From 9a32f1e326f40dab76d9b57673ad6d6d7d56fa97 Mon Sep 17 00:00:00 2001 From: fjosw Date: Mon, 10 Jul 2023 14:33:32 +0000 Subject: [PATCH] Documentation updated --- docs/pyerrors/correlators.html | 3818 ++++++++++++++++---------------- docs/search.js | 2 +- 2 files changed, 1941 insertions(+), 1879 deletions(-) diff --git a/docs/pyerrors/correlators.html b/docs/pyerrors/correlators.html index d66d4c23..de97c0d9 100644 --- a/docs/pyerrors/correlators.html +++ b/docs/pyerrors/correlators.html @@ -817,752 +817,770 @@ 577 raise Exception("Unknown variant.") 578 579 def second_deriv(self, variant="symmetric"): - 580 """Return the second derivative of the correlator with respect to x0. + 580 r"""Return the second derivative of the correlator with respect to x0. 581 582 Parameters 583 ---------- 584 variant : str 585 decides which definition of the finite differences derivative is used. - 586 Available choice: symmetric, improved, log, default: symmetric - 587 """ - 588 if self.N != 1: - 589 raise Exception("second_deriv only implemented for one-dimensional correlators.") - 590 if variant == "symmetric": - 591 newcontent = [] - 592 for t in range(1, self.T - 1): - 593 if (self.content[t - 1] is None) or (self.content[t + 1] is None): - 594 newcontent.append(None) - 595 else: - 596 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) - 597 if (all([x is None for x in newcontent])): - 598 raise Exception("Derivative is undefined at all timeslices") - 599 return Corr(newcontent, padding=[1, 1]) - 600 elif variant == "improved": - 601 newcontent = [] - 602 for t in range(2, self.T - 2): - 603 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): - 604 newcontent.append(None) - 605 else: - 606 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) - 607 if (all([x is None for x in newcontent])): - 608 raise Exception("Derivative is undefined at all timeslices") - 609 return Corr(newcontent, padding=[2, 2]) - 610 elif variant == 'log': - 611 newcontent = [] - 612 for t in range(self.T): - 613 if (self.content[t] is None) or (self.content[t] <= 0): - 614 newcontent.append(None) - 615 else: - 616 newcontent.append(np.log(self.content[t])) - 617 if (all([x is None for x in newcontent])): - 618 raise Exception("Log is undefined at all timeslices") - 619 logcorr = Corr(newcontent) - 620 return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) - 621 else: - 622 raise Exception("Unknown variant.") - 623 - 624 def m_eff(self, variant='log', guess=1.0): - 625 """Returns the effective mass of the correlator as correlator object - 626 - 627 Parameters - 628 ---------- - 629 variant : str - 630 log : uses the standard effective mass log(C(t) / C(t+1)) - 631 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. - 632 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. - 633 See, e.g., arXiv:1205.5380 - 634 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) - 635 logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2 - 636 guess : float - 637 guess for the root finder, only relevant for the root variant - 638 """ - 639 if self.N != 1: - 640 raise Exception('Correlator must be projected before getting m_eff') - 641 if variant == 'log': - 642 newcontent = [] - 643 for t in range(self.T - 1): - 644 if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): - 645 newcontent.append(None) - 646 elif self.content[t][0].value / self.content[t + 1][0].value < 0: - 647 newcontent.append(None) - 648 else: - 649 newcontent.append(self.content[t] / self.content[t + 1]) - 650 if (all([x is None for x in newcontent])): - 651 raise Exception('m_eff is undefined at all timeslices') - 652 - 653 return np.log(Corr(newcontent, padding=[0, 1])) - 654 - 655 elif variant == 'logsym': - 656 newcontent = [] - 657 for t in range(1, self.T - 1): - 658 if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): - 659 newcontent.append(None) - 660 elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0: - 661 newcontent.append(None) - 662 else: - 663 newcontent.append(self.content[t - 1] / self.content[t + 1]) - 664 if (all([x is None for x in newcontent])): - 665 raise Exception('m_eff is undefined at all timeslices') - 666 - 667 return np.log(Corr(newcontent, padding=[1, 1])) / 2 - 668 - 669 elif variant in ['periodic', 'cosh', 'sinh']: - 670 if variant in ['periodic', 'cosh']: - 671 func = anp.cosh - 672 else: - 673 func = anp.sinh - 674 - 675 def root_function(x, d): - 676 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d - 677 - 678 newcontent = [] - 679 for t in range(self.T - 1): - 680 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0): - 681 newcontent.append(None) - 682 # Fill the two timeslices in the middle of the lattice with their predecessors - 683 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: - 684 newcontent.append(newcontent[-1]) - 685 elif self.content[t][0].value / self.content[t + 1][0].value < 0: - 686 newcontent.append(None) - 687 else: - 688 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) - 689 if (all([x is None for x in newcontent])): - 690 raise Exception('m_eff is undefined at all timeslices') - 691 - 692 return Corr(newcontent, padding=[0, 1]) - 693 - 694 elif variant == 'arccosh': - 695 newcontent = [] - 696 for t in range(1, self.T - 1): - 697 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0): - 698 newcontent.append(None) - 699 else: - 700 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) - 701 if (all([x is None for x in newcontent])): - 702 raise Exception("m_eff is undefined at all timeslices") - 703 return np.arccosh(Corr(newcontent, padding=[1, 1])) - 704 - 705 else: - 706 raise Exception('Unknown variant.') - 707 - 708 def fit(self, function, fitrange=None, silent=False, **kwargs): - 709 r'''Fits function to the data - 710 - 711 Parameters - 712 ---------- - 713 function : obj - 714 function to fit to the data. See fits.least_squares for details. - 715 fitrange : list - 716 Two element list containing the timeslices on which the fit is supposed to start and stop. - 717 Caution: This range is inclusive as opposed to standard python indexing. - 718 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. - 719 If not specified, self.prange or all timeslices are used. - 720 silent : bool - 721 Decides whether output is printed to the standard output. - 722 ''' - 723 if self.N != 1: - 724 raise Exception("Correlator must be projected before fitting") + 586 Available choice: + 587 - symmetric (default) + 588 $$\tilde{\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$ + 589 - big_symmetric + 590 $$\partial^2_0 f(x_0) = \frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$ + 591 - improved + 592 $$\partial^2_0 f(x_0) = \frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$ + 593 - log + 594 $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$ + 595 """ + 596 if self.N != 1: + 597 raise Exception("second_deriv only implemented for one-dimensional correlators.") + 598 if variant == "symmetric": + 599 newcontent = [] + 600 for t in range(1, self.T - 1): + 601 if (self.content[t - 1] is None) or (self.content[t + 1] is None): + 602 newcontent.append(None) + 603 else: + 604 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) + 605 if (all([x is None for x in newcontent])): + 606 raise Exception("Derivative is undefined at all timeslices") + 607 return Corr(newcontent, padding=[1, 1]) + 608 elif variant == "big_symmetric": + 609 newcontent = [] + 610 for t in range(2, self.T - 2): + 611 if (self.content[t - 2] is None) or (self.content[t + 2] is None): + 612 newcontent.append(None) + 613 else: + 614 newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4) + 615 if (all([x is None for x in newcontent])): + 616 raise Exception("Derivative is undefined at all timeslices") + 617 return Corr(newcontent, padding=[2, 2]) + 618 elif variant == "improved": + 619 newcontent = [] + 620 for t in range(2, self.T - 2): + 621 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): + 622 newcontent.append(None) + 623 else: + 624 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) + 625 if (all([x is None for x in newcontent])): + 626 raise Exception("Derivative is undefined at all timeslices") + 627 return Corr(newcontent, padding=[2, 2]) + 628 elif variant == 'log': + 629 newcontent = [] + 630 for t in range(self.T): + 631 if (self.content[t] is None) or (self.content[t] <= 0): + 632 newcontent.append(None) + 633 else: + 634 newcontent.append(np.log(self.content[t])) + 635 if (all([x is None for x in newcontent])): + 636 raise Exception("Log is undefined at all timeslices") + 637 logcorr = Corr(newcontent) + 638 return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) + 639 else: + 640 raise Exception("Unknown variant.") + 641 + 642 def m_eff(self, variant='log', guess=1.0): + 643 """Returns the effective mass of the correlator as correlator object + 644 + 645 Parameters + 646 ---------- + 647 variant : str + 648 log : uses the standard effective mass log(C(t) / C(t+1)) + 649 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. + 650 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. + 651 See, e.g., arXiv:1205.5380 + 652 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) + 653 logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2 + 654 guess : float + 655 guess for the root finder, only relevant for the root variant + 656 """ + 657 if self.N != 1: + 658 raise Exception('Correlator must be projected before getting m_eff') + 659 if variant == 'log': + 660 newcontent = [] + 661 for t in range(self.T - 1): + 662 if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): + 663 newcontent.append(None) + 664 elif self.content[t][0].value / self.content[t + 1][0].value < 0: + 665 newcontent.append(None) + 666 else: + 667 newcontent.append(self.content[t] / self.content[t + 1]) + 668 if (all([x is None for x in newcontent])): + 669 raise Exception('m_eff is undefined at all timeslices') + 670 + 671 return np.log(Corr(newcontent, padding=[0, 1])) + 672 + 673 elif variant == 'logsym': + 674 newcontent = [] + 675 for t in range(1, self.T - 1): + 676 if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): + 677 newcontent.append(None) + 678 elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0: + 679 newcontent.append(None) + 680 else: + 681 newcontent.append(self.content[t - 1] / self.content[t + 1]) + 682 if (all([x is None for x in newcontent])): + 683 raise Exception('m_eff is undefined at all timeslices') + 684 + 685 return np.log(Corr(newcontent, padding=[1, 1])) / 2 + 686 + 687 elif variant in ['periodic', 'cosh', 'sinh']: + 688 if variant in ['periodic', 'cosh']: + 689 func = anp.cosh + 690 else: + 691 func = anp.sinh + 692 + 693 def root_function(x, d): + 694 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d + 695 + 696 newcontent = [] + 697 for t in range(self.T - 1): + 698 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0): + 699 newcontent.append(None) + 700 # Fill the two timeslices in the middle of the lattice with their predecessors + 701 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: + 702 newcontent.append(newcontent[-1]) + 703 elif self.content[t][0].value / self.content[t + 1][0].value < 0: + 704 newcontent.append(None) + 705 else: + 706 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) + 707 if (all([x is None for x in newcontent])): + 708 raise Exception('m_eff is undefined at all timeslices') + 709 + 710 return Corr(newcontent, padding=[0, 1]) + 711 + 712 elif variant == 'arccosh': + 713 newcontent = [] + 714 for t in range(1, self.T - 1): + 715 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0): + 716 newcontent.append(None) + 717 else: + 718 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) + 719 if (all([x is None for x in newcontent])): + 720 raise Exception("m_eff is undefined at all timeslices") + 721 return np.arccosh(Corr(newcontent, padding=[1, 1])) + 722 + 723 else: + 724 raise Exception('Unknown variant.') 