prange: -747 fitrange = self.prange -748 else: -749 fitrange = [0, self.T - 1] -750 else: -751 if not isinstance(fitrange, list): -752 raise Exception("fitrange has to be a list with two elements") -753 if len(fitrange) != 2: -754 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") -755 -756 xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) -757 ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) -758 result = least_squares(xs, ys, function, silent=silent, **kwargs) -759 return result +@@ -4281,42 +4428,42 @@ Decides whether output is printed to the standard output.739 def fit(self, function, fitrange=None, silent=False, **kwargs): +740 r'''Fits function to the data +741 +742 Parameters +743 ---------- +744 function : obj +745 function to fit to the data. See fits.least_squares for details. +746 fitrange : list +747 Two element list containing the timeslices on which the fit is supposed to start and stop. +748 Caution: This range is inclusive as opposed to standard python indexing. +749 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. +750 If not specified, self.prange or all timeslices are used. +751 silent : bool +752 Decides whether output is printed to the standard output. +753 ''' +754 if self.N != 1: +755 raise Exception("Correlator must be projected before fitting") +756 +757 if fitrange is None: +758 if self.prange: +759 fitrange = self.prange +760 else: +761 fitrange = [0, self.T - 1] +762 else: +763 if not isinstance(fitrange, list): +764 raise Exception("fitrange has to be a list with two elements") +765 if len(fitrange) != 2: +766 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") +767 +768 xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) +769 ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) +770 result = least_squares(xs, ys, function, silent=silent, **kwargs) +771 return result
761 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): -762 """ Extract a plateau value from a Corr object -763 -764 Parameters -765 ---------- -766 plateau_range : list -767 list with two entries, indicating the first and the last timeslice -768 of the plateau region. -769 method : str -770 method to extract the plateau. -771 'fit' fits a constant to the plateau region -772 'avg', 'average' or 'mean' just average over the given timeslices. -773 auto_gamma : bool -774 apply gamma_method with default parameters to the Corr. Defaults to None -775 """ -776 if not plateau_range: -777 if self.prange: -778 plateau_range = self.prange -779 else: -780 raise Exception("no plateau range provided") -781 if self.N != 1: -782 raise Exception("Correlator must be projected before getting a plateau.") -783 if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): -784 raise Exception("plateau is undefined at all timeslices in plateaurange.") -785 if auto_gamma: -786 self.gamma_method() -787 if method == "fit": -788 def const_func(a, t): -789 return a[0] -790 return self.fit(const_func, plateau_range)[0] -791 elif method in ["avg", "average", "mean"]: -792 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) -793 return returnvalue -794 -795 else: -796 raise Exception("Unsupported plateau method: " + method) +@@ -4350,17 +4497,17 @@ apply gamma_method with default parameters to the Corr. Defaults to None773 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): +774 """ Extract a plateau value from a Corr object +775 +776 Parameters +777 ---------- +778 plateau_range : list +779 list with two entries, indicating the first and the last timeslice +780 of the plateau region. +781 method : str +782 method to extract the plateau. +783 'fit' fits a constant to the plateau region +784 'avg', 'average' or 'mean' just average over the given timeslices. +785 auto_gamma : bool +786 apply gamma_method with default parameters to the Corr. Defaults to None +787 """ +788 if not plateau_range: +789 if self.prange: +790 plateau_range = self.prange +791 else: +792 raise Exception("no plateau range provided") +793 if self.N != 1: +794 raise Exception("Correlator must be projected before getting a plateau.") +795 if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): +796 raise Exception("plateau is undefined at all timeslices in plateaurange.") +797 if auto_gamma: +798 self.gamma_method() +799 if method == "fit": +800 def const_func(a, t): +801 return a[0] +802 return self.fit(const_func, plateau_range)[0] +803 elif method in ["avg", "average", "mean"]: +804 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) +805 return returnvalue +806 +807 else: +808 raise Exception("Unsupported plateau method: " + method)
798 def set_prange(self, prange): -799 """Sets the attribute prange of the Corr object.""" -800 if not len(prange) == 2: -801 raise Exception("prange must be a list or array with two values") -802 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): -803 raise Exception("Start and end point must be integers") -804 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): -805 raise Exception("Start and end point must define a range in the interval 0,T") -806 -807 self.prange = prange -808 return +@@ -4380,130 +4527,130 @@ apply gamma_method with default parameters to the Corr. Defaults to None810 def set_prange(self, prange): +811 """Sets the attribute prange of the Corr object.""" +812 if not len(prange) == 2: +813 raise Exception("prange must be a list or array with two values") +814 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): +815 raise Exception("Start and end point must be integers") +816 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): +817 raise Exception("Start and end point must define a range in the interval 0,T") +818 +819 self.prange = prange +820 return
810 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None): -811 """Plots the correlator using the tag of the correlator as label if available. -812 -813 Parameters -814 ---------- -815 x_range : list -816 list of two values, determining the range of the x-axis e.g. [4, 8]. -817 comp : Corr or list of Corr -818 Correlator or list of correlators which are plotted for comparison. -819 The tags of these correlators are used as labels if available. -820 logscale : bool -821 Sets y-axis to logscale. -822 plateau : Obs -823 Plateau value to be visualized in the figure. -824 fit_res : Fit_result -825 Fit_result object to be visualized. -826 fit_key : str -827 Key for the fit function in Fit_result.fit_function (for combined fits). -828 ylabel : str -829 Label for the y-axis. -830 save : str -831 path to file in which the figure should be saved. -832 auto_gamma : bool -833 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. -834 hide_sigma : float -835 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. -836 references : list -837 List of floating point values that are displayed as horizontal lines for reference. -838 title : string -839 Optional title of the figure. -840 """ -841 if self.N != 1: -842 raise Exception("Correlator must be projected before plotting") -843 -844 if auto_gamma: -845 self.gamma_method() -846 -847 if x_range is None: -848 x_range = [0, self.T - 1] -849 -850 fig = plt.figure() -851 ax1 = fig.add_subplot(111) -852 -853 x, y, y_err = self.plottable() -854 if hide_sigma: -855 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 -856 else: -857 hide_from = None -858 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) -859 if logscale: -860 ax1.set_yscale('log') -861 else: -862 if y_range is None: -863 try: -864 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) -865 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) -866 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) -867 except Exception: -868 pass -869 else: -870 ax1.set_ylim(y_range) -871 if comp: -872 if isinstance(comp, (Corr, list)): -873 for corr in comp if isinstance(comp, list) else [comp]: -874 if auto_gamma: -875 corr.gamma_method() -876 x, y, y_err = corr.plottable() -877 if hide_sigma: -878 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 -879 else: -880 hide_from = None -881 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) -882 else: -883 raise Exception("'comp' must be a correlator or a list of correlators.") -884 -885 if plateau: -886 if isinstance(plateau, Obs): -887 if auto_gamma: -888 plateau.gamma_method() -889 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) -890 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') -891 else: -892 raise Exception("'plateau' must be an Obs") -893 -894 if references: -895 if isinstance(references, list): -896 for ref in references: -897 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') -898 else: -899 raise Exception("'references' must be a list of floating pint values.") -900 -901 if self.prange: -902 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) -903 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0) -904 -905 if fit_res: -906 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) -907 if isinstance(fit_res.fit_function, dict): -908 if fit_key: -909 ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) -910 else: -911 raise ValueError("Please provide a 'fit_key' for visualizing combined fits.") -912 else: -913 ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) -914 -915 ax1.set_xlabel(r'$x_0 / a$') -916 if ylabel: -917 ax1.set_ylabel(ylabel) -918 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) -919 -920 handles, labels = ax1.get_legend_handles_labels() -921 if labels: -922 ax1.legend() -923 -924 if title: -925 plt.title(title) +@@ -4553,34 +4700,34 @@ Optional title of the figure.822 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None): +823 """Plots the correlator using the tag of the correlator as label if available. +824 +825 Parameters +826 ---------- +827 x_range : list +828 list of two values, determining the range of the x-axis e.g. [4, 8]. +829 comp : Corr or list of Corr +830 Correlator or list of correlators which are plotted for comparison. +831 The tags of these correlators are used as labels if available. +832 logscale : bool +833 Sets y-axis to logscale. +834 plateau : Obs +835 Plateau value to be visualized in the figure. +836 fit_res : Fit_result +837 Fit_result object to be visualized. +838 fit_key : str +839 Key for the fit function in Fit_result.fit_function (for combined fits). +840 ylabel : str +841 Label for the y-axis. +842 save : str +843 path to file in which the figure should be saved. +844 auto_gamma : bool +845 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. +846 hide_sigma : float +847 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. +848 references : list +849 List of floating point values that are displayed as horizontal lines for reference. +850 title : string +851 Optional title of the figure. +852 """ +853 if self.N != 1: +854 raise Exception("Correlator must be projected before plotting") +855 +856 if auto_gamma: +857 self.gamma_method() +858 +859 if x_range is None: +860 x_range = [0, self.T - 1] +861 +862 fig = plt.figure() +863 ax1 = fig.add_subplot(111) +864 +865 x, y, y_err = self.plottable() +866 if hide_sigma: +867 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 +868 else: +869 hide_from = None +870 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) +871 if logscale: +872 ax1.set_yscale('log') +873 else: +874 if y_range is None: +875 try: +876 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) +877 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) +878 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) +879 except Exception: +880 pass +881 else: +882 ax1.set_ylim(y_range) +883 if comp: +884 if isinstance(comp, (Corr, list)): +885 for corr in comp if isinstance(comp, list) else [comp]: +886 if auto_gamma: +887 corr.gamma_method() +888 x, y, y_err = corr.plottable() +889 if hide_sigma: +890 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 +891 else: +892 hide_from = None +893 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) +894 else: +895 raise Exception("'comp' must be a correlator or a list of correlators.") +896 +897 if plateau: +898 if isinstance(plateau, Obs): +899 if auto_gamma: +900 plateau.gamma_method() +901 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) +902 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') +903 else: +904 raise Exception("'plateau' must be an Obs") +905 +906 if references: +907 if isinstance(references, list): +908 for ref in references: +909 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') +910 else: +911 raise Exception("'references' must be a list of floating pint values.") +912 +913 if self.prange: +914 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) +915 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0) +916 +917 if fit_res: +918 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) +919 if isinstance(fit_res.fit_function, dict): +920 if fit_key: +921 ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) +922 else: +923 raise ValueError("Please provide a 'fit_key' for visualizing combined fits.") +924 else: +925 ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) 926 -927 plt.draw() -928 -929 if save: -930 if isinstance(save, str): -931 fig.savefig(save, bbox_inches='tight') -932 else: -933 raise Exception("'save' has to be a string.") +927 ax1.set_xlabel(r'$x_0 / a$') +928 if ylabel: +929 ax1.set_ylabel(ylabel) +930 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) +931 +932 handles, labels = ax1.get_legend_handles_labels() +933 if labels: +934 ax1.legend() +935 +936 if title: +937 plt.title(title) +938 +939 plt.draw() +940 +941 if save: +942 if isinstance(save, str): +943 fig.savefig(save, bbox_inches='tight') +944 else: +945 raise Exception("'save' has to be a string.")
