Initial public release

This commit is contained in:
fjosw 2020-10-13 16:53:00 +02:00
commit d9b2077d2c
24 changed files with 6794 additions and 0 deletions

84
pyerrors/misc.py Normal file
View file

@ -0,0 +1,84 @@
#!/usr/bin/env python
# coding: utf-8
import gc
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
from .pyerrors import Obs
def gen_correlated_data(means, cov, name, tau=0.5, samples=1000):
""" Generate observables with given covariance and autocorrelation times.
Arguments
-----------------
means -- list containing the mean value of each observable.
cov -- covariance matrix for the data to be geneated.
name -- ensemble name for the data to be geneated.
tau -- can either be a real number or a list with an entry for
every dataset.
samples -- number of samples to be generated for each observable.
"""
assert len(means) == cov.shape[-1]
tau = np.asarray(tau)
if np.min(tau) < 0.5:
raise Exception('All integrated autocorrelations have to be >= 0.5.')
a = (2 * tau - 1) / (2 * tau + 1)
rand = np.random.multivariate_normal(np.zeros_like(means), cov * samples, samples)
# Normalize samples such that sample variance matches input
norm = np.array([np.var(o, ddof=1) / samples for o in rand.T])
rand = rand @ np.diag(np.sqrt(np.diag(cov))) @ np.diag(1 / np.sqrt(norm))
data = [rand[0]]
for i in range(1, samples):
data.append(np.sqrt(1 - a ** 2) * rand[i] + a * data[-1])
corr_data = np.array(data) - np.mean(data, axis=0) + means
return [Obs([dat], [name]) for dat in corr_data.T]
def ks_test(obs=None):
"""Performs a KolmogorovSmirnov test for the Q-values of a list of Obs.
If no list is given all Obs in memory are used.
Disclaimer: The determination of the individual Q-values as well as this function have not been tested yet.
"""
if obs is None:
obs_list = []
for obj in gc.get_objects():
if isinstance(obj, Obs):
obs_list.append(obj)
else:
obs_list = obs
Qs = []
for obs_i in obs_list:
for ens in obs_i.e_names:
if obs_i.e_Q[ens] is not None:
Qs.append(obs_i.e_Q[ens])
bins = len(Qs)
x = np.arange(0, 1.001, 0.001)
plt.plot(x, x, 'k', zorder=1)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel('Q value')
plt.ylabel('Cumulative probability')
plt.title(str(bins) + ' Q values')
n = np.arange(1, bins + 1) / np.float(bins)
Xs = np.sort(Qs)
plt.step(Xs, n)
diffs = n - Xs
loc_max_diff = np.argmax(np.abs(diffs))
loc = Xs[loc_max_diff]
plt.annotate(s='', xy=(loc, loc), xytext=(loc, loc + diffs[loc_max_diff]), arrowprops=dict(arrowstyle='<->', shrinkA=0, shrinkB=0))
plt.show()
print(scipy.stats.kstest(Qs, 'uniform'))