725 - 726 if fitrange is None: - 727 if self.prange: - 728 fitrange = self.prange - 729 else: - 730 fitrange = [0, self.T - 1] - 731 else: - 732 if not isinstance(fitrange, list): - 733 raise Exception("fitrange has to be a list with two elements") - 734 if len(fitrange) != 2: - 735 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") - 736 - 737 xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) - 738 ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) - 739 result = least_squares(xs, ys, function, silent=silent, **kwargs) - 740 return result - 741 - 742 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): - 743 """ Extract a plateau value from a Corr object - 744 - 745 Parameters - 746 ---------- - 747 plateau_range : list - 748 list with two entries, indicating the first and the last timeslice - 749 of the plateau region. - 750 method : str - 751 method to extract the plateau. - 752 'fit' fits a constant to the plateau region - 753 'avg', 'average' or 'mean' just average over the given timeslices. - 754 auto_gamma : bool - 755 apply gamma_method with default parameters to the Corr. Defaults to None - 756 """ - 757 if not plateau_range: - 758 if self.prange: - 759 plateau_range = self.prange - 760 else: - 761 raise Exception("no plateau range provided") - 762 if self.N != 1: - 763 raise Exception("Correlator must be projected before getting a plateau.") - 764 if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): - 765 raise Exception("plateau is undefined at all timeslices in plateaurange.") - 766 if auto_gamma: - 767 self.gamma_method() - 768 if method == "fit": - 769 def const_func(a, t): - 770 return a[0] - 771 return self.fit(const_func, plateau_range)[0] - 772 elif method in ["avg", "average", "mean"]: - 773 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) - 774 return returnvalue - 775 - 776 else: - 777 raise Exception("Unsupported plateau method: " + method) - 778 - 779 def set_prange(self, prange): - 780 """Sets the attribute prange of the Corr object.""" - 781 if not len(prange) == 2: - 782 raise Exception("prange must be a list or array with two values") - 783 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): - 784 raise Exception("Start and end point must be integers") - 785 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): - 786 raise Exception("Start and end point must define a range in the interval 0,T") - 787 - 788 self.prange = prange - 789 return - 790 - 791 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None): - 792 """Plots the correlator using the tag of the correlator as label if available. + 726 def fit(self, function, fitrange=None, silent=False, **kwargs): + 727 r'''Fits function to the data + 728 + 729 Parameters + 730 ---------- + 731 function : obj + 732 function to fit to the data. See fits.least_squares for details. + 733 fitrange : list + 734 Two element list containing the timeslices on which the fit is supposed to start and stop. + 735 Caution: This range is inclusive as opposed to standard python indexing. + 736 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. + 737 If not specified, self.prange or all timeslices are used. + 738 silent : bool + 739 Decides whether output is printed to the standard output. + 740 ''' + 741 if self.N != 1: + 742 raise Exception("Correlator must be projected before fitting") + 743 + 744 if fitrange is None: + 745 if self.prange: + 746 fitrange = self.prange + 747 else: + 748 fitrange = [0, self.T - 1] + 749 else: + 750 if not isinstance(fitrange, list): + 751 raise Exception("fitrange has to be a list with two elements") + 752 if len(fitrange) != 2: + 753 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") + 754 + 755 xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) + 756 ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) + 757 result = least_squares(xs, ys, function, silent=silent, **kwargs) + 758 return result + 759 + 760 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): + 761 """ Extract a plateau value from a Corr object + 762 + 763 Parameters + 764 ---------- + 765 plateau_range : list + 766 list with two entries, indicating the first and the last timeslice + 767 of the plateau region. + 768 method : str + 769 method to extract the plateau. + 770 'fit' fits a constant to the plateau region + 771 'avg', 'average' or 'mean' just average over the given timeslices. + 772 auto_gamma : bool + 773 apply gamma_method with default parameters to the Corr. Defaults to None + 774 """ + 775 if not plateau_range: + 776 if self.prange: + 777 plateau_range = self.prange + 778 else: + 779 raise Exception("no plateau range provided") + 780 if self.N != 1: + 781 raise Exception("Correlator must be projected before getting a plateau.") + 782 if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): + 783 raise Exception("plateau is undefined at all timeslices in plateaurange.") + 784 if auto_gamma: + 785 self.gamma_method() + 786 if method == "fit": + 787 def const_func(a, t): + 788 return a[0] + 789 return self.fit(const_func, plateau_range)[0] + 790 elif method in ["avg", "average", "mean"]: + 791 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) + 792 return returnvalue 793 - 794 Parameters - 795 ---------- - 796 x_range : list - 797 list of two values, determining the range of the x-axis e.g. [4, 8]. - 798 comp : Corr or list of Corr - 799 Correlator or list of correlators which are plotted for comparison. - 800 The tags of these correlators are used as labels if available. - 801 logscale : bool - 802 Sets y-axis to logscale. - 803 plateau : Obs - 804 Plateau value to be visualized in the figure. - 805 fit_res : Fit_result - 806 Fit_result object to be visualized. - 807 fit_key : str - 808 Key for the fit function in Fit_result.fit_function (for combined fits). - 809 ylabel : str - 810 Label for the y-axis. - 811 save : str - 812 path to file in which the figure should be saved. - 813 auto_gamma : bool - 814 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. - 815 hide_sigma : float - 816 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. - 817 references : list - 818 List of floating point values that are displayed as horizontal lines for reference. - 819 title : string - 820 Optional title of the figure. - 821 """ - 822 if self.N != 1: - 823 raise Exception("Correlator must be projected before plotting") - 824 - 825 if auto_gamma: - 826 self.gamma_method() - 827 - 828 if x_range is None: - 829 x_range = [0, self.T - 1] - 830 - 831 fig = plt.figure() - 832 ax1 = fig.add_subplot(111) - 833 - 834 x, y, y_err = self.plottable() - 835 if hide_sigma: - 836 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 - 837 else: - 838 hide_from = None - 839 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) - 840 if logscale: - 841 ax1.set_yscale('log') - 842 else: - 843 if y_range is None: - 844 try: - 845 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 846 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 847 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) - 848 except Exception: - 849 pass - 850 else: - 851 ax1.set_ylim(y_range) - 852 if comp: - 853 if isinstance(comp, (Corr, list)): - 854 for corr in comp if isinstance(comp, list) else [comp]: - 855 if auto_gamma: - 856 corr.gamma_method() - 857 x, y, y_err = corr.plottable() - 858 if hide_sigma: - 859 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 - 860 else: - 861 hide_from = None - 862 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) - 863 else: - 864 raise Exception("'comp' must be a correlator or a list of correlators.") - 865 - 866 if plateau: - 867 if isinstance(plateau, Obs): - 868 if auto_gamma: - 869 plateau.gamma_method() - 870 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) - 871 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') - 872 else: - 873 raise Exception("'plateau' must be an Obs") - 874 - 875 if references: - 876 if isinstance(references, list): - 877 for ref in references: - 878 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') - 879 else: - 880 raise Exception("'references' must be a list of floating pint values.") - 881 - 882 if self.prange: - 883 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) - 884 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0) - 885 - 886 if fit_res: - 887 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) - 888 if isinstance(fit_res.fit_function, dict): - 889 if fit_key: - 890 ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) - 891 else: - 892 raise ValueError("Please provide a 'fit_key' for visualizing combined fits.") - 893 else: - 894 ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) - 895 - 896 ax1.set_xlabel(r'$x_0 / a$') - 897 if ylabel: - 898 ax1.set_ylabel(ylabel) - 899 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) - 900 - 901 handles, labels = ax1.get_legend_handles_labels() - 902 if labels: - 903 ax1.legend() - 904 - 905 if title: - 906 plt.title(title) - 907 - 908 plt.draw() - 909 - 910 if save: - 911 if isinstance(save, str): - 912 fig.savefig(save, bbox_inches='tight') - 913 else: - 914 raise Exception("'save' has to be a string.") - 915 - 916 def spaghetti_plot(self, logscale=True): - 917 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. + 794 else: + 795 raise Exception("Unsupported plateau method: " + method) + 796 + 797 def set_prange(self, prange): + 798 """Sets the attribute prange of the Corr object.""" + 799 if not len(prange) == 2: + 800 raise Exception("prange must be a list or array with two values") + 801 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): + 802 raise Exception("Start and end point must be integers") + 803 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): + 