935 def spaghetti_plot(self, logscale=True): -936 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. -937 -938 Parameters -939 ---------- -940 logscale : bool -941 Determines whether the scale of the y-axis is logarithmic or standard. -942 """ -943 if self.N != 1: -944 raise Exception("Correlator needs to be projected first.") -945 -946 mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) -947 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] -948 -949 for name in mc_names: -950 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T -951 -952 fig = plt.figure() -953 ax = fig.add_subplot(111) -954 for dat in data: -955 ax.plot(x0_vals, dat, ls='-', marker='') -956 -957 if logscale is True: -958 ax.set_yscale('log') -959 -960 ax.set_xlabel(r'$x_0 / a$') -961 plt.title(name) -962 plt.draw() +@@ -4607,29 +4754,29 @@ Determines whether the scale of the y-axis is logarithmic or standard.947 def spaghetti_plot(self, logscale=True): +948 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. +949 +950 Parameters +951 ---------- +952 logscale : bool +953 Determines whether the scale of the y-axis is logarithmic or standard. +954 """ +955 if self.N != 1: +956 raise Exception("Correlator needs to be projected first.") +957 +958 mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) +959 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] +960 +961 for name in mc_names: +962 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T +963 +964 fig = plt.figure() +965 ax = fig.add_subplot(111) +966 for dat in data: +967 ax.plot(x0_vals, dat, ls='-', marker='') +968 +969 if logscale is True: +970 ax.set_yscale('log') +971 +972 ax.set_xlabel(r'$x_0 / a$') +973 plt.title(name) +974 plt.draw()
964 def dump(self, filename, datatype="json.gz", **kwargs): -965 """Dumps the Corr into a file of chosen type -966 Parameters -967 ---------- -968 filename : str -969 Name of the file to be saved. -970 datatype : str -971 Format of the exported file. Supported formats include -972 "json.gz" and "pickle" -973 path : str -974 specifies a custom path for the file (default '.') -975 """ -976 if datatype == "json.gz": -977 from .input.json import dump_to_json -978 if 'path' in kwargs: -979 file_name = kwargs.get('path') + '/' + filename -980 else: -981 file_name = filename -982 dump_to_json(self, file_name) -983 elif datatype == "pickle": -984 dump_object(self, filename, **kwargs) -985 else: -986 raise Exception("Unknown datatype " + str(datatype)) +@@ -4661,8 +4808,8 @@ specifies a custom path for the file (default '.')976 def dump(self, filename, datatype="json.gz", **kwargs): +977 """Dumps the Corr into a file of chosen type +978 Parameters +979 ---------- +980 filename : str +981 Name of the file to be saved. +982 datatype : str +983 Format of the exported file. Supported formats include +984 "json.gz" and "pickle" +985 path : str +986 specifies a custom path for the file (default '.') +987 """ +988 if datatype == "json.gz": +989 from .input.json import dump_to_json +990 if 'path' in kwargs: +991 file_name = kwargs.get('path') + '/' + filename +992 else: +993 file_name = filename +994 dump_to_json(self, file_name) +995 elif datatype == "pickle": +996 dump_object(self, filename, **kwargs) +997 else: +998 raise Exception("Unknown datatype " + str(datatype))
988 def print(self, print_range=None): -989 print(self.__repr__(print_range)) + @@ -4680,8 +4827,8 @@ specifies a custom path for the file (default '.')
1153 def sqrt(self): -1154 return self ** 0.5 + @@ -4699,9 +4846,9 @@ specifies a custom path for the file (default '.')
1156 def log(self): -1157 newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content] -1158 return Corr(newcontent, prange=self.prange) + @@ -4719,9 +4866,9 @@ specifies a custom path for the file (default '.')
1160 def exp(self): -1161 newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content] -1162 return Corr(newcontent, prange=self.prange) + @@ -4739,8 +4886,8 @@ specifies a custom path for the file (default '.')
1177 def sin(self): -1178 return self._apply_func_to_corr(np.sin) + @@ -4758,8 +4905,8 @@ specifies a custom path for the file (default '.')
1180 def cos(self): -1181 return self._apply_func_to_corr(np.cos) + @@ -4777,8 +4924,8 @@ specifies a custom path for the file (default '.')
1183 def tan(self): -1184 return self._apply_func_to_corr(np.tan) + @@ -4796,8 +4943,8 @@ specifies a custom path for the file (default '.')
1186 def sinh(self): -1187 return self._apply_func_to_corr(np.sinh) + @@ -4815,8 +4962,8 @@ specifies a custom path for the file (default '.')
1189 def cosh(self): -1190 return self._apply_func_to_corr(np.cosh) + @@ -4834,8 +4981,8 @@ specifies a custom path for the file (default '.')
1192 def tanh(self): -1193 return self._apply_func_to_corr(np.tanh) + @@ -4853,8 +5000,8 @@ specifies a custom path for the file (default '.')
1195 def arcsin(self): -1196 return self._apply_func_to_corr(np.arcsin) + @@ -4872,8 +5019,8 @@ specifies a custom path for the file (default '.')
1198 def arccos(self): -1199 return self._apply_func_to_corr(np.arccos) + @@ -4891,8 +5038,8 @@ specifies a custom path for the file (default '.')
1201 def arctan(self): -1202 return self._apply_func_to_corr(np.arctan) + @@ -4910,8 +5057,8 @@ specifies a custom path for the file (default '.')
1204 def arcsinh(self): -1205 return self._apply_func_to_corr(np.arcsinh) + @@ -4929,8 +5076,8 @@ specifies a custom path for the file (default '.')
1207 def arccosh(self): -1208 return self._apply_func_to_corr(np.arccosh) + @@ -4948,8 +5095,8 @@ specifies a custom path for the file (default '.')
1210 def arctanh(self): -1211 return self._apply_func_to_corr(np.arctanh) + @@ -4989,62 +5136,62 @@ specifies a custom path for the file (default '.')
1246 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): -1247 r''' Project large correlation matrix to lowest states -1248 -1249 This method can be used to reduce the size of an (N x N) correlation matrix -1250 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise -1251 is still small. -1252 -1253 Parameters -1254 ---------- -1255 Ntrunc: int -1256 Rank of the target matrix. -1257 tproj: int -1258 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. -1259 The default value is 3. -1260 t0proj: int -1261 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly -1262 discouraged for O(a) improved theories, since the correctness of the procedure -1263 cannot be granted in this case. The default value is 2. -1264 basematrix : Corr -1265 Correlation matrix that is used to determine the eigenvectors of the -1266 lowest states based on a GEVP. basematrix is taken to be the Corr itself if -1267 is is not specified. -1268 -1269 Notes -1270 ----- -1271 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving -1272 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ -1273 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the -1274 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via -1275 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large -1276 correlation matrix and to remove some noise that is added by irrelevant operators. -1277 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated -1278 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. -1279 ''' -1280 -1281 if self.N == 1: -1282 raise Exception('Method cannot be applied to one-dimensional correlators.') -1283 if basematrix is None: -1284 basematrix = self -1285 if Ntrunc >= basematrix.N: -1286 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) -1287 if basematrix.N != self.N: -1288 raise Exception('basematrix and targetmatrix have to be of the same size.') -1289 -1290 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] -1291 -1292 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) -1293 rmat = [] -1294 for t in range(basematrix.T): -1295 for i in range(Ntrunc): -1296 for j in range(Ntrunc): -1297 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] -1298 rmat.append(np.copy(tmpmat)) -1299 -1300 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] -1301 return Corr(newcontent) +diff --git a/docs/search.js b/docs/search.js index 25217270..fe669075 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u1303 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): +1304 r''' Project large correlation matrix to lowest states +1305 +1306 This method can be used to reduce the size of an (N x N) correlation matrix +1307 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise +1308 is still small. +1309 +1310 Parameters +1311 ---------- +1312 Ntrunc: int +1313 Rank of the target matrix. +1314 tproj: int +1315 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. +1316 The default value is 3. +1317 t0proj: int +1318 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly +1319 discouraged for O(a) improved theories, since the correctness of the procedure +1320 cannot be granted in this case. The default value is 2. +1321 basematrix : Corr +1322 Correlation matrix that is used to determine the eigenvectors of the +1323 lowest states based on a GEVP. basematrix is taken to be the Corr itself if +1324 is is not specified. +1325 +1326 Notes +1327 ----- +1328 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving +1329 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ +1330 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the +1331 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via +1332 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large +1333 correlation matrix and to remove some noise that is added by irrelevant operators. +1334 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated +1335 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. +1336 ''' +1337 +1338 if self.N == 1: +1339 raise Exception('Method cannot be applied to one-dimensional correlators.') +1340 if basematrix is None: +1341 basematrix = self +1342 if Ntrunc >= basematrix.N: +1343 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) +1344 if basematrix.N != self.N: +1345 raise Exception('basematrix and targetmatrix have to be of the same size.') +1346 +1347 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] +1348 +1349 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) +1350 rmat = [] +1351 for t in range(basematrix.T): +1352 for i in range(Ntrunc): +1353 for j in range(Ntrunc): +1354 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] +1355 rmat.append(np.copy(tmpmat)) +1356 +1357 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] +1358 return Corr(newcontent)0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e 1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o What is pyerrors?\n\n \n\n
pyerrors
is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:\n
\n\n- automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
\n- treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
\n- coherent error propagation for data from different Markov chains.
\n- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
\n- real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
\nMore detailed examples can found in the GitHub repository
\n\n.
If you use
\n\npyerrors
for research that leads to a publication please consider citing:\n
\n\n- Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
\n- Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
\n- Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
\nand
\n\n\n
\n\n- Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
\nwhere applicable.
\n\nThere exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.
\n\nInstallation
\n\nInstall the most recent release using pip and pypi:
\n\n\n\n\n\npython -m pip install pyerrors # Fresh install\npython -m pip install -U pyerrors # Update\n
Install the most recent release using conda and conda-forge:
\n\n\n\n\n\nconda install -c conda-forge pyerrors # Fresh install\nconda update -c conda-forge pyerrors # Update\n
Install the current
\n\ndevelop
version:\n\n\n\npython -m pip install git+https://github.com/fjosw/pyerrors.git@develop\n
Basic example
\n\n\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method() # Estimate the statistical error\nprint(my_new_obs) # Print the result to stdout\n> 0.31498(72)\n
The
\n\nObs
class\n\n
pyerrors
introduces a new datatype,Obs
, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAnObs
object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.\n\n\n\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
Error propagation
\n\nWhen performing mathematical operations on
\n\nObs
objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.The
\n\nObs
class is designed such that mathematical numpy functions can be used onObs
just as for regular floats.\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
Error estimation
\n\nThe error estimation within
\n\npyerrors
is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest thegamma_method
can be called as detailed in the following example.\n\n\n\nmy_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n> t_int 2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The
\n\ngamma_method
is not automatically called after every intermediate step in order to prevent computational overhead.We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the
\n\ngamma_method
as parameter.\n\n\n\nmy_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n> t_int 3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods
\n\npyerrors.obs.Obs.plot_tauint
andpyerrors.obs.Obs.plot_rho
.If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.
\n\nExponential tails
\n\nSlow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the
\n\ngamma_method
as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.\n\n\n\nmy_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n> t_int 3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20, N_sigma = 1\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
For the full API see
\n\npyerrors.obs.Obs.gamma_method
.Multiple ensembles/replica
\n\nError propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their
\n\nname
.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 2 ensembles:\n> \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n> \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.
\n\n\n\n
pyerrors
identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar|
in the name of the data set.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1'\n> \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n> \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
Error estimation for multiple ensembles
\n\nIn order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.
\n\n\n\n\n\npe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
In case the
\n\ngamma_method
is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to thegamma_method
still dominates over the dictionaries.Irregular Monte Carlo chains
\n\n\n\n
Obs
objects defined on irregular Monte Carlo chains can be initialized with the parameteridl
.\n\n\n\n# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result 9.98319881e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result 9.99100712e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result 1.01718064e+00\n> 5 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n\n
Obs
objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g.
\n\npyerrors.obs.Obs.plot_rho
orpyerrors.obs.Obs.plot_tauint
.For the full API see
\n\npyerrors.obs.Obs
.Correlators
\n\nWhen one is not interested in single observables but correlation functions,
\n\npyerrors
offers theCorr
class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize aCorr
objects one needs to arrange the data as a list ofObs
\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0 0.7957(80)\n> 1 0.5156(51)\n> 2 0.3227(33)\n> 3 0.2041(21)\n
In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.
