mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-06-30 08:49:28 +02:00
Initial public release
This commit is contained in:
commit
d9b2077d2c
24 changed files with 6794 additions and 0 deletions
112
pyerrors/mpm.py
Normal file
112
pyerrors/mpm.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
import numpy as np
|
||||
import scipy.linalg
|
||||
from .pyerrors import Obs
|
||||
from .linalg import svd, eig, pinv
|
||||
|
||||
|
||||
def matrix_pencil_method(corrs, k=1, p=None, **kwargs):
|
||||
""" Matrix pencil method to extract k energy levels from data
|
||||
|
||||
Implementation of the matrix pencil method based on
|
||||
eq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data -- can be a list of Obs for the analysis of a single correlator, or a list of lists
|
||||
of Obs if several correlators are to analyzed at once.
|
||||
k -- Number of states to extract (default 1).
|
||||
p -- matrix pencil parameter which filters noise. The optimal value is expected between
|
||||
len(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is
|
||||
to len(data)/2 but could possibly suppress more noise (default len(data)//2).
|
||||
"""
|
||||
if isinstance(corrs[0], Obs):
|
||||
data = [corrs]
|
||||
else:
|
||||
data = corrs
|
||||
|
||||
lengths = [len(d) for d in data]
|
||||
if lengths.count(lengths[0]) != len(lengths):
|
||||
raise Exception('All datasets have to have the same length.')
|
||||
|
||||
data_sets = len(data)
|
||||
n_data = len(data[0])
|
||||
|
||||
if p is None:
|
||||
p = max(n_data // 2, k)
|
||||
if n_data <= p:
|
||||
raise Exception('The pencil p has to be smaller than the number of data samples.')
|
||||
if p < k or n_data - p < k:
|
||||
raise Exception('Cannot extract', k, 'energy levels with p=', p, 'and N-p=', n_data - p)
|
||||
|
||||
# Construct the hankel matrices
|
||||
matrix = []
|
||||
for n in range(data_sets):
|
||||
matrix.append(scipy.linalg.hankel(data[n][:n_data-p], data[n][n_data-p-1:]))
|
||||
matrix = np.array(matrix)
|
||||
# Construct y1 and y2
|
||||
y1 = np.concatenate(matrix[:, :, :p])
|
||||
y2 = np.concatenate(matrix[:, :, 1:])
|
||||
# Apply SVD to y2
|
||||
u, s, vh = svd(y2, **kwargs)
|
||||
# Construct z from y1 and SVD of y2, setting all singular values beyond the kth to zero
|
||||
z = np.diag(1. / s[:k]) @ u[:, :k].T @ y1 @ vh.T[:, :k]
|
||||
# Return the sorted logarithms of the real eigenvalues as Obs
|
||||
energy_levels = np.log(np.abs(eig(z, **kwargs)))
|
||||
return sorted(energy_levels, key=lambda x: abs(x.value))
|
||||
|
||||
|
||||
def matrix_pencil_method_old(data, p, noise_level=None, verbose=1, **kwargs):
|
||||
""" Older impleentation of the matrix pencil method with pencil p on given data to
|
||||
extract energy levels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data -- lists of Obs, where the nth entry is considered to be the correlation function
|
||||
at x0=n+offset.
|
||||
p -- matrix pencil parameter which corresponds to the number of energy levels to extract.
|
||||
higher values for p can help decreasing noise.
|
||||
noise_level -- If this argument is not None an additional prefiltering via singular
|
||||
value decomposition is performed in which all singular values below 10^(-noise_level)
|
||||
times the largest singular value are discarded. This increases the computation time.
|
||||
verbose -- if larger than zero details about the noise filtering are printed to stdout
|
||||
(default 1)
|
||||
|
||||
"""
|
||||
n_data = len(data)
|
||||
if n_data <= p:
|
||||
raise Exception('The pencil p has to be smaller than the number of data samples.')
|
||||
|
||||
matrix = scipy.linalg.hankel(data[:n_data-p], data[n_data-p-1:]) @ np.identity(p + 1)
|
||||
|
||||
if noise_level is not None:
|
||||
u, s, vh = svd(matrix)
|
||||
|
||||
s_values = np.vectorize(lambda x: x.value)(s)
|
||||
if verbose > 0:
|
||||
print('Singular values: ', s_values)
|
||||
digit = np.argwhere(s_values / s_values[0] < 10.0**(-noise_level))
|
||||
if digit.size == 0:
|
||||
digit = len(s_values)
|
||||
else:
|
||||
digit = int(digit[0])
|
||||
if verbose > 0:
|
||||
print('Consider only', digit, 'out of', len(s), 'singular values')
|
||||
|
||||
new_matrix = u[:, :digit] * s[:digit] @ vh[:digit, :]
|
||||
y1 = new_matrix[:, :-1]
|
||||
y2 = new_matrix[:, 1:]
|
||||
else:
|
||||
y1 = matrix[:, :-1]
|
||||
y2 = matrix[:, 1:]
|
||||
|
||||
# Moore–Penrose pseudoinverse
|
||||
pinv_y1 = pinv(y1)
|
||||
|
||||
# Note: Automatic differentiation of eig is implemented in the git of autograd
|
||||
# but not yet released to PyPi (1.3). The code is currently part of pyerrors
|
||||
e = eig((pinv_y1 @ y2), **kwargs)
|
||||
energy_levels = -np.log(np.abs(e))
|
||||
return sorted(energy_levels, key=lambda x: abs(x.value))
|
Loading…
Add table
Add a link
Reference in a new issue