804 raise Exception("Start and end point must define a range in the interval 0,T") + 805 + 806 self.prange = prange + 807 return + 808 + 809 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None): + 810 """Plots the correlator using the tag of the correlator as label if available. + 811 + 812 Parameters + 813 ---------- + 814 x_range : list + 815 list of two values, determining the range of the x-axis e.g. [4, 8]. + 816 comp : Corr or list of Corr + 817 Correlator or list of correlators which are plotted for comparison. + 818 The tags of these correlators are used as labels if available. + 819 logscale : bool + 820 Sets y-axis to logscale. + 821 plateau : Obs + 822 Plateau value to be visualized in the figure. + 823 fit_res : Fit_result + 824 Fit_result object to be visualized. + 825 fit_key : str + 826 Key for the fit function in Fit_result.fit_function (for combined fits). + 827 ylabel : str + 828 Label for the y-axis. + 829 save : str + 830 path to file in which the figure should be saved. + 831 auto_gamma : bool + 832 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. + 833 hide_sigma : float + 834 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. + 835 references : list + 836 List of floating point values that are displayed as horizontal lines for reference. + 837 title : string + 838 Optional title of the figure. + 839 """ + 840 if self.N != 1: + 841 raise Exception("Correlator must be projected before plotting") + 842 + 843 if auto_gamma: + 844 self.gamma_method() + 845 + 846 if x_range is None: + 847 x_range = [0, self.T - 1] + 848 + 849 fig = plt.figure() + 850 ax1 = fig.add_subplot(111) + 851 + 852 x, y, y_err = self.plottable() + 853 if hide_sigma: + 854 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 + 855 else: + 856 hide_from = None + 857 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) + 858 if logscale: + 859 ax1.set_yscale('log') + 860 else: + 861 if y_range is None: + 862 try: + 863 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 864 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 865 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) + 866 except Exception: + 867 pass + 868 else: + 869 ax1.set_ylim(y_range) + 870 if comp: + 871 if isinstance(comp, (Corr, list)): + 872 for corr in comp if isinstance(comp, list) else [comp]: + 873 if auto_gamma: + 874 corr.gamma_method() + 875 x, y, y_err = corr.plottable() + 876 if hide_sigma: + 877 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 + 878 else: + 879 hide_from = None + 880 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) + 881 else: + 882 raise Exception("'comp' must be a correlator or a list of correlators.") + 883 + 884 if plateau: + 885 if isinstance(plateau, Obs): + 886 if auto_gamma: + 887 plateau.gamma_method() + 888 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) + 889 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') + 890 else: + 891 raise Exception("'plateau' must be an Obs") + 892 + 893 if references: + 894 if isinstance(references, list): + 895 for ref in references: + 896 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') + 897 else: + 898 raise Exception("'references' must be a list of floating pint values.") + 899 + 900 if self.prange: + 901 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) + 902 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0) + 903 + 904 if fit_res: + 905 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) + 906 if isinstance(fit_res.fit_function, dict): + 907 if fit_key: + 908 ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) + 909 else: + 910 raise ValueError("Please provide a 'fit_key' for visualizing combined fits.") + 911 else: + 912 ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) + 913 + 914 ax1.set_xlabel(r'$x_0 / a$') + 915 if ylabel: + 916 ax1.set_ylabel(ylabel) + 917 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) 918 - 919 Parameters - 920 ---------- - 921 logscale : bool - 922 Determines whether the scale of the y-axis is logarithmic or standard. - 923 """ - 924 if self.N != 1: - 925 raise Exception("Correlator needs to be projected first.") - 926 - 927 mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) - 928 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] - 929 - 930 for name in mc_names: - 931 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T - 932 - 933 fig = plt.figure() - 934 ax = fig.add_subplot(111) - 935 for dat in data: - 936 ax.plot(x0_vals, dat, ls='-', marker='') - 937 - 938 if logscale is True: - 939 ax.set_yscale('log') - 940 - 941 ax.set_xlabel(r'$x_0 / a$') - 942 plt.title(name) - 943 plt.draw() + 919 handles, labels = ax1.get_legend_handles_labels() + 920 if labels: + 921 ax1.legend() + 922 + 923 if title: + 924 plt.title(title) + 925 + 926 plt.draw() + 927 + 928 if save: + 929 if isinstance(save, str): + 930 fig.savefig(save, bbox_inches='tight') + 931 else: + 932 raise Exception("'save' has to be a string.") + 933 + 934 def spaghetti_plot(self, logscale=True): + 935 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. + 936 + 937 Parameters + 938 ---------- + 939 logscale : bool + 940 Determines whether the scale of the y-axis is logarithmic or standard. + 941 """ + 942 if self.N != 1: + 943 raise Exception("Correlator needs to be projected first.") 944 - 945 def dump(self, filename, datatype="json.gz", **kwargs): - 946 """Dumps the Corr into a file of chosen type - 947 Parameters - 948 ---------- - 949 filename : str - 950 Name of the file to be saved. - 951 datatype : str - 952 Format of the exported file. Supported formats include - 953 "json.gz" and "pickle" - 954 path : str - 955 specifies a custom path for the file (default '.') - 956 """ - 957 if datatype == "json.gz": - 958 from .input.json import dump_to_json - 959 if 'path' in kwargs: - 960 file_name = kwargs.get('path') + '/' + filename - 961 else: - 962 file_name = filename - 963 dump_to_json(self, file_name) - 964 elif datatype == "pickle": - 965 dump_object(self, filename, **kwargs) - 966 else: - 967 raise Exception("Unknown datatype " + str(datatype)) - 968 - 969 def print(self, print_range=None): - 970 print(self.__repr__(print_range)) - 971 - 972 def __repr__(self, print_range=None): - 973 if print_range is None: - 974 print_range = [0, None] - 975 - 976 content_string = "" - 977 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here - 978 - 979 if self.tag is not None: - 980 content_string += "Description: " + self.tag + "\n" - 981 if self.N != 1: - 982 return content_string - 983 if isinstance(self[0], CObs): - 984 return content_string - 985 - 986 if print_range[1]: - 987 print_range[1] += 1 - 988 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' - 989 for i, sub_corr in enumerate(self.content[print_range[0]:print_range[1]]): - 990 if sub_corr is None: - 991 content_string += str(i + print_range[0]) + '\n' - 992 else: - 993 content_string += str(i + print_range[0]) - 994 for element in sub_corr: - 995 content_string += '\t' + ' ' * int(element >= 0) + str(element) - 996 content_string += '\n' - 997 return content_string - 998 - 999 def __str__(self): -1000 return self.__repr__() -1001 -1002 # We define the basic operations, that can be performed with correlators. -1003 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. -1004 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. -1005 # One could try and tell Obs to check if the y in __mul__ is a Corr and -1006 -1007 def __add__(self, y): -1008 if isinstance(y, Corr): -1009 if ((self.N != y.N) or (self.T != y.T)): -1010 raise Exception("Addition of Corrs with different shape") -1011 newcontent = [] -1012 for t in range(self.T): -1013 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): -1014 newcontent.append(None) -1015 else: -1016 newcontent.append(self.content[t] + y.content[t]) -1017 return Corr(newcontent) -1018 -1019 elif isinstance(y, (Obs, int, float, CObs)): -1020 newcontent = [] -1021 for t in range(self.T): -1022 if _check_for_none(self, self.content[t]): -1023 newcontent.append(None) -1024 else: -1025 newcontent.append(self.content[t] + y) -1026 return Corr(newcontent, prange=self.prange) -1027 elif isinstance(y, np.ndarray): -1028 if y.shape == (self.T,): -1029 return Corr(list((np.array(self.content).T + y).T)) -1030 else: -1031 raise ValueError("operands could not be broadcast together") -1032 else: -1033 raise TypeError("Corr + wrong type") -1034 -1035 def __mul__(self, y): -1036 if isinstance(y, Corr): -1037 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): -1038 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") -1039 newcontent = [] -1040 for t in range(self.T): -1041 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): -1042 newcontent.append(None) -1043 else: -1044 newcontent.append(self.content[t] * y.content[t]) -1045 return Corr(newcontent) -1046 -1047 elif isinstance(y, (Obs, int, float, CObs)): -1048 newcontent = [] -1049 for t in range(self.T): -1050 if _check_for_none(self, self.content[t]): -1051 newcontent.append(None) -1052 else: -1053 newcontent.append(self.content[t] * y) -1054 return Corr(newcontent, prange=self.prange) -1055 elif isinstance(y, np.ndarray): -1056 if y.shape == (self.T,): -1057 return Corr(list((np.array(self.content).T * y).T)) -1058 else: -1059 raise ValueError("operands could not be broadcast together") -1060 else: -1061 raise TypeError("Corr * wrong type") -1062 -1063 def __truediv__(self, y): -1064 if isinstance(y, Corr): -1065 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): -1066 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") -1067 newcontent = [] -1068 for t in range(self.T): -1069 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): -1070 newcontent.append(None) -1071 else: -1072 newcontent.append(self.content[t] / y.content[t]) -1073 for t in range(self.T): -1074 if _check_for_none(self, newcontent[t]): -1075 continue -1076 if np.isnan(np.sum(newcontent[t]).value): -1077 newcontent[t] = None -1078 -1079 if all([item is None for item in newcontent]): -1080 raise Exception("Division returns completely undefined correlator") -1081 return Corr(newcontent) -1082 -1083 elif isinstance(y, (Obs, CObs)): -1084 if isinstance(y, Obs): -1085 if y.value == 0: -1086 raise Exception('Division by zero will return undefined correlator') -1087 if isinstance(y, CObs): -1088 if y.is_zero(): -1089 raise Exception('Division by zero will return undefined correlator') -1090 -1091 newcontent = [] -1092 for t in range(self.T): -1093 if _check_for_none(self, self.content[t]): -1094 newcontent.append(None) -1095 else: -1096 newcontent.append(self.content[t] / y) -1097 return Corr(newcontent, prange=self.prange) -1098 -1099 elif isinstance(y, (int, float)): -1100 if y == 0: -1101 raise Exception('Division by zero will return