\n\n\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0\n> 1 0.7957(80)\n> 2 0.5156(51)\n> 3 0.3227(33)\n> 4 0.2041(21)\n> 5\n
The individual entries of a correlator can be accessed via slicing
\n\n\n\n\n\nprint(my_corr[3])\n> 0.3227(33)\n
Error propagation with the
\n\nCorr
class works very similar toObs
objects. Mathematical operations are overloaded andCorr
objects can be computed together with otherCorr
objects,Obs
objects or real numbers and integers.\n\n\n\nmy_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n\n
pyerrors
provides the user with a set of regularly used methods for the manipulation of correlator objects:\n
\n\n- \n
Corr.gamma_method
applies the gamma method to all entries of the correlator.- \n
Corr.m_eff
to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.- \n
Corr.deriv
returns the first derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.second_deriv
returns the second derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.symmetric
symmetrizes parity even correlations functions, assuming periodic boundary conditions.- \n
Corr.anti_symmetric
anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.- \n
Corr.T_symmetry
averages a correlator with its time symmetry partner, assuming fixed boundary conditions.- \n
Corr.plateau
extracts a plateau value from the correlator in a given range.- \n
Corr.roll
periodically shifts the correlator.- \n
Corr.reverse
reverses the time ordering of the correlator.- \n
Corr.correlate
constructs a disconnected correlation function from the correlator and anotherCorr
orObs
object.- \n
Corr.reweight
reweights the correlator.\n\n
pyerrors
can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (seepyerrors.correlators.Corr.GEVP
).For the full API see
\n\npyerrors.correlators.Corr
.Complex valued observables
\n\n\n\n
pyerrors
can handle complex valued observables via the classpyerrors.obs.CObs
.\nCObs
are initialized with a real and an imaginary part which both can beObs
valued.\n\n\n\nmy_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
Elementary mathematical operations are overloaded and samples are properly propagated as for the
\n\nObs
class.\n\n\n\nmy_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
The
\n\nCovobs
classIn many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The
\n\nCovobs
class allows to define such quantities inpyerrors
. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.This concept is built into the definition of
\n\nCovobs
. Inpyerrors
, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enterscov_Obs
, since the second argument of this function is the covariance matrix of theCovobs
.\n\n\n\nimport pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result 1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n> pi^0 mass 5.00000000e-04\n> 0 samples in 1 ensemble:\n> \u00b7 Covobs 'pi^0 mass'\n
The resulting object
\n\nmpi
is anObs
that contains aCovobs
. In the following, it may be handled as any otherObs
. The contribution of the covariance matrix to the error of anObs
is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of theObs
with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.Correlated auxiliary data is defined similarly to above, e.g., via
\n\n\n\n\n\nRAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
where
\n\nRAP
now is a list of twoObs
that contains the two correlated parameters.Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the
\n\nCovobs
class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of anObs
o
with respect to a covariance matrix with the identifying stringk
may be accessed via\n\n\n\no.covobs[k].grad\n
Error propagation in iterative algorithms
\n\n\n\n
pyerrors
supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.Least squares fits
\n\nStandard non-linear least square fits with errors on the dependent but not the independent variables can be performed with
\n\npyerrors.fits.least_squares
. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.Fit functions have to be of the following form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[1] * anp.exp(-a[0] * x)\n
It is important that numerical functions refer to
\n\nautograd.numpy
instead ofnumpy
for the automatic differentiation in iterative algorithms to work properly.Fits can then be performed via
\n\n\n\n\n\nfit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n> Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value = 0.5673\n> Fit parameters:\n> 0 0.0548(28)\n> 1 1.933(64)\n
where x is a
\n\nlist
ornumpy.array
offloats
and y is alist
ornumpy.array
ofObs
.Data stored in
\n\nCorr
objects can be fitted directly using theCorr.fit
method.\n\n\n\nmy_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.
\n\nFor fit functions with multiple independent variables the fit function can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
\n\n
pyerrors
also supports correlated fits which can be triggered via the parametercorrelated_fit=True
.\nDetails about how the required covariance matrix is estimated can be found inpyerrors.obs.covariance
.\nDirect visualizations of the performed fits can be triggered viaresplot=True
orqqplot=True
.For all available options including combined fits to multiple datasets see
\n\npyerrors.fits.least_squares
.Total least squares fits
\n\n\n\n
pyerrors
can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to as orthogonal distance regression as implemented in scipy, seepyerrors.fits.least_squares
. The syntax is identical to the standard least squares case, the only difference being thatx
also has to be alist
ornumpy.array
ofObs
.For the full API see
\n\npyerrors.fits
for fits andpyerrors.roots
for finding roots of functions.Matrix operations
\n\n\n\n
pyerrors
provides wrappers forObs
- andCObs
-valued matrix operations based onnumpy.linalg
. The supported functions include:\n
\n\n- \n
inv
for the matrix inverse.- \n
cholseky
for the Cholesky decomposition.- \n
det
for the matrix determinant.- \n
eigh
for eigenvalues and eigenvectors of hermitean matrices.- \n
eig
for eigenvalues of general matrices.- \n
pinv
for the Moore-Penrose pseudoinverse.- \n
svd
for the singular-value-decomposition.For the full API see
\n\npyerrors.linalg
.Export data
\n\n\n\nThe preferred exported file format within
\n\npyerrors
is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:\n
\n\n- What observables are stored? Possibly: How exactly are they defined.
\n- How does each single ensemble or external quantity contribute to the error of the observable?
\n- Who did write the file when and on which machine?
\nThis can be achieved by storing all information in one single file. The export routines of
\n\npyerrors
are written such that as much information as possible is written automatically as described in the following example\n\n\n\nmy_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
The format also allows to directly write out the content of
\n\nCorr
objects or lists and arrays ofObs
objects by passing the desired data topyerrors.input.json.dump_to_json
.json.gz format specification
\n\nThe first entries of the file provide optional auxiliary information:
\n\n\n
\n\n- \n
program
is a string that indicates which program was used to write the file.- \n
version
is a string that specifies the version of the format.- \n
who
is a string that specifies the user name of the creator of the file.- \n
date
is a string and contains the creation date of the file.- \n
host
is a string and contains the hostname of the machine where the file has been written.- \n
description
contains information on the content of the file. This field is not filled automatically inpyerrors
. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.The only necessary entry of the file is the field\n-
\n\nobsdata
, an array that contains the actual data.Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of
\n\nObs
,list
,numpy.ndarray
,Corr
. AllObs
inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the arrayobsdata
, are treated independently. Each entry of the arrayobsdata
has the following required entries:\n
\n\n- \n
type
is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.- \n
value
is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:- \n
layout
is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).- \n
tag
is any JSON type. It contains additional information concerning the structure. Thetag
of anObs
inpyerrors
is written here.- \n
reweighted
is a Bool that may be used to specify, whether theObs
in the structure have been reweighted.- \n
data
is an array that contains the data from MC chains. We will define it below.- \n
cdata
is an array that contains the data from external quantities with an error (Covobs
inpyerrors
). We will define it below.The array
\n\ndata
contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:\n
\n\n- \n
id
, a string that contains the name of the ensemble- \n
replica
, an array that contains an entry per replica of the ensemble.Each entry of
\n\nreplica
contains\nname
, a string that contains the name of the replica\ndeltas
, an array that contains the actual data.Each entry in
\n\ndeltas
corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of eachObs
inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.The array
\n\ncdata
contains information about the contribution of auxiliary observables, represented byCovobs
inpyerrors
, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:\n
\n\n- \n
id
, a string that identifies the covariance matrix- \n
layout
, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").- \n
cov
, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.- \n
grad
, an array that contains N entries, one for eachObs
inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.
\n\nJulia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.
\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "The class for a correlator (time dependent sequence of pe.Obs).
\n\nEverything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.
\n\nThe correlator can have two types of content: An Obs at every timeslice OR a GEVP\nmatrix at every timeslice. Other dependency (eg. spatial) are not supported.
\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "Initialize a Corr object.
\n\nParameters
\n\n\n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "- data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs
\n- padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
\n- prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion indentified for this correlator.
\nApply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "Apply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "We need to project the Correlator with a Vector to get a single value at each timeslice.
\n\nThe method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.
\n\nParameters
\n\n\n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "- i (int):\nFirst index to be picked.
\n- j (int):\nSecond index to be picked.
\nOutputs the correlator in a plotable format.
\n\nOutputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "Symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "Anti-symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "Checks whether a correlator matrices is symmetric on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "Symmetrizes the correlator matrices on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.
\n\nThe eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing
\n\n\n\n\n\nC.GEVP(t0=2)[0] # Ground state vector(s)\nC.GEVP(t0=2)[:3] # Vectors for the lowest three states\n
Parameters
\n\n\n
\n\n- t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
\n- ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
\n- sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
\n\n
- \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
\n- \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
\nOther Parameters
\n\n\n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "- state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
\nDetermines the eigenvalue of the GEVP by solving and projecting the correlator
\n\nParameters
\n\n\n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue'):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "- state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
\n- All other parameters are identical to the ones of Corr.GEVP.
\nConstructs an NxN Hankel matrix
\n\nC(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))
\n\nParameters
\n\n\n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "- N (int):\nDimension of the Hankel matrix
\n- periodic (bool, optional):\ndetermines whether the matrix is extended periodically
\nPeriodically shift the correlator by dt timeslices
\n\nParameters
\n\n\n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "- dt (int):\nnumber of timeslices
\nReverse the time ordering of the Corr
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "Thin out a correlator to suppress correlations
\n\nParameters
\n\n\n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "- spacing (int):\nKeep only every 'spacing'th entry of the correlator
\n- offset (int):\nOffset the equal spacing
\nCorrelate the correlator with another correlator or Obs
\n\nParameters
\n\n\n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "- partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
\nReweight the correlator.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
\nReturn the time symmetry average of the correlator and its partner
\n\nParameters
\n\n\n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "- partner (Corr):\nTime symmetry partner of the Corr
\n- partity (int):\nParity quantum number of the correlator, can be +1 or -1
\nReturn the first derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
\nReturn the second derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
\nReturns the effective mass of the correlator as correlator object
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "- variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
\n- guess (float):\nguess for the root finder, only relevant for the root variant
\nFits function to the data
\n\nParameters
\n\n\n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "- function (obj):\nfunction to fit to the data. See fits.least_squares for details.
\n- fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\n
\nfitrange=[4, 6]
corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.- silent (bool):\nDecides whether output is printed to the standard output.
\nExtract a plateau value from a Corr object
\n\nParameters
\n\n\n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "- plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
\n- method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
\n- auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
\nSets the attribute prange of the Corr object.
\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "Plots the correlator using the tag of the correlator as label if available.
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "- x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
\n- comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
\n- logscale (bool):\nSets y-axis to logscale.
\n- plateau (Obs):\nPlateau value to be visualized in the figure.
\n- fit_res (Fit_result):\nFit_result object to be visualized.
\n- fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
\n- ylabel (str):\nLabel for the y-axis.
\n- save (str):\npath to file in which the figure should be saved.
\n- auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
\n- hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
\n- references (list):\nList of floating point values that are displayed as horizontal lines for reference.
\n- title (string):\nOptional title of the figure.
\nProduces a spaghetti plot of the correlator suited to monitor exceptional configurations.
\n\nParameters
\n\n\n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "- logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
\nDumps the Corr into a file of chosen type
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "- filename (str):\nName of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- path (str):\nspecifies a custom path for the file (default '.')
\nProject large correlation matrix to lowest states
\n\nThis method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.
\n\nParameters
\n\n\n
\n\n- Ntrunc (int):\nRank of the target matrix.
\n- tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
\n- t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
\n- basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
\nNotes
\n\nWe have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "Initialize Covobs object.
\n\nParameters
\n\n\n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "- mean (float):\nMean value of the new Obs
\n- cov (list or array):\n2d Covariance matrix or 1d diagonal entries
\n- name (str):\nidentifier for the covariance matrix
\n- pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nReturn the variance (= square of the error) of the Covobs
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "Rank-3 epsilon tensor
\n\nBased on https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "- elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
\nRank-4 epsilon tensor
\n\nExtension of https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "- elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
\nReturns gamma matrix in Grid labeling.
\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "Represents fit results.
\n\nAttributes
\n\n\n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "- fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
\n- chisquare_by_dof (float):\nreduced chisquare.
\n- p_value (float):\np-value of the fit
\n- t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
\nApply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "Apply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "Performs a non-linear fit to y = func(x).\n ```
\n\nParameters
\n\n\n
\n\n- For an uncombined fit:
\n- x (list):\nlist of floats.
\n- y (list):\nlist of Obs.
\n- \n
func (object):\nfit function, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- OR For a combined fit:
\n- x (dict):\ndict of lists.
\n- y (dict):\ndict of lists of Obs.
\n- \n
funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}
\n\ndef func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)
\n\ndef func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)
\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
\n- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
\n- method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
\n- tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
\n- correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see
\npyerrors.obs.covariance
.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).- expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
\n- resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
\n- qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nReturns
\n\n\n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "- output (Fit_result):\nParameters and information on the fitted result.
\nPerforms a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nParameters
\n\n\n
\n\n- x (list):\nlist of Obs, or a tuple of lists of Obs
\n- y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
\n- \n
func (object):\nfunc has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
\n- expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nNotes
\n\nBased on the orthogonal distance regression module of scipy.
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "- output (Fit_result):\nParameters and information on the fitted result.
\nPerforms a linear fit to y = n + m * x and returns two Obs n, m.
\n\nParameters
\n\n\n
\n\n- x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n- y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
\nReturns
\n\n\n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "- fit_parameters (list[Obs]):\nLIist of fitted observables.
\nGenerates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.
\n\nReturns
\n\n\n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "- None
\nGenerates a plot which compares the fit to the data and displays the corresponding residuals
\n\nFor uncorrelated data the residuals are expected to be distributed ~N(0,1).
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "- None
\nCalculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.
\n\nReturns
\n\n\n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "- err (np.array(Obs)):\nError band for an array of sample values x
\nPerforms a Kolmogorov\u2013Smirnov test for the p-values of all fit object.
\n\nParameters
\n\n\n
\n\n- objects (list):\nList of fit results to include in the analysis (optional).
\nReturns
\n\n\n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "- None
\n\n\n
pyerrors
includes aninput
submodule in which input routines and parsers for the output of various numerical programs are contained.Jackknife samples
\n\nFor comparison with other analysis workflows
\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "pyerrors
can also generate jackknife samples from anObs
object or import jackknife samples into anObs
object.\nSeepyerrors.obs.Obs.export_jackknife
andpyerrors.obs.import_jackknife
for details.Extract generic MCMC data from a bdio file
\n\nread_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "- data (List[Obs]):\nExtracted data
\nWrite Obs to a bdio file according to ADerrors conventions
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "- success (int):\nreturns 0 is successful
\nExtract mesons data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "- data (dict):\nExtracted meson data
\nExtract dSdm data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, kappa)
\n\nread_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nExport a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "- xml_str (str):\nXML formatted string of the input data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "- None
\nImport a list of Obs from an xml.gz file in the Zeuthen pobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from a string in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- content (str):\nXML string containing the data
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from an xml.gz file in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator |is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "- xml_str (str):\nXML string generated from the data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "- None
\nRead hadrons meson hdf5 file and extract the meson labeled 'meson'
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
\n- gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at source and sink.\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "- corr (Corr):\nCorrelator of the source sink combination in question.
\nRead hadrons FlowObservables hdf5 file and extract t0
\n\nParameters
\n\n\n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\nRead hadrons DistillationContraction hdf5 files in given directory structure
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the directories to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "- result (dict):\nextracted DistillationContration data
\nndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)
\n\nAn array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)
\n\nArrays should be constructed using
\n\narray
,zeros
orempty
(refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)
) for instantiating an array.For more information, refer to the
\n\nnumpy
module and examine the\nmethods and attributes of an array.Parameters
\n\n\n
\n\n- (for the __new__ method; see Notes below)
\n- shape (tuple of ints):\nShape of created array.
\n- dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
\n- buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
\n- offset (int, optional):\nOffset of array data in buffer.
\n- strides (tuple of ints, optional):\nStrides of data in memory.
\n- order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
\nAttributes
\n\n\n
\n\n- T (ndarray):\nTranspose of the array.
\n- data (buffer):\nThe array's elements, in memory.
\n- dtype (dtype object):\nDescribes the format of the elements in the array.
\n- flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
\n- flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g.,
\nx.flat = 3
(Seendarray.flat
for\nassignment examples; TODO).- imag (ndarray):\nImaginary part of the array.
\n- real (ndarray):\nReal part of the array.
\n- size (int):\nNumber of elements in the array.
\n- itemsize (int):\nThe memory use of each array element in bytes.
\n- nbytes (int):\nThe total number of bytes required to store the array data,\ni.e.,
\nitemsize * size
.- ndim (int):\nThe array's number of dimensions.
\n- shape (tuple of ints):\nShape of the array.
\n- strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous
\n(3, 4)
array of type\nint16
in C-order has strides(8, 2)
. This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4
).- ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
\n- base (ndarray):\nIf the array is a view into another array, that array is its
\nbase
\n(unless that array is also a view). Thebase
array is where the\narray data is actually stored.See Also
\n\n\n\n
array
: Construct an array.
\nzeros
: Create an array, each element of which is zero.
\nempty
: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype
: Create a data-type.
\nnumpy.typing.NDArray
: An ndarray alias :term:generic <generic type>
\nw.r.t. itsdtype.type <numpy.dtype.type>
.Notes
\n\nThere are two modes of creating an array using
\n\n__new__
:\n
\n\n- If
\nbuffer
is None, then onlyshape
,dtype
, andorder
\nare used.- If
\nbuffer
is an object exposing the buffer interface, then\nall keywords are interpreted.No
\n\n__init__
method is needed because the array is fully initialized\nafter the__new__
method.Examples
\n\nThese examples illustrate the low-level
\n\nndarray
constructor. Refer\nto theSee Also
section above for easier ways of constructing an\nndarray.First mode,
\n\nbuffer
is None:\n\n\n\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n [ nan, 2.5e-323]])\n
Second mode:
\n\n\n\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "\n>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n... offset=np.int_().itemsize,\n... dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
Gamma_5 hermitean conjugate
\n\nUses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.
\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "Read hadrons ExternalLeg hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "- result (Npr_matrix):\nread Cobs-matrix
\nRead hadrons Bilinear hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "- result_dict (dict[Npr_matrix]):\nextracted Bilinears
\nRead hadrons FourquarkFullyConnected hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- vertices (list):\nVertex functions to be extracted.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "- result_dict (dict):\nextracted fourquark matrizes
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\nReturns
\n\n\n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "- json_string (str):\nString for export to .json(.gz) file
\nExport a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "- Null
\nReconstruct a list of Obs or structures containing Obs from a json string.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- json_string (str):\njson string containing the data.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nImport a list of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nExport a dict of Obs or structures containing Obs to a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "- None
\nImport a dict of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\n- reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "- data (Obs / list / Corr):\nRead data
\n- or
\n- data (dict):\nRead data and meta-data
\nCompute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).
\n\nIt is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.
\n\nA linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.
\n\nParameters
\n\n\n
\n\n- t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
\n- observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
\nReturns
\n\n\n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "- root (Obs):\nThe root of the data series.
\nRead pbp format from given folder structure.
\n\nParameters
\n\n\n
\n\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\nReturns
\n\n\n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "- result (list[Obs]):\nlist of observables read
\nRead rwms format from given folder structure. Returns a list of length nrw
\n\nParameters
\n\n\n
\n\n- path (str):\npath that contains the data files
\n- prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
\n- version (str):\nversion of openQCD, default 2.0
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- print_err (bool):\nPrint additional information that is useful for debugging.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "- rwms (Obs):\nReweighting factors read
\nExtract t0/a^2 from given .ms.dat files. Returns t0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2
\n\n- c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "- t0 (Obs):\nExtracted t0
\nExtract w0/a from given .ms.dat files. Returns w0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2
\n\n)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "- w0 (Obs):\nExtracted w0
\nRead the topologial charge based on openQCD gradient flow measurements.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nEither openQCD or sfqcd, depending on the data.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\n- integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "- result (Obs):\nRead topological charge
\nRead the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.
\n\nNote: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.
\n\nParameters
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
\nReturns the projection to the topological charge sector defined by target.
\n\nParameters
\n\n\n
\n\n- path (Obs):\nTopological charge.
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\nReturns
\n\n\n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nConstructs reweighting factors to a specified topological sector.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
\n- r_stop (list):\nlast configurations that need to be read (per replicum)
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nRead data from files in the specified directory with the specified prefix and quark combination extension, and return a
\n\nCorr
object containing the data.Parameters
\n\n\n
\n\n- path (str):\nThe directory to search for the files in.
\n- prefix (str):\nThe prefix to match the files against.
\n- qc (str):\nThe quark combination extension to match the files against.
\n- corr (str):\nThe correlator to extract data for.
\n- sep (str, optional):\nThe separator to use when parsing the replika names.
\n- \n
**kwargs: Additional keyword arguments. The following keyword arguments are recognized:
\n\n\n
- names (List[str]): A list of names to use for the replicas.
\n- files (List[str]): A list of files to read data from.
\n- idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
\nReturns
\n\n\n
\n\n- Corr: A complex valued
\nCorr
object containing the data read from the files. In case of boudary to bulk correlators.- or
\n- CObs: A complex valued
\nCObs
object containing the data read from the files. In case of boudary to boundary correlators.Raises
\n\n\n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "- FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
\n- IOError: If there is an error reading a file.
\n- struct.error: If there is an error unpacking binary data.
\nWrite DataFrame including Obs or Corr valued columns to sqlite database.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be written to the database.
\n- table_name (str):\nName of the table in the database.
\n- db (str):\nPath to the sqlite database.
\n- if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
\n- gz (bool):\nIf True the json strings are gzipped.
\nReturns
\n\n\n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "- None
\nExecute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.
\n\nParameters
\n\n\n
\n\n- sql (str):\nSQL query to be executed.
\n- db (str):\nPath to the sqlite database.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\nReturns
\n\n\n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nExports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.
\n\nBefore making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be dumped to a file.
\n- fname (str):\nFilename of the output file.
\n- gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
\nReturns
\n\n\n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "- None
\nImports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\nReturns
\n\n\n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nRead sfcf files from given folder structure.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to the sfcf files.
\n- prefix (str):\nPrefix of the sfcf files.
\n- name (str):\nName of the correlation function to read.
\n- quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
\n- corr_type (str):\nType of correlation function to read. Can be\n
\n\n
- 'bi' for boundary-inner
\n- 'bb' for boundary-boundary
\n- 'bib' for boundary-inner-boundary
\n- noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
\n- wf (int):\nID of wave function
\n- wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
\n- im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\n- version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
\n- cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
\n- replica (list):\nlist of replica to be read, default is all
\n- files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
\n- check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "- result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
\nSorts a list of names of replika with searches for
\n\nr
andid
in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.Parameters
\n\n\n
\n\n- ll (list):\nlist to sort
\nReturns
\n\n\n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "- ll (list):\nsorted list
\nChecks if list of configurations is contained in an idl
\n\nParameters
\n\n\n
\n\n- idl (range or list):\nidl of the current replicum
\n- che (list):\nlist of configurations to be checked against
\nReturns
\n\n\n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.integrate": {"fullname": "pyerrors.integrate", "modulename": "pyerrors.integrate", "kind": "module", "doc": "\n"}, "pyerrors.integrate.quad": {"fullname": "pyerrors.integrate.quad", "modulename": "pyerrors.integrate", "qualname": "quad", "kind": "function", "doc": "- miss_str (str):\nstring with integers of which idls are missing
\nPerforms a (one-dimensional) numeric integration of f(p, x) from a to b.
\n\nThe integration is performed using scipy.integrate.quad().\nAll parameters that can be passed to scipy.integrate.quad may also be passed to this function.\nThe output is the same as for scipy.integrate.quad, the first element being an Obs.