undefined correlator') -1102 newcontent = [] -1103 for t in range(self.T): -1104 if _check_for_none(self, self.content[t]): -1105 newcontent.append(None) -1106 else: -1107 newcontent.append(self.content[t] / y) -1108 return Corr(newcontent, prange=self.prange) -1109 elif isinstance(y, np.ndarray): -1110 if y.shape == (self.T,): -1111 return Corr(list((np.array(self.content).T / y).T)) -1112 else: -1113 raise ValueError("operands could not be broadcast together") -1114 else: -1115 raise TypeError('Corr / wrong type') + 945 mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) + 946 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] + 947 + 948 for name in mc_names: + 949 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T + 950 + 951 fig = plt.figure() + 952 ax = fig.add_subplot(111) + 953 for dat in data: + 954 ax.plot(x0_vals, dat, ls='-', marker='') + 955 + 956 if logscale is True: + 957 ax.set_yscale('log') + 958 + 959 ax.set_xlabel(r'$x_0 / a$') + 960 plt.title(name) + 961 plt.draw() + 962 + 963 def dump(self, filename, datatype="json.gz", **kwargs): + 964 """Dumps the Corr into a file of chosen type + 965 Parameters + 966 ---------- + 967 filename : str + 968 Name of the file to be saved. + 969 datatype : str + 970 Format of the exported file. Supported formats include + 971 "json.gz" and "pickle" + 972 path : str + 973 specifies a custom path for the file (default '.') + 974 """ + 975 if datatype == "json.gz": + 976 from .input.json import dump_to_json + 977 if 'path' in kwargs: + 978 file_name = kwargs.get('path') + '/' + filename + 979 else: + 980 file_name = filename + 981 dump_to_json(self, file_name) + 982 elif datatype == "pickle": + 983 dump_object(self, filename, **kwargs) + 984 else: + 985 raise Exception("Unknown datatype " + str(datatype)) + 986 + 987 def print(self, print_range=None): + 988 print(self.__repr__(print_range)) + 989 + 990 def __repr__(self, print_range=None): + 991 if print_range is None: + 992 print_range = [0, None] + 993 + 994 content_string = "" + 995 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here + 996 + 997 if self.tag is not None: + 998 content_string += "Description: " + self.tag + "\n" + 999 if self.N != 1: +1000 return content_string +1001 if isinstance(self[0], CObs): +1002 return content_string +1003 +1004 if print_range[1]: +1005 print_range[1] += 1 +1006 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' +1007 for i, sub_corr in enumerate(self.content[print_range[0]:print_range[1]]): +1008 if sub_corr is None: +1009 content_string += str(i + print_range[0]) + '\n' +1010 else: +1011 content_string += str(i + print_range[0]) +1012 for element in sub_corr: +1013 content_string += '\t' + ' ' * int(element >= 0) + str(element) +1014 content_string += '\n' +1015 return content_string +1016 +1017 def __str__(self): +1018 return self.__repr__() +1019 +1020 # We define the basic operations, that can be performed with correlators. +1021 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. +1022 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. +1023 # One could try and tell Obs to check if the y in __mul__ is a Corr and +1024 +1025 def __add__(self, y): +1026 if isinstance(y, Corr): +1027 if ((self.N != y.N) or (self.T != y.T)): +1028 raise Exception("Addition of Corrs with different shape") +1029 newcontent = [] +1030 for t in range(self.T): +1031 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): +1032 newcontent.append(None) +1033 else: +1034 newcontent.append(self.content[t] + y.content[t]) +1035 return Corr(newcontent) +1036 +1037 elif isinstance(y, (Obs, int, float, CObs)): +1038 newcontent = [] +1039 for t in range(self.T): +1040 if _check_for_none(self, self.content[t]): +1041 newcontent.append(None) +1042 else: +1043 newcontent.append(self.content[t] + y) +1044 return Corr(newcontent, prange=self.prange) +1045 elif isinstance(y, np.ndarray): +1046 if y.shape == (self.T,): +1047 return Corr(list((np.array(self.content).T + y).T)) +1048 else: +1049 raise ValueError("operands could not be broadcast together") +1050 else: +1051 raise TypeError("Corr + wrong type") +1052 +1053 def __mul__(self, y): +1054 if isinstance(y, Corr): +1055 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): +1056 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") +1057 newcontent = [] +1058 for t in range(self.T): +1059 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): +1060 newcontent.append(None) +1061 else: +1062 newcontent.append(self.content[t] * y.content[t]) +1063 return Corr(newcontent) +1064 +1065 elif isinstance(y, (Obs, int, float, CObs)): +1066 newcontent = [] +1067 for t in range(self.T): +1068 if _check_for_none(self, self.content[t]): +1069 newcontent.append(None) +1070 else: +1071 newcontent.append(self.content[t] * y) +1072 return Corr(newcontent, prange=self.prange) +1073 elif isinstance(y, np.ndarray): +1074 if y.shape == (self.T,): +1075 return Corr(list((np.array(self.content).T * y).T)) +1076 else: +1077 raise ValueError("operands could not be broadcast together") +1078 else: +1079 raise TypeError("Corr * wrong type") +1080 +1081 def __truediv__(self, y): +1082 if isinstance(y, Corr): +1083 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): +1084 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") +1085 newcontent = [] +1086 for t in range(self.T): +1087 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): +1088 newcontent.append(None) +1089 else: +1090 newcontent.append(self.content[t] / y.content[t]) +1091 for t in range(self.T): +1092 if _check_for_none(self, newcontent[t]): +1093 continue +1094 if np.isnan(np.sum(newcontent[t]).value): +1095 newcontent[t] = None +1096 +1097 if all([item is None for item in newcontent]): +1098 raise Exception("Division returns completely undefined correlator") +1099 return Corr(newcontent) +1100 +1101 elif isinstance(y, (Obs, CObs)): +1102 if isinstance(y, Obs): +1103 if y.value == 0: +1104 raise Exception('Division by zero will return undefined correlator') +1105 if isinstance(y, CObs): +1106 if y.is_zero(): +1107 raise Exception('Division by zero will return undefined correlator') +1108 +1109 newcontent = [] +1110 for t in range(self.T): +1111 if _check_for_none(self, self.content[t]): +1112 newcontent.append(None) +1113 else: +1114 newcontent.append(self.content[t] / y) +1115 return Corr(newcontent, prange=self.prange) 1116 -1117 def __neg__(self): -1118 newcontent = [None if _check_for_none(self, item) else -1. * item for item in self.content] -1119 return Corr(newcontent, prange=self.prange) -1120 -1121 def __sub__(self, y): -1122 return self + (-y) -1123 -1124 def __pow__(self, y): -1125 if isinstance(y, (Obs, int, float, CObs)): -1126 newcontent = [None if _check_for_none(self, item) else item**y for item in self.content] -1127 return Corr(newcontent, prange=self.prange) -1128 else: -1129 raise TypeError('Type of exponent not supported') -1130 -1131 def __abs__(self): -1132 newcontent = [None if _check_for_none(self, item) else np.abs(item) for item in self.content] -1133 return Corr(newcontent, prange=self.prange) +1117 elif isinstance(y, (int, float)): +1118 if y == 0: +1119 raise Exception('Division by zero will return undefined correlator') +1120 newcontent = [] +1121 for t in range(self.T): +1122 if _check_for_none(self, self.content[t]): +1123 newcontent.append(None) +1124 else: +1125 newcontent.append(self.content[t] / y) +1126 return Corr(newcontent, prange=self.prange) +1127 elif isinstance(y, np.ndarray): +1128 if y.shape == (self.T,): +1129 return Corr(list((np.array(self.content).T / y).T)) +1130 else: +1131 raise ValueError("operands could not be broadcast together") +1132 else: +1133 raise TypeError('Corr / wrong type') 1134 -1135 # The numpy functions: -1136 def sqrt(self): -1137 return self ** 0.5 +1135 def __neg__(self): +1136 newcontent = [None if _check_for_none(self, item) else -1. * item for item in self.content] +1137 return Corr(newcontent, prange=self.prange) 1138 -1139 def log(self): -1140 newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content] -1141 return Corr(newcontent, prange=self.prange) -1142 -1143 def exp(self): -1144 newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content] -1145 return Corr(newcontent, prange=self.prange) -1146 -1147 def _apply_func_to_corr(self, func): -1148 newcontent = [None if _check_for_none(self, item) else func(item) for item in self.content] -1149 for t in range(self.T): -1150 if _check_for_none(self, newcontent[t]): -1151 continue -1152 tmp_sum = np.sum(newcontent[t]) -1153 if hasattr(tmp_sum, "value"): -1154 if np.isnan(tmp_sum.value): -1155 newcontent[t] = None -1156 if all([item is None for item in newcontent]): -1157 raise Exception('Operation returns undefined correlator') -1158 return Corr(newcontent) -1159 -1160 def sin(self): -1161 return self._apply_func_to_corr(np.sin) -1162 -1163 def cos(self): -1164 return self._apply_func_to_corr(np.cos) -1165 -1166 def tan(self): -1167 return self._apply_func_to_corr(np.tan) -1168 -1169 def sinh(self): -1170 return self._apply_func_to_corr(np.sinh) -1171 -1172 def cosh(self): -1173 return self._apply_func_to_corr(np.cosh) -1174 -1175 def tanh(self): -1176 return self._apply_func_to_corr(np.tanh) +1139 def __sub__(self, y): +1140 return self + (-y) +1141 +1142 def __pow__(self, y): +1143 if isinstance(y, (Obs, int, float, CObs)): +1144 newcontent = [None if _check_for_none(self, item) else item**y for item in self.content] +1145 return Corr(newcontent, prange=self.prange) +1146 else: +1147 raise TypeError('Type of exponent not supported') +1148 +1149 def __abs__(self): +1150 newcontent = [None if _check_for_none(self, item) else np.abs(item) for item in self.content] +1151 return Corr(newcontent, prange=self.prange) +1152 +1153 # The numpy functions: +1154 def sqrt(self): +1155 return self ** 0.5 +1156 +1157 def log(self): +1158 newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content] +1159 return Corr(newcontent, prange=self.prange) +1160 +1161 def exp(self): +1162 newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content] +1163 return Corr(newcontent, prange=self.prange) +1164 +1165 def _apply_func_to_corr(self, func): +1166 newcontent = [None if _check_for_none(self, item) else func(item) for item in self.content] +1167 for t in range(self.T): +1168 if _check_for_none(self, newcontent[t]): +1169 continue +1170 tmp_sum = np.sum(newcontent[t]) +1171 if hasattr(tmp_sum, "value"): +1172 if np.isnan(tmp_sum.value): +1173 newcontent[t] = None +1174 if all([item is None for item in newcontent]): +1175 raise Exception('Operation returns undefined correlator') +1176 return Corr(newcontent) 1177 -1178 def arcsin(self): -1179 return self._apply_func_to_corr(np.arcsin) +1178 def sin(self): +1179 return self._apply_func_to_corr(np.sin) 