\n\nParameters
\n\n\n
\n\n- \n
func (object):\nfunction to integrate, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(p, x):\n return p[0] + p[1] * x + p[2] * anp.sinh(x)\n
where x is the integration variable.
- p (list of floats or Obs):\nparameters of the function func.
\n- a (float or Obs):\nLower limit of integration (use -numpy.inf for -infinity).
\n- b (float or Obs):\nUpper limit of integration (use -numpy.inf for -infinity).
\n- All parameters of scipy.integrate.quad
\nReturns
\n\n\n
\n", "signature": "(func, p, a, b, **kwargs):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "- y (Obs):\nThe integral of func from
\na
tob
.- abserr (float):\nAn estimate of the absolute error in the result.
\n- infodict (dict):\nA dictionary containing additional information.\nRun scipy.integrate.quad_explain() for more information.
\n- message: A convergence message.
\n- explain: Appended only with 'cos' or 'sin' weighting and infinite\nintegration limits, it contains an explanation of the codes in\ninfodict['ierlst']
\nMatrix multiply all operands.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- This implementation is faster compared to standard multiplication via the @ operator.
\nMatrix multiply both operands making use of the jackknife approximation.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- For large matrices this is considerably faster compared to matmul.
\nWrapper for numpy.einsum
\n\nParameters
\n\n\n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "- subscripts (str):\nSubscripts for summation (see numpy documentation for details)
\n- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\nInverse of Obs or CObs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "Cholesky decomposition of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "Determinant of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "Computes the Moore-Penrose pseudoinverse of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "Computes the singular value decomposition of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "Print information about version of python, pyerrors and dependencies.
\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "pyerrors wrapper for the errorbars method of matplotlib
\n\nParameters
\n\n\n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "- x (list):\nA list of x-values which can be Obs.
\n- y (list):\nA list of y-values which can be Obs.
\n- axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
\nDump object into pickle file.
\n\nParameters
\n\n\n
\n\n- obj (object):\nobject to be saved in the pickle file
\n- name (str):\nname of the file
\n- path (str):\nspecifies a custom path for the file (default '.')
\nReturns
\n\n\n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "- None
\nLoad object from pickle file.
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the file
\nReturns
\n\n\n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "- object (Obs):\nLoaded Object
\nGenerate an Obs object with given value, dvalue and name for test purposes
\n\nParameters
\n\n\n
\n\n- value (float):\ncentral value of the Obs to be generated.
\n- dvalue (float):\nerror of the Obs to be generated.
\n- name (str):\nname of the ensemble for which the Obs is to be generated.
\n- samples (int):\nnumber of samples for the Obs (default 1000).
\nReturns
\n\n\n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "- res (Obs):\nGenerated Observable
\nGenerate observables with given covariance and autocorrelation times.
\n\nParameters
\n\n\n
\n\n- means (list):\nlist containing the mean value of each observable.
\n- cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
\n- name (str):\nensemble name for the data to be geneated.
\n- tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
\n- samples (int):\nnumber of samples to be generated for each observable.
\nReturns
\n\n\n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "- corr_obs (list[Obs]):\nGenerated observable list
\nMatrix pencil method to extract k energy levels from data
\n\nImplementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
\n\nParameters
\n\n\n
\n\n- data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
\n- k (int):\nNumber of states to extract (default 1).
\n- p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
\nReturns
\n\n\n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "- energy_levels (list[Obs]):\nExtracted energy levels
\nClass for a general observable.
\n\nInstances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "- S_global (float):\nStandard value for S (default 2.0)
\n- S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
\n- tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
\n- tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\n- N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
\n- N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\nInitialize Obs object.
\n\nParameters
\n\n\n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "- samples (list):\nlist of numpy arrays containing the Monte Carlo samples
\n- names (list):\nlist of strings labeling the individual samples
\n- idl (list, optional):\nlist of ranges or lists on which the samples are defined
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nOutput detailed properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "- ens_content (bool):\nprint details about the ensembles and replica if true.
\nReweight the obs with given rewighting factors.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nChecks whether the observable is zero within 'sigma' standard errors.
\n\nParameters
\n\n\n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "- sigma (int):\nNumber of standard errors used for the check.
\n- Works only properly when the gamma method was run.
\nChecks whether the observable is zero within a given tolerance.
\n\nParameters
\n\n\n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "- atol (float):\nAbsolute tolerance (for details see numpy documentation).
\nPlot integrated autocorrelation time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot normalized autocorrelation function time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot replica distribution for each ensemble with more than one replicum.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "Plot derived Monte Carlo history for each ensemble
\n\nParameters
\n\n\n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "- expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
\nPlot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nDump the Obs to a file 'name' of chosen format.
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "- filename (str):\nname of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- description (str):\nDescription for output file, only relevant for json.gz format.
\n- path (str):\nspecifies a custom path for the file (default '.')
\nExport jackknife samples from the Obs
\n\nReturns
\n\n\n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.export_bootstrap": {"fullname": "pyerrors.obs.Obs.export_bootstrap", "modulename": "pyerrors.obs", "qualname": "Obs.export_bootstrap", "kind": "function", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
\nExport bootstrap samples from the Obs
\n\nParameters
\n\n\n
\n\n- samples (int):\nNumber of bootstrap samples to generate.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples.\nIf not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
\n- save_rng (str):\nSave the random numbers to a file if a path is specified.
\nReturns
\n\n\n
\n", "signature": "(self, samples=500, random_numbers=None, save_rng=None):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N import_bootstrap samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived bootstrap samples\nshould agree with samples from a full bootstrap analysis up to O(1/N).
\nClass for a complex valued observable.
\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "Executes the gamma_method for the real and the imaginary part.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "Checks whether both real and imaginary part are zero within machine precision.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
\n- man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use
\n\nnew_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "Reweight a list of observables.
\n\nParameters
\n\n\n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nCorrelate two observables.
\n\nParameters
\n\n\n
\n\n- obs_a (Obs):\nFirst observable
\n- obs_b (Obs):\nSecond observable
\nNotes
\n\nKeep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).
\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "Calculates the error covariance matrix of a set of observables.
\n\nWARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.
\n\nThe gamma method has to be applied first to all observables.
\n\nParameters
\n\n\n
\n\n- obs (list or numpy.ndarray):\nList or one dimensional array of Obs
\n- visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
\n- correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
\n- smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
\nNotes
\n\nThe error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "Imports jackknife samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.import_bootstrap": {"fullname": "pyerrors.obs.import_bootstrap", "modulename": "pyerrors.obs", "qualname": "import_bootstrap", "kind": "function", "doc": "- jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\nImports bootstrap samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(boots, name, random_numbers):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "- boots (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N bootstrap samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples,\nwhere samples is the number of bootstrap samples and length is the length of the original Monte Carlo\nchain to be reconstructed.
\nCombine all observables in list_of_obs into one new observable
\n\nParameters
\n\n\n
\n\n- list_of_obs (list):\nlist of the Obs object to be combined
\nNotes
\n\nIt is not possible to combine obs which are based on the same replicum
\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "Create an Obs based on mean(s) and a covariance matrix
\n\nParameters
\n\n\n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "- mean (list of floats or float):\nN mean value(s) of the new Obs
\n- cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
\n- name (str):\nidentifier for the covariance matrix
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nFinds the root of the function func(x, d) where d is an
\n\nObs
.Parameters
\n\n\n
\n\n- d (Obs):\nObs passed to the function.
\n- \n
func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:
\n\n\n\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
- \n
guess (float):\nInitial guess for the minimization.
Returns
\n\n\n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8312}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 108}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 94}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 326}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 902}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 468}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 181}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1069}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 421}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.integrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.integrate.quad": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 366}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.export_bootstrap": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 185}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.import_bootstrap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 107}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 181}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 246, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 54, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 246}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 54, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 55}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 52}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 9}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 11}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 83, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 10, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 35}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.44030650891055}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.integrate.quad": {"tf": 5.291502622129181}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.708203932499369}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 5.830951894845301}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.import_bootstrap": {"tf": 4.242640687119285}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}}, "df": 160, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 9}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 20}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 33}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 79}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 44}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "l": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 19}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 29, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 25, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 19, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "9": {"5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 7, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"4": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "8": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 64.02343321003646}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 10.535653752852738}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 17.86057109949175}, "pyerrors.fits.total_least_squares": {"tf": 15.427248620541512}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 20.904544960366874}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.utils": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.integrate": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 12.922847983320086}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 6.164414002968976}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.import_bootstrap": {"tf": 5.0990195135927845}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.488088481701515}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 246, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 10}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 11}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 39}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 39, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 12}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 65}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.366600265340756}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 50, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 38, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 14}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 59}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 5, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 102}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 27}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 10}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 6, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 4.69041575982343}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 77, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 34, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 59}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 23, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 36, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.0710678118654755}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 70, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 8, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 5}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}}, "df": 39}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 22}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 41, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 15, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 4}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 32, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 11}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 16}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 12, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 29}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 20}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 10}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 25, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 6}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 32, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 9, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.123105625617661}, "pyerrors.fits.total_least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 3.1622776601683795}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 110, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 37, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 29}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 73, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 10}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 45, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 4, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 22}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 9}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 9}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 7}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "d": {"5": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 36, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}}, "df": 20, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 8}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 66, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 5}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 40}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.import_bootstrap": {"tf": 2}}, "df": 2}}}}}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.492422502470642}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.total_least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 3.3166247903554}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 4.123105625617661}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}}, "df": 124, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 3, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 6}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 36}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 31}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 35}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.831760866327848}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 97, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 5}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 31}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 5}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 49, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}}, "df": 11}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 11, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4}, "k": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 56, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 3.1622776601683795}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 2.6457513110645907}}, "df": 10}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 13}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 16}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 5}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 15, "o": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 13, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 21}}, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 32, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 24}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 7, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 27, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 19, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 17}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 13, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 10, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 20, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 15}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 16, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 64}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 3}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 8}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 8}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 7}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 26}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "j": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22, "h": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "kind": "module", "doc": "- res (Obs):\n
\nObs
valued root of the function.What is pyerrors?
\n\n\n\n
pyerrors
is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:\n
\n\n- automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
\n- treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
\n- coherent error propagation for data from different Markov chains.
\n- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
\n- real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
\nMore detailed examples can found in the GitHub repository
\n\n.
If you use
\n\npyerrors
for research that leads to a publication please consider citing:\n
\n\n- Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
\n- Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
\n- Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
\nand
\n\n\n
\n\n- Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
\nwhere applicable.
\n\nThere exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.
\n\nInstallation
\n\nInstall the most recent release using pip and pypi:
\n\n\n\n\n\npython -m pip install pyerrors # Fresh install\npython -m pip install -U pyerrors # Update\n
Install the most recent release using conda and conda-forge:
\n\n\n\n\n\nconda install -c conda-forge pyerrors # Fresh install\nconda update -c conda-forge pyerrors # Update\n
Install the current
\n\ndevelop
version:\n\n\n\npython -m pip install git+https://github.com/fjosw/pyerrors.git@develop\n
Basic example
\n\n\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method() # Estimate the statistical error\nprint(my_new_obs) # Print the result to stdout\n> 0.31498(72)\n
The
\n\nObs
class\n\n
pyerrors
introduces a new datatype,Obs
, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAnObs
object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.\n\n\n\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
Error propagation
\n\nWhen performing mathematical operations on
\n\nObs
objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.The
\n\nObs
class is designed such that mathematical numpy functions can be used onObs
just as for regular floats.\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
Error estimation
\n\nThe error estimation within
\n\npyerrors
is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest thegamma_method
can be called as detailed in the following example.\n\n\n\nmy_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n> t_int 2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The
\n\ngamma_method
is not automatically called after every intermediate step in order to prevent computational overhead.We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the
\n\ngamma_method
as parameter.\n\n\n\nmy_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n> t_int 3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods
\n\npyerrors.obs.Obs.plot_tauint
andpyerrors.obs.Obs.plot_rho
.If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.
\n\nExponential tails
\n\nSlow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the
\n\ngamma_method
as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.\n\n\n\nmy_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n> t_int 3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20, N_sigma = 1\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
For the full API see
\n\npyerrors.obs.Obs.gamma_method
.Multiple ensembles/replica
\n\nError propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their
\n\nname
.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 2 ensembles:\n> \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n> \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.
\n\n\n\n
pyerrors
identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar|
in the name of the data set.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1'\n> \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n> \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
Error estimation for multiple ensembles
\n\nIn order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.
\n\n\n\n\n\npe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
In case the
\n\ngamma_method
is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to thegamma_method
still dominates over the dictionaries.Irregular Monte Carlo chains
\n\n\n\n
Obs
objects defined on irregular Monte Carlo chains can be initialized with the parameteridl
.\n\n\n\n# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result 9.98319881e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result 9.99100712e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result 1.01718064e+00\n> 5 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n\n
Obs
objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g.
\n\npyerrors.obs.Obs.plot_rho
orpyerrors.obs.Obs.plot_tauint
.For the full API see
\n\npyerrors.obs.Obs
.Correlators
\n\nWhen one is not interested in single observables but correlation functions,
\n\npyerrors
offers theCorr
class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize aCorr
objects one needs to arrange the data as a list ofObs
\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0 0.7957(80)\n> 1 0.5156(51)\n> 2 0.3227(33)\n> 3 0.2041(21)\n
In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.
\n\n\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0\n> 1 0.7957(80)\n> 2 0.5156(51)\n> 3 0.3227(33)\n> 4 0.2041(21)\n> 5\n
The individual entries of a correlator can be accessed via slicing
\n\n\n\n\n\nprint(my_corr[3])\n> 0.3227(33)\n
Error propagation with the
\n\nCorr
class works very similar toObs
objects. Mathematical operations are overloaded andCorr
objects can be computed together with otherCorr
objects,Obs
objects or real numbers and integers.\n\n\n\nmy_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n\n
pyerrors
provides the user with a set of regularly used methods for the manipulation of correlator objects:\n
\n\n- \n
Corr.gamma_method
applies the gamma method to all entries of the correlator.- \n
Corr.m_eff
to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.- \n
Corr.deriv
returns the first derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.second_deriv
returns the second derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.symmetric
symmetrizes parity even correlations functions, assuming periodic boundary conditions.- \n
Corr.anti_symmetric
anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.- \n
Corr.T_symmetry
averages a correlator with its time symmetry partner, assuming fixed boundary conditions.- \n
Corr.plateau
extracts a plateau value from the correlator in a given range.- \n
Corr.roll
periodically shifts the correlator.- \n
Corr.reverse
reverses the time ordering of the correlator.- \n
Corr.correlate
constructs a disconnected correlation function from the correlator and anotherCorr
orObs
object.- \n
Corr.reweight
reweights the correlator.\n\n
pyerrors
can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (seepyerrors.correlators.Corr.GEVP
).For the full API see
\n\npyerrors.correlators.Corr
.Complex valued observables
\n\n\n\n
pyerrors
can handle complex valued observables via the classpyerrors.obs.CObs
.\nCObs
are initialized with a real and an imaginary part which both can beObs
valued.\n\n\n\nmy_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
Elementary mathematical operations are overloaded and samples are properly propagated as for the
\n\nObs
class.\n\n\n\nmy_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
The
\n\nCovobs
classIn many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The
\n\nCovobs
class allows to define such quantities inpyerrors
. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.This concept is built into the definition of
\n\nCovobs
. Inpyerrors
, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enterscov_Obs
, since the second argument of this function is the covariance matrix of theCovobs
.\n\n\n\nimport pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result 1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n> pi^0 mass 5.00000000e-04\n> 0 samples in 1 ensemble:\n> \u00b7 Covobs 'pi^0 mass'\n
The resulting object
\n\nmpi
is anObs
that contains aCovobs
. In the following, it may be handled as any otherObs
. The contribution of the covariance matrix to the error of anObs
is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of theObs
with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.Correlated auxiliary data is defined similarly to above, e.g., via
\n\n\n\n\n\nRAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
where
\n\nRAP
now is a list of twoObs
that contains the two correlated parameters.Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the
\n\nCovobs
class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of anObs
o
with respect to a covariance matrix with the identifying stringk
may be accessed via\n\n\n\no.covobs[k].grad\n
Error propagation in iterative algorithms
\n\n\n\n
pyerrors
supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.Least squares fits
\n\nStandard non-linear least square fits with errors on the dependent but not the independent variables can be performed with
\n\npyerrors.fits.least_squares
. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.Fit functions have to be of the following form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[1] * anp.exp(-a[0] * x)\n
It is important that numerical functions refer to
\n\nautograd.numpy
instead ofnumpy
for the automatic differentiation in iterative algorithms to work properly.Fits can then be performed via
\n\n\n\n\n\nfit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n> Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value = 0.5673\n> Fit parameters:\n> 0 0.0548(28)\n> 1 1.933(64)\n
where x is a
\n\nlist
ornumpy.array
offloats
and y is alist
ornumpy.array
ofObs
.Data stored in
\n\nCorr
objects can be fitted directly using theCorr.fit
method.\n\n\n\nmy_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.
\n\nFor fit functions with multiple independent variables the fit function can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
\n\n
pyerrors
also supports correlated fits which can be triggered via the parametercorrelated_fit=True
.\nDetails about how the required covariance matrix is estimated can be found inpyerrors.obs.covariance
.\nDirect visualizations of the performed fits can be triggered viaresplot=True
orqqplot=True
.For all available options including combined fits to multiple datasets see
\n\npyerrors.fits.least_squares
.Total least squares fits
\n\n\n\n
pyerrors
can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to as orthogonal distance regression as implemented in scipy, seepyerrors.fits.least_squares
. The syntax is identical to the standard least squares case, the only difference being thatx
also has to be alist
ornumpy.array
ofObs
.For the full API see
\n\npyerrors.fits
for fits andpyerrors.roots
for finding roots of functions.Matrix operations
\n\n\n\n
pyerrors
provides wrappers forObs
- andCObs
-valued matrix operations based onnumpy.linalg
. The supported functions include:\n
\n\n- \n
inv
for the matrix inverse.- \n
cholseky
for the Cholesky decomposition.- \n
det
for the matrix determinant.- \n
eigh
for eigenvalues and eigenvectors of hermitean matrices.- \n
eig
for eigenvalues of general matrices.- \n
pinv
for the Moore-Penrose pseudoinverse.- \n
svd
for the singular-value-decomposition.For the full API see
\n\npyerrors.linalg
.Export data
\n\n\n\nThe preferred exported file format within
\n\npyerrors
is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:\n
\n\n- What observables are stored? Possibly: How exactly are they defined.
\n- How does each single ensemble or external quantity contribute to the error of the observable?
\n- Who did write the file when and on which machine?
\nThis can be achieved by storing all information in one single file. The export routines of
\n\npyerrors
are written such that as much information as possible is written automatically as described in the following example\n\n\n\nmy_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
The format also allows to directly write out the content of
\n\nCorr
objects or lists and arrays ofObs
objects by passing the desired data topyerrors.input.json.dump_to_json
.json.gz format specification
\n\nThe first entries of the file provide optional auxiliary information:
\n\n\n
\n\n- \n
program
is a string that indicates which program was used to write the file.- \n
version
is a string that specifies the version of the format.- \n
who
is a string that specifies the user name of the creator of the file.- \n
date
is a string and contains the creation date of the file.- \n
host
is a string and contains the hostname of the machine where the file has been written.- \n
description
contains information on the content of the file. This field is not filled automatically inpyerrors
. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.The only necessary entry of the file is the field\n-
\n\nobsdata
, an array that contains the actual data.Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of
\n\nObs
,list
,numpy.ndarray
,Corr
. AllObs
inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the arrayobsdata
, are treated independently. Each entry of the arrayobsdata
has the following required entries:\n
\n\n- \n
type
is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.- \n
value
is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:- \n
layout
is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).- \n
tag
is any JSON type. It contains additional information concerning the structure. Thetag
of anObs
inpyerrors
is written here.- \n
reweighted
is a Bool that may be used to specify, whether theObs
in the structure have been reweighted.- \n
data
is an array that contains the data from MC chains. We will define it below.- \n
cdata
is an array that contains the data from external quantities with an error (Covobs
inpyerrors
). We will define it below.The array
\n\ndata
contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:\n
\n\n- \n
id
, a string that contains the name of the ensemble- \n
replica
, an array that contains an entry per replica of the ensemble.Each entry of
\n\nreplica
contains\nname
, a string that contains the name of the replica\ndeltas
, an array that contains the actual data.Each entry in
\n\ndeltas
corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of eachObs
inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.The array
\n\ncdata
contains information about the contribution of auxiliary observables, represented byCovobs
inpyerrors
, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:\n
\n\n- \n
id
, a string that identifies the covariance matrix- \n
layout
, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").- \n
cov
, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.- \n
grad
, an array that contains N entries, one for eachObs
inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.
\n\nJulia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.
\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "The class for a correlator (time dependent sequence of pe.Obs).
\n\nEverything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.
\n\nThe correlator can have two types of content: An Obs at every timeslice OR a GEVP\nmatrix at every timeslice. Other dependency (eg. spatial) are not supported.
\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "Initialize a Corr object.
\n\nParameters
\n\n\n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "- data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs
\n- padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
\n- prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion indentified for this correlator.
\nApply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "Apply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "We need to project the Correlator with a Vector to get a single value at each timeslice.
\n\nThe method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.
\n\nParameters
\n\n\n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "- i (int):\nFirst index to be picked.
\n- j (int):\nSecond index to be picked.
\nOutputs the correlator in a plotable format.
\n\nOutputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "Symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "Anti-symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "Checks whether a correlator matrices is symmetric on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.trace": {"fullname": "pyerrors.correlators.Corr.trace", "modulename": "pyerrors.correlators", "qualname": "Corr.trace", "kind": "function", "doc": "Calculates the per-timeslice trace of a correlator matrix.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "Symmetrizes the correlator matrices on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.
\n\nThe eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing
\n\n\n\n\n\nC.GEVP(t0=2)[0] # Ground state vector(s)\nC.GEVP(t0=2)[:3] # Vectors for the lowest three states\n
Parameters
\n\n\n
\n\n- t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
\n- ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
\n- sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
\n\n
- \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
\n- \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
\nOther Parameters
\n\n\n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "- state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
\nDetermines the eigenvalue of the GEVP by solving and projecting the correlator
\n\nParameters
\n\n\n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue'):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "- state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
\n- All other parameters are identical to the ones of Corr.GEVP.
\nConstructs an NxN Hankel matrix
\n\nC(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))
\n\nParameters
\n\n\n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "- N (int):\nDimension of the Hankel matrix
\n- periodic (bool, optional):\ndetermines whether the matrix is extended periodically
\nPeriodically shift the correlator by dt timeslices
\n\nParameters
\n\n\n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "- dt (int):\nnumber of timeslices
\nReverse the time ordering of the Corr
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "Thin out a correlator to suppress correlations
\n\nParameters
\n\n\n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "- spacing (int):\nKeep only every 'spacing'th entry of the correlator
\n- offset (int):\nOffset the equal spacing
\nCorrelate the correlator with another correlator or Obs
\n\nParameters
\n\n\n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "- partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
\nReweight the correlator.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
\nReturn the time symmetry average of the correlator and its partner
\n\nParameters
\n\n\n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "- partner (Corr):\nTime symmetry partner of the Corr
\n- partity (int):\nParity quantum number of the correlator, can be +1 or -1
\nReturn the first derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
\nReturn the second derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
\nReturns the effective mass of the correlator as correlator object
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "- variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
\n- guess (float):\nguess for the root finder, only relevant for the root variant
\nFits function to the data
\n\nParameters
\n\n\n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "- function (obj):\nfunction to fit to the data. See fits.least_squares for details.