1180 -1181 def arccos(self): -1182 return self._apply_func_to_corr(np.arccos) +1181 def cos(self): +1182 return self._apply_func_to_corr(np.cos) 1183 -1184 def arctan(self): -1185 return self._apply_func_to_corr(np.arctan) +1184 def tan(self): +1185 return self._apply_func_to_corr(np.tan) 1186 -1187 def arcsinh(self): -1188 return self._apply_func_to_corr(np.arcsinh) +1187 def sinh(self): +1188 return self._apply_func_to_corr(np.sinh) 1189 -1190 def arccosh(self): -1191 return self._apply_func_to_corr(np.arccosh) +1190 def cosh(self): +1191 return self._apply_func_to_corr(np.cosh) 1192 -1193 def arctanh(self): -1194 return self._apply_func_to_corr(np.arctanh) +1193 def tanh(self): +1194 return self._apply_func_to_corr(np.tanh) 1195 -1196 # Right hand side operations (require tweak in main module to work) -1197 def __radd__(self, y): -1198 return self + y -1199 -1200 def __rsub__(self, y): -1201 return -self + y -1202 -1203 def __rmul__(self, y): -1204 return self * y -1205 -1206 def __rtruediv__(self, y): -1207 return (self / y) ** (-1) -1208 -1209 @property -1210 def real(self): -1211 def return_real(obs_OR_cobs): -1212 if isinstance(obs_OR_cobs.flatten()[0], CObs): -1213 return np.vectorize(lambda x: x.real)(obs_OR_cobs) -1214 else: -1215 return obs_OR_cobs -1216 -1217 return self._apply_func_to_corr(return_real) -1218 -1219 @property -1220 def imag(self): -1221 def return_imag(obs_OR_cobs): -1222 if isinstance(obs_OR_cobs.flatten()[0], CObs): -1223 return np.vectorize(lambda x: x.imag)(obs_OR_cobs) -1224 else: -1225 return obs_OR_cobs * 0 # So it stays the right type +1196 def arcsin(self): +1197 return self._apply_func_to_corr(np.arcsin) +1198 +1199 def arccos(self): +1200 return self._apply_func_to_corr(np.arccos) +1201 +1202 def arctan(self): +1203 return self._apply_func_to_corr(np.arctan) +1204 +1205 def arcsinh(self): +1206 return self._apply_func_to_corr(np.arcsinh) +1207 +1208 def arccosh(self): +1209 return self._apply_func_to_corr(np.arccosh) +1210 +1211 def arctanh(self): +1212 return self._apply_func_to_corr(np.arctanh) +1213 +1214 # Right hand side operations (require tweak in main module to work) +1215 def __radd__(self, y): +1216 return self + y +1217 +1218 def __rsub__(self, y): +1219 return -self + y +1220 +1221 def __rmul__(self, y): +1222 return self * y +1223 +1224 def __rtruediv__(self, y): +1225 return (self / y) ** (-1) 1226 -1227 return self._apply_func_to_corr(return_imag) -1228 -1229 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): -1230 r''' Project large correlation matrix to lowest states -1231 -1232 This method can be used to reduce the size of an (N x N) correlation matrix -1233 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise -1234 is still small. -1235 -1236 Parameters -1237 ---------- -1238 Ntrunc: int -1239 Rank of the target matrix. -1240 tproj: int -1241 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. -1242 The default value is 3. -1243 t0proj: int -1244 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly -1245 discouraged for O(a) improved theories, since the correctness of the procedure -1246 cannot be granted in this case. The default value is 2. -1247 basematrix : Corr -1248 Correlation matrix that is used to determine the eigenvectors of the -1249 lowest states based on a GEVP. basematrix is taken to be the Corr itself if -1250 is is not specified. -1251 -1252 Notes -1253 ----- -1254 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving -1255 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ -1256 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the -1257 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via -1258 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large -1259 correlation matrix and to remove some noise that is added by irrelevant operators. -1260 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated -1261 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. -1262 ''' -1263 -1264 if self.N == 1: -1265 raise Exception('Method cannot be applied to one-dimensional correlators.') -1266 if basematrix is None: -1267 basematrix = self -1268 if Ntrunc >= basematrix.N: -1269 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) -1270 if basematrix.N != self.N: -1271 raise Exception('basematrix and targetmatrix have to be of the same size.') -1272 -1273 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] -1274 -1275 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) -1276 rmat = [] -1277 for t in range(basematrix.T): -1278 for i in range(Ntrunc): -1279 for j in range(Ntrunc): -1280 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] -1281 rmat.append(np.copy(tmpmat)) -1282 -1283 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] -1284 return Corr(newcontent) -1285 -1286 -1287def _sort_vectors(vec_set, ts): -1288 """Helper function used to find a set of Eigenvectors consistent over all timeslices""" -1289 reference_sorting = np.array(vec_set[ts]) -1290 N = reference_sorting.shape[0] -1291 sorted_vec_set = [] -1292 for t in range(len(vec_set)): -1293 if vec_set[t] is None: -1294 sorted_vec_set.append(None) -1295 elif not t == ts: -1296 perms = [list(o) for o in permutations([i for i in range(N)], N)] -1297 best_score = 0 -1298 for perm in perms: -1299 current_score = 1 -1300 for k in range(N): -1301 new_sorting = reference_sorting.copy() -1302 new_sorting[perm[k], :] = vec_set[t][k] -1303 current_score *= abs(np.linalg.det(new_sorting)) -1304 if current_score > best_score: -1305 best_score = current_score -1306 best_perm = perm -1307 sorted_vec_set.append([vec_set[t][k] for k in best_perm]) -1308 else: -1309 sorted_vec_set.append(vec_set[t]) -1310 -1311 return sorted_vec_set -1312 -1313 -1314def _check_for_none(corr, entry): -1315 """Checks if entry for correlator corr is None""" -1316 return len(list(filter(None, np.asarray(entry).flatten()))) < corr.N ** 2 -1317 -1318 -1319def _GEVP_solver(Gt, G0): -1320 """Helper function for solving the GEVP and sorting the eigenvectors. -1321 -1322 The helper function assumes that both provided matrices are symmetric and -1323 only processes the lower triangular part of both matrices. In case the matrices -1324 are not symmetric the upper triangular parts are effectively discarded.""" -1325 return scipy.linalg.eigh(Gt, G0, lower=True)[1].T[::-1] +1227 @property +1228 def real(self): +1229 def return_real(obs_OR_cobs): +1230 if isinstance(obs_OR_cobs.flatten()[0], CObs): +1231 return np.vectorize(lambda x: x.real)(obs_OR_cobs) +1232 else: +1233 return obs_OR_cobs +1234 +1235 return self._apply_func_to_corr(return_real) +1236 +1237 @property +1238 def imag(self): +1239 def return_imag(obs_OR_cobs): +1240 if isinstance(obs_OR_cobs.flatten()[0], CObs): +1241 return np.vectorize(lambda x: x.imag)(obs_OR_cobs) +1242 else: +1243 return obs_OR_cobs * 0 # So it stays the right type +1244 +1245 return self._apply_func_to_corr(return_imag) +1246 +1247 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): +1248 r''' Project large correlation matrix to lowest states +1249 +1250 This method can be used to reduce the size of an (N x N) correlation matrix +1251 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise +1252 is still small. +1253 +1254 Parameters +1255 ---------- +1256 Ntrunc: int +1257 Rank of the target matrix. +1258 tproj: int +1259 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. +1260 The default value is 3. +1261 t0proj: int +1262 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly +1263 discouraged for O(a) improved theories, since the correctness of the procedure +1264 cannot be granted in this case. The default value is 2. +1265 basematrix : Corr +1266 Correlation matrix that is used to determine the eigenvectors of the +1267 lowest states based on a GEVP. basematrix is taken to be the Corr itself if +1268 is is not specified. +1269 +1270 Notes +1271 ----- +1272 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving +1273 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ +1274 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the +1275 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via +1276 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large +1277 correlation matrix and to remove some noise that is added by irrelevant operators. +1278 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated +1279 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. +1280 ''' +1281 +1282 if self.N == 1: +1283 raise Exception('Method cannot be applied to one-dimensional correlators.') +1284 if basematrix is None: +1285 basematrix = self +1286 if Ntrunc >= basematrix.N: +1287 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) +1288 if basematrix.N != self.N: +1289 raise Exception('basematrix and targetmatrix have to be of the same size.') +1290 +1291 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] +1292 +1293 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) +1294 rmat = [] +1295 for t in range(basematrix.T): +1296 for i in range(Ntrunc): +1297 for j in range(Ntrunc): +1298 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] +1299 rmat.append(np.copy(tmpmat)) +1300 +1301 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] +1302 return Corr(newcontent) +1303 +1304 +1305def _sort_vectors(vec_set, ts): +1306 """Helper function used to find a set of Eigenvectors consistent over all timeslices""" +1307 reference_sorting = np.array(vec_set[ts]) +1308 N = reference_sorting.shape[0] +1309 sorted_vec_set = [] +1310 for t in range(len(vec_set)): +1311 if vec_set[t] is None: +1312 sorted_vec_set.append(None) +1313 elif not t == ts: +1314 perms = [list(o) for o in permutations([i for i in range(N)], N)] +1315 best_score = 0 +1316 for perm in perms: +1317 current_score = 1 +1318 for k in range(N): +1319 new_sorting = reference_sorting.copy() +1320 new_sorting[perm[k], :] = vec_set[t][k] +1321 current_score *= abs(np.linalg.det(new_sorting)) +1322 if current_score > best_score: +1323 best_score = current_score +1324 best_perm = perm +1325 sorted_vec_set.append([vec_set[t][k] for k in best_perm]) +1326 else: +1327 sorted_vec_set.append(vec_set[t]) +1328 +1329 return sorted_vec_set +1330 +1331 +1332def _check_for_none(corr, entry): +1333 """Checks if entry for correlator corr is None""" +1334 return len(list(filter(None, np.asarray(entry).flatten()))) < corr.N ** 2 +1335 +1336 +1337def _GEVP_solver(Gt, G0): +1338 """Helper function for solving the GEVP and sorting the eigenvectors. +1339 +1340 The helper function assumes that both provided matrices are symmetric and +1341 only processes the lower triangular part of both matrices. In case the matrices +1342 are not symmetric the upper triangular parts are effectively discarded.""" +1343 return scipy.linalg.eigh(Gt, G0, lower=True)[1].T[::-1] @@ -2145,711 +2163,729 @@ 578 raise Exception("Unknown variant.") 