\n- fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\n
\nfitrange=[4, 6]
corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.- silent (bool):\nDecides whether output is printed to the standard output.
\nExtract a plateau value from a Corr object
\n\nParameters
\n\n\n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "- plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
\n- method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
\n- auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
\nSets the attribute prange of the Corr object.
\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "Plots the correlator using the tag of the correlator as label if available.
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "- x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
\n- comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
\n- logscale (bool):\nSets y-axis to logscale.
\n- plateau (Obs):\nPlateau value to be visualized in the figure.
\n- fit_res (Fit_result):\nFit_result object to be visualized.
\n- fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
\n- ylabel (str):\nLabel for the y-axis.
\n- save (str):\npath to file in which the figure should be saved.
\n- auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
\n- hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
\n- references (list):\nList of floating point values that are displayed as horizontal lines for reference.
\n- title (string):\nOptional title of the figure.
\nProduces a spaghetti plot of the correlator suited to monitor exceptional configurations.
\n\nParameters
\n\n\n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "- logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
\nDumps the Corr into a file of chosen type
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "- filename (str):\nName of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- path (str):\nspecifies a custom path for the file (default '.')
\nProject large correlation matrix to lowest states
\n\nThis method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.
\n\nParameters
\n\n\n
\n\n- Ntrunc (int):\nRank of the target matrix.
\n- tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
\n- t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
\n- basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
\nNotes
\n\nWe have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "Initialize Covobs object.
\n\nParameters
\n\n\n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "- mean (float):\nMean value of the new Obs
\n- cov (list or array):\n2d Covariance matrix or 1d diagonal entries
\n- name (str):\nidentifier for the covariance matrix
\n- pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nReturn the variance (= square of the error) of the Covobs
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "Rank-3 epsilon tensor
\n\nBased on https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "- elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
\nRank-4 epsilon tensor
\n\nExtension of https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "- elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
\nReturns gamma matrix in Grid labeling.
\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "Represents fit results.
\n\nAttributes
\n\n\n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "- fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
\n- chisquare_by_dof (float):\nreduced chisquare.
\n- p_value (float):\np-value of the fit
\n- t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
\nApply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "Apply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "Performs a non-linear fit to y = func(x).\n ```
\n\nParameters
\n\n\n
\n\n- For an uncombined fit:
\n- x (list):\nlist of floats.
\n- y (list):\nlist of Obs.
\n- \n
func (object):\nfit function, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- OR For a combined fit:
\n- x (dict):\ndict of lists.
\n- y (dict):\ndict of lists of Obs.
\n- \n
funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}
\n\ndef func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)
\n\ndef func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)
\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
\n- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
\n- method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
\n- tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
\n- correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see
\npyerrors.obs.covariance
.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).- expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
\n- resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
\n- qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nReturns
\n\n\n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "- output (Fit_result):\nParameters and information on the fitted result.
\nPerforms a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nParameters
\n\n\n
\n\n- x (list):\nlist of Obs, or a tuple of lists of Obs
\n- y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
\n- \n
func (object):\nfunc has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
\n- expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nNotes
\n\nBased on the orthogonal distance regression module of scipy.
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "- output (Fit_result):\nParameters and information on the fitted result.
\nPerforms a linear fit to y = n + m * x and returns two Obs n, m.
\n\nParameters
\n\n\n
\n\n- x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n- y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
\nReturns
\n\n\n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "- fit_parameters (list[Obs]):\nLIist of fitted observables.
\nGenerates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.
\n\nReturns
\n\n\n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "- None
\nGenerates a plot which compares the fit to the data and displays the corresponding residuals
\n\nFor uncorrelated data the residuals are expected to be distributed ~N(0,1).
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "- None
\nCalculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.
\n\nReturns
\n\n\n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "- err (np.array(Obs)):\nError band for an array of sample values x
\nPerforms a Kolmogorov\u2013Smirnov test for the p-values of all fit object.
\n\nParameters
\n\n\n
\n\n- objects (list):\nList of fit results to include in the analysis (optional).
\nReturns
\n\n\n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "- None
\n\n\n
pyerrors
includes aninput
submodule in which input routines and parsers for the output of various numerical programs are contained.Jackknife samples
\n\nFor comparison with other analysis workflows
\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "pyerrors
can also generate jackknife samples from anObs
object or import jackknife samples into anObs
object.\nSeepyerrors.obs.Obs.export_jackknife
andpyerrors.obs.import_jackknife
for details.Extract generic MCMC data from a bdio file
\n\nread_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "- data (List[Obs]):\nExtracted data
\nWrite Obs to a bdio file according to ADerrors conventions
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "- success (int):\nreturns 0 is successful
\nExtract mesons data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "- data (dict):\nExtracted meson data
\nExtract dSdm data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, kappa)
\n\nread_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nExport a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "- xml_str (str):\nXML formatted string of the input data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "- None
\nImport a list of Obs from an xml.gz file in the Zeuthen pobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from a string in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- content (str):\nXML string containing the data
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from an xml.gz file in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator |is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "- xml_str (str):\nXML string generated from the data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "- None
\nRead hadrons meson hdf5 file and extract the meson labeled 'meson'
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
\n- gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at source and sink.\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "- corr (Corr):\nCorrelator of the source sink combination in question.
\nRead hadrons FlowObservables hdf5 file and extract t0
\n\nParameters
\n\n\n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\nRead hadrons DistillationContraction hdf5 files in given directory structure
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the directories to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "- result (dict):\nextracted DistillationContration data
\nndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)
\n\nAn array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)
\n\nArrays should be constructed using
\n\narray
,zeros
orempty
(refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)
) for instantiating an array.For more information, refer to the
\n\nnumpy
module and examine the\nmethods and attributes of an array.Parameters
\n\n\n
\n\n- (for the __new__ method; see Notes below)
\n- shape (tuple of ints):\nShape of created array.
\n- dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
\n- buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
\n- offset (int, optional):\nOffset of array data in buffer.
\n- strides (tuple of ints, optional):\nStrides of data in memory.
\n- order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
\nAttributes
\n\n\n
\n\n- T (ndarray):\nTranspose of the array.
\n- data (buffer):\nThe array's elements, in memory.
\n- dtype (dtype object):\nDescribes the format of the elements in the array.
\n- flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
\n- flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g.,
\nx.flat = 3
(Seendarray.flat
for\nassignment examples; TODO).- imag (ndarray):\nImaginary part of the array.
\n- real (ndarray):\nReal part of the array.
\n- size (int):\nNumber of elements in the array.
\n- itemsize (int):\nThe memory use of each array element in bytes.
\n- nbytes (int):\nThe total number of bytes required to store the array data,\ni.e.,
\nitemsize * size
.- ndim (int):\nThe array's number of dimensions.
\n- shape (tuple of ints):\nShape of the array.
\n- strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous
\n(3, 4)
array of type\nint16
in C-order has strides(8, 2)
. This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4
).- ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
\n- base (ndarray):\nIf the array is a view into another array, that array is its
\nbase
\n(unless that array is also a view). Thebase
array is where the\narray data is actually stored.See Also
\n\n\n\n
array
: Construct an array.
\nzeros
: Create an array, each element of which is zero.
\nempty
: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype
: Create a data-type.
\nnumpy.typing.NDArray
: An ndarray alias :term:generic <generic type>
\nw.r.t. itsdtype.type <numpy.dtype.type>
.Notes
\n\nThere are two modes of creating an array using
\n\n__new__
:\n
\n\n- If
\nbuffer
is None, then onlyshape
,dtype
, andorder
\nare used.- If
\nbuffer
is an object exposing the buffer interface, then\nall keywords are interpreted.No
\n\n__init__
method is needed because the array is fully initialized\nafter the__new__
method.Examples
\n\nThese examples illustrate the low-level
\n\nndarray
constructor. Refer\nto theSee Also
section above for easier ways of constructing an\nndarray.First mode,
\n\nbuffer
is None:\n\n\n\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n [ nan, 2.5e-323]])\n
Second mode:
\n\n\n\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "\n>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n... offset=np.int_().itemsize,\n... dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
Gamma_5 hermitean conjugate
\n\nUses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.
\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "Read hadrons ExternalLeg hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "- result (Npr_matrix):\nread Cobs-matrix
\nRead hadrons Bilinear hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "- result_dict (dict[Npr_matrix]):\nextracted Bilinears
\nRead hadrons FourquarkFullyConnected hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- vertices (list):\nVertex functions to be extracted.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "- result_dict (dict):\nextracted fourquark matrizes
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\nReturns
\n\n\n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "- json_string (str):\nString for export to .json(.gz) file
\nExport a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "- Null
\nReconstruct a list of Obs or structures containing Obs from a json string.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- json_string (str):\njson string containing the data.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nImport a list of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nExport a dict of Obs or structures containing Obs to a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "- None
\nImport a dict of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\n- reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "- data (Obs / list / Corr):\nRead data
\n- or
\n- data (dict):\nRead data and meta-data
\nCompute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).
\n\nIt is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.
\n\nA linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.
\n\nParameters
\n\n\n
\n\n- t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
\n- observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
\nReturns
\n\n\n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "- root (Obs):\nThe root of the data series.
\nRead pbp format from given folder structure.
\n\nParameters
\n\n\n
\n\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\nReturns
\n\n\n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "- result (list[Obs]):\nlist of observables read
\nRead rwms format from given folder structure. Returns a list of length nrw
\n\nParameters
\n\n\n
\n\n- path (str):\npath that contains the data files
\n- prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
\n- version (str):\nversion of openQCD, default 2.0
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- print_err (bool):\nPrint additional information that is useful for debugging.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "- rwms (Obs):\nReweighting factors read
\nExtract t0/a^2 from given .ms.dat files. Returns t0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2
\n\n- c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "- t0 (Obs):\nExtracted t0
\nExtract w0/a from given .ms.dat files. Returns w0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2
\n\n)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "- w0 (Obs):\nExtracted w0
\nRead the topologial charge based on openQCD gradient flow measurements.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nEither openQCD or sfqcd, depending on the data.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\n- integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "- result (Obs):\nRead topological charge
\nRead the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.
\n\nNote: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.
\n\nParameters
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
\nReturns the projection to the topological charge sector defined by target.
\n\nParameters
\n\n\n
\n\n- path (Obs):\nTopological charge.
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\nReturns
\n\n\n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nConstructs reweighting factors to a specified topological sector.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
\n- r_stop (list):\nlast configurations that need to be read (per replicum)
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nRead data from files in the specified directory with the specified prefix and quark combination extension, and return a
\n\nCorr
object containing the data.Parameters
\n\n\n
\n\n- path (str):\nThe directory to search for the files in.
\n- prefix (str):\nThe prefix to match the files against.
\n- qc (str):\nThe quark combination extension to match the files against.
\n- corr (str):\nThe correlator to extract data for.
\n- sep (str, optional):\nThe separator to use when parsing the replika names.
\n- \n
**kwargs: Additional keyword arguments. The following keyword arguments are recognized:
\n\n\n
- names (List[str]): A list of names to use for the replicas.
\n- files (List[str]): A list of files to read data from.
\n- idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
\nReturns
\n\n\n
\n\n- Corr: A complex valued
\nCorr
object containing the data read from the files. In case of boudary to bulk correlators.- or
\n- CObs: A complex valued
\nCObs
object containing the data read from the files. In case of boudary to boundary correlators.Raises
\n\n\n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "- FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
\n- IOError: If there is an error reading a file.
\n- struct.error: If there is an error unpacking binary data.
\nWrite DataFrame including Obs or Corr valued columns to sqlite database.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be written to the database.
\n- table_name (str):\nName of the table in the database.
\n- db (str):\nPath to the sqlite database.
\n- if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
\n- gz (bool):\nIf True the json strings are gzipped.
\nReturns
\n\n\n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "- None
\nExecute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.
\n\nParameters
\n\n\n
\n\n- sql (str):\nSQL query to be executed.
\n- db (str):\nPath to the sqlite database.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\nReturns
\n\n\n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nExports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.
\n\nBefore making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be dumped to a file.
\n- fname (str):\nFilename of the output file.
\n- gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
\nReturns
\n\n\n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "- None
\nImports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\nReturns
\n\n\n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nRead sfcf files from given folder structure.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to the sfcf files.
\n- prefix (str):\nPrefix of the sfcf files.
\n- name (str):\nName of the correlation function to read.
\n- quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
\n- corr_type (str):\nType of correlation function to read. Can be\n
\n\n
- 'bi' for boundary-inner
\n- 'bb' for boundary-boundary
\n- 'bib' for boundary-inner-boundary
\n- noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
\n- wf (int):\nID of wave function
\n- wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
\n- im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\n- version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
\n- cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
\n- replica (list):\nlist of replica to be read, default is all
\n- files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
\n- check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "- result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
\nSorts a list of names of replika with searches for
\n\nr
andid
in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.Parameters
\n\n\n
\n\n- ll (list):\nlist to sort
\nReturns
\n\n\n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "- ll (list):\nsorted list
\nChecks if list of configurations is contained in an idl
\n\nParameters
\n\n\n
\n\n- idl (range or list):\nidl of the current replicum
\n- che (list):\nlist of configurations to be checked against
\nReturns
\n\n\n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.integrate": {"fullname": "pyerrors.integrate", "modulename": "pyerrors.integrate", "kind": "module", "doc": "\n"}, "pyerrors.integrate.quad": {"fullname": "pyerrors.integrate.quad", "modulename": "pyerrors.integrate", "qualname": "quad", "kind": "function", "doc": "- miss_str (str):\nstring with integers of which idls are missing
\nPerforms a (one-dimensional) numeric integration of f(p, x) from a to b.
\n\nThe integration is performed using scipy.integrate.quad().\nAll parameters that can be passed to scipy.integrate.quad may also be passed to this function.\nThe output is the same as for scipy.integrate.quad, the first element being an Obs.
\n\nParameters
\n\n\n
\n\n- \n
func (object):\nfunction to integrate, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(p, x):\n return p[0] + p[1] * x + p[2] * anp.sinh(x)\n
where x is the integration variable.
- p (list of floats or Obs):\nparameters of the function func.
\n- a (float or Obs):\nLower limit of integration (use -numpy.inf for -infinity).
\n- b (float or Obs):\nUpper limit of integration (use -numpy.inf for -infinity).
\n- All parameters of scipy.integrate.quad
\nReturns
\n\n\n
\n", "signature": "(func, p, a, b, **kwargs):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "- y (Obs):\nThe integral of func from
\na
tob
.- abserr (float):\nAn estimate of the absolute error in the result.
\n- infodict (dict):\nA dictionary containing additional information.\nRun scipy.integrate.quad_explain() for more information.
\n- message: A convergence message.
\n- explain: Appended only with 'cos' or 'sin' weighting and infinite\nintegration limits, it contains an explanation of the codes in\ninfodict['ierlst']
\nMatrix multiply all operands.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- This implementation is faster compared to standard multiplication via the @ operator.
\nMatrix multiply both operands making use of the jackknife approximation.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- For large matrices this is considerably faster compared to matmul.
\nWrapper for numpy.einsum
\n\nParameters
\n\n\n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "- subscripts (str):\nSubscripts for summation (see numpy documentation for details)
\n- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\nInverse of Obs or CObs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "Cholesky decomposition of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "Determinant of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "Computes the Moore-Penrose pseudoinverse of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "Computes the singular value decomposition of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "Print information about version of python, pyerrors and dependencies.
\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "pyerrors wrapper for the errorbars method of matplotlib
\n\nParameters
\n\n\n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "- x (list):\nA list of x-values which can be Obs.
\n- y (list):\nA list of y-values which can be Obs.
\n- axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
\nDump object into pickle file.
\n\nParameters
\n\n\n
\n\n- obj (object):\nobject to be saved in the pickle file
\n- name (str):\nname of the file
\n- path (str):\nspecifies a custom path for the file (default '.')
\nReturns
\n\n\n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "- None
\nLoad object from pickle file.
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the file
\nReturns
\n\n\n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "- object (Obs):\nLoaded Object
\nGenerate an Obs object with given value, dvalue and name for test purposes
\n\nParameters
\n\n\n
\n\n- value (float):\ncentral value of the Obs to be generated.
\n- dvalue (float):\nerror of the Obs to be generated.
\n- name (str):\nname of the ensemble for which the Obs is to be generated.
\n- samples (int):\nnumber of samples for the Obs (default 1000).
\nReturns
\n\n\n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "- res (Obs):\nGenerated Observable
\nGenerate observables with given covariance and autocorrelation times.
\n\nParameters
\n\n\n
\n\n- means (list):\nlist containing the mean value of each observable.
\n- cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
\n- name (str):\nensemble name for the data to be geneated.
\n- tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
\n- samples (int):\nnumber of samples to be generated for each observable.
\nReturns
\n\n\n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "- corr_obs (list[Obs]):\nGenerated observable list
\nMatrix pencil method to extract k energy levels from data
\n\nImplementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
\n\nParameters
\n\n\n
\n\n- data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
\n- k (int):\nNumber of states to extract (default 1).
\n- p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
\nReturns
\n\n\n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "- energy_levels (list[Obs]):\nExtracted energy levels
\nClass for a general observable.
\n\nInstances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "- S_global (float):\nStandard value for S (default 2.0)
\n- S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
\n- tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
\n- tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\n- N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
\n- N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\nInitialize Obs object.
\n\nParameters
\n\n\n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "- samples (list):\nlist of numpy arrays containing the Monte Carlo samples
\n- names (list):\nlist of strings labeling the individual samples
\n- idl (list, optional):\nlist of ranges or lists on which the samples are defined
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nOutput detailed properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "- ens_content (bool):\nprint details about the ensembles and replica if true.
\nReweight the obs with given rewighting factors.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nChecks whether the observable is zero within 'sigma' standard errors.
\n\nParameters
\n\n\n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "- sigma (int):\nNumber of standard errors used for the check.
\n- Works only properly when the gamma method was run.
\nChecks whether the observable is zero within a given tolerance.
\n\nParameters
\n\n\n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "- atol (float):\nAbsolute tolerance (for details see numpy documentation).
\nPlot integrated autocorrelation time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot normalized autocorrelation function time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot replica distribution for each ensemble with more than one replicum.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "Plot derived Monte Carlo history for each ensemble
\n\nParameters
\n\n\n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "- expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
\nPlot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nDump the Obs to a file 'name' of chosen format.
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "- filename (str):\nname of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- description (str):\nDescription for output file, only relevant for json.gz format.
\n- path (str):\nspecifies a custom path for the file (default '.')
\nExport jackknife samples from the Obs
\n\nReturns
\n\n\n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.export_bootstrap": {"fullname": "pyerrors.obs.Obs.export_bootstrap", "modulename": "pyerrors.obs", "qualname": "Obs.export_bootstrap", "kind": "function", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
\nExport bootstrap samples from the Obs
\n\nParameters
\n\n\n
\n\n- samples (int):\nNumber of bootstrap samples to generate.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples.\nIf not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
\n- save_rng (str):\nSave the random numbers to a file if a path is specified.
\nReturns
\n\n\n
\n", "signature": "(self, samples=500, random_numbers=None, save_rng=None):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N import_bootstrap samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived bootstrap samples\nshould agree with samples from a full bootstrap analysis up to O(1/N).
\nClass for a complex valued observable.
\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "Executes the gamma_method for the real and the imaginary part.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "Checks whether both real and imaginary part are zero within machine precision.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
\n- man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use
\n\nnew_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "Reweight a list of observables.
\n\nParameters
\n\n\n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nCorrelate two observables.
\n\nParameters
\n\n\n
\n\n- obs_a (Obs):\nFirst observable
\n- obs_b (Obs):\nSecond observable
\nNotes
\n\nKeep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).
\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "Calculates the error covariance matrix of a set of observables.
\n\nWARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.
\n\nThe gamma method has to be applied first to all observables.
\n\nParameters
\n\n\n
\n\n- obs (list or numpy.ndarray):\nList or one dimensional array of Obs
\n- visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
\n- correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
\n- smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
\nNotes
\n\nThe error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "Imports jackknife samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.import_bootstrap": {"fullname": "pyerrors.obs.import_bootstrap", "modulename": "pyerrors.obs", "qualname": "import_bootstrap", "kind": "function", "doc": "- jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\nImports bootstrap samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(boots, name, random_numbers):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "- boots (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N bootstrap samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples,\nwhere samples is the number of bootstrap samples and length is the length of the original Monte Carlo\nchain to be reconstructed.
\nCombine all observables in list_of_obs into one new observable
\n\nParameters
\n\n\n
\n\n- list_of_obs (list):\nlist of the Obs object to be combined
\nNotes
\n\nIt is not possible to combine obs which are based on the same replicum
\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "Create an Obs based on mean(s) and a covariance matrix
\n\nParameters
\n\n\n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "- mean (list of floats or float):\nN mean value(s) of the new Obs
\n- cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
\n- name (str):\nidentifier for the covariance matrix
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nFinds the root of the function func(x, d) where d is an
\n\nObs
.Parameters
\n\n\n
\n\n- d (Obs):\nObs passed to the function.
\n- \n
func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:
\n\n\n\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
- \n
guess (float):\nInitial guess for the minimization.
Returns
\n\n\n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8312}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 108}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 94}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.trace": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 326}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 902}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 468}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 181}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1069}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 421}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.integrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.integrate.quad": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 366}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.export_bootstrap": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 185}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.import_bootstrap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 107}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 181}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 247, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 55, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 247}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 55, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 56}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 52}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 9}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 11}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 83, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 10, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 35}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.trace": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.44030650891055}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.integrate.quad": {"tf": 5.291502622129181}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.708203932499369}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 5.830951894845301}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.import_bootstrap": {"tf": 4.242640687119285}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}}, "df": 161, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 9}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 20}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 33}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 80}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 44}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "l": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 19}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 29, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 25, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 19, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "9": {"5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 7, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"4": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "8": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 64.02343321003646}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.trace": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 10.535653752852738}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 17.86057109949175}, "pyerrors.fits.total_least_squares": {"tf": 15.427248620541512}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 20.904544960366874}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.utils": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.integrate": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 12.922847983320086}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 6.164414002968976}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.import_bootstrap": {"tf": 5.0990195135927845}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.488088481701515}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 247, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 10}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 11}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 39}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 39, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 12}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 65}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.366600265340756}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 50, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 38, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 14}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 59}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 5, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 102}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 27}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 10}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 7, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 4.69041575982343}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 78, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 34, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 59}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 23, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 36, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.0710678118654755}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 70, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 8, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 5}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}}, "df": 39}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 22}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 41, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 15, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 4}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 32, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 11}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 16}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 12, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 29}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 20}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 10}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 25, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 26, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 6}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 32, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 9, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.123105625617661}, "pyerrors.fits.total_least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 3.1622776601683795}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 111, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 37, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 29}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 73, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 10}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 45, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 4, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 23}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 9}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 9}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 7}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "d": {"5": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 36, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}}, "df": 20, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 8}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 66, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 5}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 40}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.import_bootstrap": {"tf": 2}}, "df": 2}}}}}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.492422502470642}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.total_least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 3.3166247903554}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 4.123105625617661}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}}, "df": 125, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 3, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 6}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 36}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 31}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 35}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.831760866327848}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 97, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 5}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 31}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 5}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 49, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}}, "df": 11}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 11, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4}, "k": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 56, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 3.1622776601683795}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 2.6457513110645907}}, "df": 10}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 13}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 16}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 5}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 15, "o": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 13, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 21}}, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 32, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 24}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 7, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 27, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 19, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 17}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 13, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 10, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 20, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 15}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 16, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 64}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 3}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 8}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 8}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 7}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 26}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "j": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22, "h": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.- res (Obs):\n
\nObs
valued root of the function.