579 580 def second_deriv(self, variant="symmetric"): - 581 """Return the second derivative of the correlator with respect to x0. + 581 r"""Return the second derivative of the correlator with respect to x0. 582 583 Parameters 584 ---------- 585 variant : str 586 decides which definition of the finite differences derivative is used. - 587 Available choice: symmetric, improved, log, default: symmetric - 588 """ - 589 if self.N != 1: - 590 raise Exception("second_deriv only implemented for one-dimensional correlators.") - 591 if variant == "symmetric": - 592 newcontent = [] - 593 for t in range(1, self.T - 1): - 594 if (self.content[t - 1] is None) or (self.content[t + 1] is None): - 595 newcontent.append(None) - 596 else: - 597 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) - 598 if (all([x is None for x in newcontent])): - 599 raise Exception("Derivative is undefined at all timeslices") - 600 return Corr(newcontent, padding=[1, 1]) - 601 elif variant == "improved": - 602 newcontent = [] - 603 for t in range(2, self.T - 2): - 604 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): - 605 newcontent.append(None) - 606 else: - 607 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) - 608 if (all([x is None for x in newcontent])): - 609 raise Exception("Derivative is undefined at all timeslices") - 610 return Corr(newcontent, padding=[2, 2]) - 611 elif variant == 'log': - 612 newcontent = [] - 613 for t in range(self.T): - 614 if (self.content[t] is None) or (self.content[t] <= 0): - 615 newcontent.append(None) - 616 else: - 617 newcontent.append(np.log(self.content[t])) - 618 if (all([x is None for x in newcontent])): - 619 raise Exception("Log is undefined at all timeslices") - 620 logcorr = Corr(newcontent) - 621 return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) - 622 else: - 623 raise Exception("Unknown variant.") - 624 - 625 def m_eff(self, variant='log', guess=1.0): - 626 """Returns the effective mass of the correlator as correlator object - 627 - 628 Parameters - 629 ---------- - 630 variant : str - 631 log : uses the standard effective mass log(C(t) / C(t+1)) - 632 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. - 633 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. - 634 See, e.g., arXiv:1205.5380 - 635 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) - 636 logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2 - 637 guess : float - 638 guess for the root finder, only relevant for the root variant - 639 """ - 640 if self.N != 1: - 641 raise Exception('Correlator must be projected before getting m_eff') - 642 if variant == 'log': - 643 newcontent = [] - 644 for t in range(self.T - 1): - 645 if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): - 646 newcontent.append(None) - 647 elif self.content[t][0].value / self.content[t + 1][0].value < 0: - 648 newcontent.append(None) - 649 else: - 650 newcontent.append(self.content[t] / self.content[t + 1]) - 651 if (all([x is None for x in newcontent])): - 652 raise Exception('m_eff is undefined at all timeslices') - 653 - 654 return np.log(Corr(newcontent, padding=[0, 1])) - 655 - 656 elif variant == 'logsym': - 657 newcontent = [] - 658 for t in range(1, self.T - 1): - 659 if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): - 660 newcontent.append(None) - 661 elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0: - 662 newcontent.append(None) - 663 else: - 664 newcontent.append(self.content[t - 1] / self.content[t + 1]) - 665 if (all([x is None for x in newcontent])): - 666 raise Exception('m_eff is undefined at all timeslices') - 667 - 668 return np.log(Corr(newcontent, padding=[1, 1])) / 2 - 669 - 670 elif variant in ['periodic', 'cosh', 'sinh']: - 671 if variant in ['periodic', 'cosh']: - 672 func = anp.cosh - 673 else: - 674 func = anp.sinh - 675 - 676 def root_function(x, d): - 677 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d - 678 - 679 newcontent = [] - 680 for t in range(self.T - 1): - 681 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0): - 682 newcontent.append(None) - 683 # Fill the two timeslices in the middle of the lattice with their predecessors - 684 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: - 685 newcontent.append(newcontent[-1]) - 686 elif self.content[t][0].value / self.content[t + 1][0].value < 0: - 687 newcontent.append(None) - 688 else: - 689 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) - 690 if (all([x is None for x in newcontent])): - 691 raise Exception('m_eff is undefined at all timeslices') - 692 - 693 return Corr(newcontent, padding=[0, 1]) - 694 - 695 elif variant == 'arccosh': - 696 newcontent = [] - 697 for t in range(1, self.T - 1): - 698 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0): - 699 newcontent.append(None) - 700 else: - 701 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) - 702 if (all([x is None for x in newcontent])): - 703 raise Exception("m_eff is undefined at all timeslices") - 704 return np.arccosh(Corr(newcontent, padding=[1, 1])) - 705 - 706 else: - 707 raise Exception('Unknown variant.') - 708 - 709 def fit(self, function, fitrange=None, silent=False, **kwargs): - 710 r'''Fits function to the data - 711 - 712 Parameters - 713 ---------- - 714 function : obj - 715 function to fit to the data. See fits.least_squares for details. - 716 fitrange : list - 717 Two element list containing the timeslices on which the fit is supposed to start and stop. - 718 Caution: This range is inclusive as opposed to standard python indexing. - 719 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. - 720 If not specified, self.prange or all timeslices are used. - 721 silent : bool - 722 Decides whether output is printed to the standard output. - 723 ''' - 724 if self.N != 1: - 725 raise Exception("Correlator must be projected before fitting") + 587 Available choice: + 588 - symmetric (default) + 589 $$\tilde{\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$ + 590 - big_symmetric + 591 $$\partial^2_0 f(x_0) = \frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$ + 592 - improved + 593 $$\partial^2_0 f(x_0) = \frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$ + 594 - log + 595 $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$ + 596 """ + 597 if self.N != 1: + 598 raise Exception("second_deriv only implemented for one-dimensional correlators.") + 599 if variant == "symmetric": + 600 newcontent = [] + 601 for t in range(1, self.T - 1): + 602 if (self.content[t - 1] is None) or (self.content[t + 1] is None): + 603 newcontent.append(None) + 604 else: + 605 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) + 606 if (all([x is None for x in newcontent])): + 607 raise Exception("Derivative is undefined at all timeslices") + 608 return Corr(newcontent, padding=[1, 1]) + 609 elif variant == "big_symmetric": + 610 newcontent = [] + 611 for t in range(2, self.T - 2): + 612 if (self.content[t - 2] is None) or (self.content[t + 2] is None): + 613 newcontent.append(None) + 614 else: + 615 newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4) + 616 if (all([x is None for x in newcontent])): + 617 raise Exception("Derivative is undefined at all timeslices") + 618 return Corr(newcontent, padding=[2, 2]) + 619 elif variant == "improved": + 620 newcontent = [] + 621 for t in range(2, self.T - 2): + 622 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): + 623 newcontent.append(None) + 624 else: + 625 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) + 626 if (all([x is None for x in newcontent])): + 627 raise Exception("Derivative is undefined at all timeslices") + 628 return Corr(newcontent, padding=[2, 2]) + 629 elif variant == 'log': + 630 newcontent = [] + 631 for t in range(self.T): + 632 if (self.content[t] is None) or (self.content[t] <= 0): + 633 newcontent.append(None) + 634 else: + 635 newcontent.append(np.log(self.content[t])) + 636 if (all([x is None for x in newcontent])): + 637 raise Exception("Log is undefined at all timeslices") + 638 logcorr = Corr(newcontent) + 639 return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2) + 640 else: + 641 raise Exception("Unknown variant.") + 642 + 643 def m_eff(self, variant='log', guess=1.0): + 644 """Returns the effective mass of the correlator as correlator object + 645 + 646 Parameters + 647 ---------- + 648 variant : str + 649 log : uses the standard effective mass log(C(t) / C(t+1)) + 650 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. + 651 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. + 652 See, e.g., arXiv:1205.5380 + 653 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) + 654 logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2 + 655 guess : float + 656 guess for the root finder, only relevant for the root variant + 657 """ + 658 if self.N != 1: + 659 raise Exception('Correlator must be projected before getting m_eff') + 660 if variant == 'log': + 661 newcontent = [] + 662 for t in range(self.T - 1): + 663 if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): + 664 newcontent.append(None) + 665 elif self.content[t][0].value / self.content[t + 1][0].value < 0: + 666 newcontent.append(None) + 667 else: + 668 newcontent.append(self.content[t] / self.content[t + 1]) + 669 if (all([x is None for x in newcontent])): + 670 raise Exception('m_eff is undefined at all timeslices') + 671 + 672 return np.log(Corr(newcontent, padding=[0, 1])) + 673 + 674 elif variant == 'logsym': + 675 newcontent = [] + 676 for t in range(1, self.T - 1): + 677 if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0): + 678 newcontent.append(None) + 679 elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0: + 680 newcontent.append(None) + 681 else: + 682 newcontent.append(self.content[t - 1] / self.content[t + 1]) + 683 if (all([x is None for x in newcontent])): + 684 raise Exception('m_eff is undefined at all timeslices') + 685 + 686 return np.log(Corr(newcontent, padding=[1, 1])) / 2 + 687 + 688 elif variant in ['periodic', 'cosh', 'sinh']: + 689 if variant in ['periodic', 'cosh']: + 690 func = anp.cosh + 691 else: + 692 func = anp.sinh + 693 + 694 def root_function(x, d): + 695 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d + 696 + 697 newcontent = [] + 698 for t in range(self.T - 1): + 699 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0): + 700 newcontent.append(None) + 701 # Fill the two timeslices in the middle of the lattice with their predecessors + 702 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: + 703 newcontent.append(newcontent[-1]) + 704 elif self.content[t][0].value / self.content[t + 1][0].value < 0: + 705 newcontent.append(None) + 706 else: + 707 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) + 708 if (all([x is None for x in newcontent])): + 709 raise Exception('m_eff is undefined at all timeslices') + 710 + 711 return Corr(newcontent, padding=[0, 1]) + 712 + 713 elif variant == 'arccosh': + 714 newcontent = [] + 715 for t in range(1, self.T - 1): + 716 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0): + 717 newcontent.append(None) + 718 else: + 719 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) + 720 if (all([x is None for x in newcontent])): + 721 raise Exception("m_eff is undefined at all timeslices") + 722 return np.arccosh(Corr(newcontent, padding=[1, 1])) + 723 + 724 else: + 725 raise Exception('Unknown variant.') 726 - 727 if fitrange is None: - 728 if self.prange: - 729 fitrange = self.prange - 730 else: - 731 fitrange = [0, self.T - 1] - 732 else: - 733 if not isinstance(fitrange, list): - 734 raise Exception("fitrange has to be a list with two elements") - 735 if len(fitrange) != 2: - 736 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") - 737 - 738 xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) - 739 ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) - 740 result = least_squares(xs, ys, function, silent=silent, **kwargs) - 741 return result - 742 - 743 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): - 744 """ Extract a plateau value from a Corr object - 745 - 746 Parameters - 747 ---------- - 748 plateau_range : list - 749 list with two entries, indicating the first and the last timeslice - 750 of the plateau region. - 751 method : str - 752 method to extract the plateau. - 753 'fit' fits a constant to the plateau region - 754 'avg', 'average' or 'mean' just average over the given timeslices. - 755 auto_gamma : bool - 756 apply gamma_method with default parameters to the Corr. Defaults to None - 757 """ - 758 if not plateau_range: - 759 if self.prange: - 760 plateau_range = self.prange - 761 else: - 762 raise Exception("no plateau range provided") - 763 if self.N != 1: - 764 raise Exception("Correlator must be projected before getting a plateau.") - 765 if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): - 766 raise Exception("plateau is undefined at all timeslices in plateaurange.") - 767 if auto_gamma: - 768 self.gamma_method() - 769 if method == "fit": - 770 def const_func(a, t): - 771 return a[0] - 772 return self.fit(const_func, plateau_range)[0] - 773 elif method in ["avg", "average", "mean"]: - 774 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) - 775 return returnvalue - 776 - 777 else: - 778 raise Exception("Unsupported plateau method: " + method) - 779 - 780 def set_prange(self, prange): - 781 """Sets the attribute prange of the Corr object.""" - 782 if not len(prange) == 2: - 783 raise Exception("prange must be a list or array with two values") - 784 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): - 785 raise Exception("Start and end point must be integers") - 786 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): - 787 raise Exception("Start and end point must define a range in the interval 0,T") - 788 - 789 self.prange = prange - 790 return - 791 - 792 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None): - 793 """Plots the correlator using the tag of the correlator as label if available. + 727 def fit(self, function, fitrange=None, silent=False, **kwargs): + 728 r'''Fits function to the data + 729 + 730 Parameters + 731 ---------- + 732 function : obj + 733 function to fit to the data. See fits.least_squares for details. + 734 fitrange : list + 735 Two element list containing the timeslices on which the fit is supposed to start and stop. + 736 Caution: This range is inclusive as opposed to standard python indexing. + 737 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. + 738 If not specified, self.prange or all timeslices are used. + 739 silent : bool + 740 Decides whether output is printed to the standard output. + 741 ''' + 742 if self.N != 1: + 743 raise Exception("Correlator must be projected before fitting") + 744 + 745 if fitrange is None: + 746 if self.prange: + 747 fitrange = self.prange + 748 else: + 749 fitrange = [0, self.T - 1] + 750 else: + 751 if not isinstance(fitrange, list): + 752 raise Exception("fitrange has to be a list with two elements") + 753 if len(fitrange) != 2: + 754 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") + 755 + 756 xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) + 757 ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]) + 758 result = least_squares(xs, ys, function, silent=silent, **kwargs) + 759 return result + 760 + 761 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): + 762 """ Extract a plateau value from a Corr object + 763 + 764 Parameters + 765 ---------- + 766 plateau_range : list + 767 list with two entries, indicating the first and the last timeslice + 768 of the plateau region. + 769 method : str + 770 method to extract the plateau. + 771 'fit' fits a constant to the plateau region + 772 'avg', 'average' or 'mean' just average over the given timeslices. + 773 auto_gamma : bool + 774 apply gamma_method with default parameters to the Corr. Defaults to None + 775 """ + 776 if not plateau_range: + 777 if self.prange: + 778 plateau_range = self.prange + 779 else: + 780 raise Exception("no plateau range provided") + 781 if self.N != 1: + 782 raise Exception("Correlator must be projected before getting a plateau.") + 783 if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): + 784 raise Exception("plateau is undefined at all timeslices in plateaurange.") + 785 if auto_gamma: + 786 self.gamma_method() + 787 if method == "fit": + 788 def const_func(a, t): + 789 return a[0] + 790 return self.fit(const_func, plateau_range)[0] + 791 elif method in ["avg", "average", "mean"]: + 792 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) + 793 return returnvalue 794 - 795 Parameters - 796 ---------- - 797 x_range : list - 798 list of two values, determining the range of the x-axis e.g. [4, 8]. - 799 comp : Corr or list of Corr - 800 Correlator or list of correlators which are plotted for comparison. - 801 The tags of these correlators are used as labels if available. - 802 logscale : bool - 803 Sets y-axis to logscale. - 804 plateau : Obs - 805 Plateau value to be visualized in the figure. - 806 fit_res : Fit_result - 807 Fit_result object to be visualized. - 808 fit_key : str - 809 Key for the fit function in Fit_result.fit_function (for combined fits). - 810 ylabel : str - 811 Label for the y-axis. - 812 save : str - 813 path to file in which the figure should be saved. - 814 auto_gamma : bool - 815 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. - 816 hide_sigma : float - 817 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. - 818 references : list - 819 List of floating point values that are displayed as horizontal lines for reference. - 820 title : string - 821 Optional title of the figure. - 822 """ - 823 if self.N != 1: - 824 raise Exception("Correlator must be projected before plotting") - 825 - 826 if auto_gamma: - 827 self.gamma_method() - 828 - 829 if x_range is None: - 830 x_range = [0, self.T - 1] - 831 - 832 fig = plt.figure() - 833 ax1 = fig.add_subplot(111) - 834 - 835 x, y, y_err = self.plottable() - 836 if hide_sigma: - 837 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 - 838 else: - 839 hide_from = None - 840 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) - 841 if logscale: - 842 ax1.set_yscale('log') - 843 else: - 844 if y_range is None: - 845 try: - 846 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 847 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 848 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) - 849 except Exception: - 850 pass - 851 else: - 852 ax1.set_ylim(y_range) - 853 if comp: - 854 if isinstance(comp, (Corr, list)): - 855 for corr in comp if isinstance(comp, list) else [comp]: - 856 if auto_gamma: - 857 corr.gamma_method() - 858 x, y, y_err = corr.plottable() - 859 if hide_sigma: - 860 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 - 861 else: - 862 hide_from = None - 863 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) - 864 else: - 865 raise Exception("'comp' must be a correlator or a list of correlators.") - 866 - 867 if plateau: - 868 if isinstance(plateau, Obs): - 869 if auto_gamma: - 870 plateau.gamma_method() - 871 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) - 872 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') - 873 else: - 874 raise Exception("'plateau' must be an Obs") - 875 - 876 if references: - 877 if isinstance(references, list): - 878 for ref in references: - 879 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') - 880 else: - 881 raise Exception("'references' must be a list of floating pint values.") - 882 - 883 if self.prange: - 884 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) - 885 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0) - 886 - 887 if fit_res: - 888 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) - 889 if isinstance(fit_res.fit_function, dict): - 890 if fit_key: - 891 ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) - 892 else: - 893 raise ValueError("Please provide a 'fit_key' for visualizing combined fits.") - 894 else: - 895 ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) - 896 - 897 ax1.set_xlabel(r'$x_0 / a$') - 898 if ylabel: - 899 ax1.set_ylabel(ylabel) - 900 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) - 901 - 902 handles, labels = ax1.get_legend_handles_labels() - 903 if labels: - 904 ax1.legend() - 905 - 906 if title: - 907 plt.title(title) - 908 - 909 plt.draw() - 910 - 911 if save: - 912 if isinstance(save, str): - 913 fig.savefig(save, bbox_inches='tight') - 914 else: - 915 raise Exception("'save' has to be a string.") - 916 - 917 def spaghetti_plot(self, logscale=True): - 918 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. + 795 else: + 796 raise Exception("Unsupported plateau method: " + method) + 797 + 798 def set_prange(self, prange): + 799 """Sets the attribute prange of the Corr object.""" + 800 if not len(prange) == 2: + 801 raise Exception("prange must be a list or array with two values") + 802 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): + 803 raise Exception("Start and end point must be integers") + 804 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): + 805 raise Exception("Start and end point must define a range in the interval 0,T") + 806 + 807 self.prange = prange + 808 return + 809 + 810 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None): + 811 """Plots the correlator using the tag of the correlator as label if available. + 812 + 813 Parameters + 814 ---------- + 815 x_range : list + 816 list of two values, determining the range of the x-axis e.g. [4, 8]. + 817 comp : Corr or list of Corr + 818 Correlator or list of correlators which are plotted for comparison. + 819 The tags of these correlators are used as labels if available. + 820 logscale : bool + 821 Sets y-axis to logscale. + 822 plateau : Obs + 823 Plateau value to be visualized in the figure. + 824 fit_res : Fit_result + 825 Fit_result object to be visualized. + 826 fit_key : str + 827 Key for the fit function in Fit_result.fit_function (for combined fits). + 828 ylabel : str + 829 Label for the y-axis. + 830 save : str + 831 path to file in which the figure should be saved. + 832 auto_gamma : bool + 833 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. + 834 hide_sigma : float + 835 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. + 836 references : list + 837 List of floating point values that are displayed as horizontal lines for reference. + 838 title : string + 839 Optional title of the figure. + 840 """ + 841 if self.N != 1: + 842 raise Exception("Correlator must be projected before plotting") + 843 + 844 if auto_gamma: + 845 self.gamma_method() + 846 + 847 if x_range is None: + 848 x_range = [0, self.T - 1] + 849 + 850 fig = plt.figure() + 851 ax1 = fig.add_subplot(111) + 852 + 853 x, y, y_err = self.plottable() + 854 if hide_sigma: + 855 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 + 856 else: + 857 hide_from = None + 858 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) + 859 if logscale: + 860 ax1.set_yscale('log') + 861 else: + 862 if y_range is None: + 863 try: + 864 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 865 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 866 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) + 867 except Exception: + 868 pass + 869 else: + 870 ax1.set_ylim(y_range) + 871 if comp: + 872 if isinstance(comp, (Corr, list)): + 873 for corr in comp if isinstance(comp, list) else [comp]: + 874 if auto_gamma: + 875 corr.gamma_method() + 876 x, y, y_err = corr.plottable() + 877 if hide_sigma: + 878 hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1 + 879 else: + 880 hide_from = None + 881 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) + 882 else: + 883 raise Exception("'comp' must be a correlator or a list of correlators.") + 884 + 885 if plateau: + 886 if isinstance(plateau, Obs): + 887 if auto_gamma: + 888 plateau.gamma_method() + 889 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) + 890 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') + 891 else: + 892 raise Exception("'plateau' must be an Obs") + 893 + 894 if references: + 895 if isinstance(references, list): + 896 for ref in references: + 897 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') + 898 else: + 899 raise Exception("'references' must be a list of floating pint values.") + 900 + 901 if self.prange: + 902 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0) + 903 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0) + 904 + 905 if fit_res: + 906 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) + 907 if isinstance(fit_res.fit_function, dict): + 908 if fit_key: + 909 ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) + 910 else: + 911 raise ValueError("Please provide a 'fit_key' for visualizing combined fits.") + 912 else: + 913 ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2) + 914 + 915 ax1.set_xlabel(r'$x_0 / a$') + 916 if ylabel: + 917 ax1.set_ylabel(ylabel) + 918 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) 919 - 920 Parameters - 921 ---------- - 922 logscale : bool - 923 Determines whether the scale of the y-axis is logarithmic or standard. - 924 """ - 925 if self.N != 1: - 926 raise Exception("Correlator needs to be projected first.") - 927 - 928 mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) - 929 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] - 930 - 931 for name in mc_names: - 932 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T - 933 - 934 fig = plt.figure() - 935 ax = fig.add_subplot(111) - 936 for dat in data: - 937 ax.plot(x0_vals, dat, ls='-', marker='') - 938 - 939 if logscale is True: - 940 ax.set_yscale('log') - 941 - 942 ax.set_xlabel(r'$x_0 / a$') - 943 plt.title(name) - 944 plt.draw() + 920 handles, labels = ax1.get_legend_handles_labels() + 921 if labels: + 922 ax1.legend() + 923 + 924 if title: + 925 plt.title(title) + 926 + 927 plt.draw() + 928 + 929 if save: + 930 if isinstance(save, str): + 931 fig.savefig(save, bbox_inches='tight') + 932 else: + 933 raise Exception("'save' has to be a string.") + 934 + 935 def spaghetti_plot(self, logscale=True): + 936 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. + 937 + 938 Parameters + 939 ---------- + 940 logscale : bool + 941 Determines whether the scale of the y-axis is logarithmic or standard. + 942 """ + 943 if self.N != 1: + 944 raise Exception("Correlator needs to be projected first.") 945 - 946 def dump(self, filename, datatype="json.gz", **kwargs): - 947 """Dumps the Corr into a file of chosen type - 948 Parameters - 949 ---------- - 950 filename : str - 951 Name of the file to be saved. - 952 datatype : str - 953 Format of the exported file. Supported formats include - 954 "json.gz" and "pickle" - 955 path : str - 956 specifies a custom path for the file (default '.') - 957 """ - 958 if datatype == "json.gz": - 959 from .input.json import dump_to_json - 960 if 'path' in kwargs: - 961 file_name = kwargs.get('path') + '/' + filename - 962 else: - 963 file_name = filename - 964 dump_to_json(self, file_name) - 965 elif datatype == "pickle": - 966 dump_object(self, filename, **kwargs) - 967 else: - 968 raise Exception("Unknown datatype " + str(datatype)) - 969 - 970 def print(self, print_range=None): - 971 print(self.__repr__(print_range)) - 972 - 973 def __repr__(self, print_range=None): - 974 if print_range is None: - 975 print_range = [0, None] - 976 - 977 content_string = "" - 978 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here - 979 - 980 if self.tag is not None: - 981 content_string += "Description: " + self.tag + "\n" - 982 if self.N != 1: - 983 return content_string - 984 if isinstance(self[0], CObs): - 985 return content_string - 986 - 987 if print_range[1]: - 988 print_range[1] += 1 - 989 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' - 990 for i, sub_corr in enumerate(self.content[print_range[0]:print_range[1]]): - 991 if sub_corr is None: - 992 content_string += str(i + print_range[0]) + '\n' - 993 else: - 994 content_string += str(i + print_range[0]) - 995 for element in sub_corr: - 996 content_string += '\t' + ' ' * int(element >= 0) + str(element) - 997 content_string += '\n' - 998 return content_string - 999 -1000 def __str__(self): -1001 return self.__repr__() -1002 -1003 # We define the basic operations, that can be performed with correlators. -1004 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. -1005 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. -1006 # One could try and tell Obs to check if the y in __mul__ is a Corr and -1007 -1008 def __add__(self, y): -1009 if isinstance(y, Corr): -1010 if ((self.N != y.N) or (self.T != y.T)): -1011 raise Exception("Addition of Corrs with different shape") -1012 newcontent = [] -1013 for t in range(self.T): -1014 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): -1015 newcontent.append(None) -1016 else: -1017 newcontent.append(self.content[t] + y.content[t]) -1018 return Corr(newcontent) -1019 -1020 elif isinstance(y, (Obs, int, float, CObs)): -1021 newcontent = [] -1022 for t in range(self.T): -1023 if _check_for_none(self, self.content[t]): -1024 newcontent.append(None) -1025 else: -1026 newcontent.append(self.content[t] + y) -1027 return Corr(newcontent, prange=self.prange) -1028 elif isinstance(y, np.ndarray): -1029 if y.shape == (self.T,): -1030 return Corr(list((np.array(self.content).T + y).T)) -1031 else: -1032 raise ValueError("operands could not be broadcast together") -1033 else: -1034 raise TypeError("Corr + wrong type") -1035 -1036 def __mul__(self, y): -1037 if isinstance(y, Corr): -1038 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): -1039 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") -1040 newcontent = [] -1041 for t in range(self.T): -1042 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): -1043 newcontent.append(None) -1044 else: -1045 newcontent.append(self.content[t] * y.content[t]) -1046 return Corr(newcontent) -1047 -1048 elif isinstance(y, (Obs, int, float, CObs)): -1049 newcontent = [] -1050 for t in range(self.T): -1051 if _check_for_none(self, self.content[t]): -1052 newcontent.append(None) -1053 else: -1054 newcontent.append(self.content[t] * y) -1055 return Corr(newcontent, prange=self.prange) -1056 elif isinstance(y, np.ndarray): -1057 if y.shape == (self.T,): -1058 return Corr(list((np.array(self.content).T * y).T)) -1059 else: -1060 raise ValueError("operands could not be broadcast together") -1061 else: -1062 raise TypeError("Corr * wrong type") -1063 -1064 def __truediv__(self, y): -1065 if isinstance(y, Corr): -1066 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): -1067 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") -1068 newcontent = [] -1069 for t in range(self.T): -1070 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): -1071 newcontent.append(None) -1072 else: -1073 newcontent.append(self.content[t] / y.content[t]) -1074 for t in range(self.T): -1075 if _check_for_none(self, newcontent[t]): -1076 continue -1077 if np.isnan(np.sum(newcontent[t]).value): -1078 newcontent[t] = None -1079 -1080 if all([item is None for item in newcontent]): -1081 raise Exception("Division returns completely undefined correlator") -1082 return Corr(newcontent) -1083 -1084 elif isinstance(y, (Obs, CObs)): -1085 if isinstance(y, Obs): -1086 if y.value == 0: -1087 raise Exception('Division by zero will return undefined correlator') -1088 if isinstance(y, CObs): -1089 if y.is_zero(): -1090 raise Exception('Division by zero will return undefined correlator') -1091 -1092 newcontent = [] -1093 for t in range(self.T): -1094 if _check_for_none(self, self.content[t]): -1095 newcontent.append(None) -1096 else: -1097 newcontent.append(self.content[t] / y) -1098 return Corr(newcontent, prange=self.prange) -1099 -1100 elif isinstance(y, (int, float)): -1101 if y == 0: -1102 raise Exception('Division by zero will return undefined correlator') -1103 newcontent = [] -1104 for t in range(self.T): -1105 if _check_for_none(self, self.content[t]): -1106 newcontent.append(None) -1107 else: -1108 newcontent.append(self.content[t] / y) -1109 return Corr(newcontent, prange=self.prange) -1110 elif isinstance(y, np.ndarray): -1111 if y.shape == (self.T,): -1112 return Corr(list((np.array(self.content).T / y).T)) -1113 else: -1114 raise ValueError("operands could not be broadcast together") -1115 else: -1116 raise TypeError('Corr / wrong type') + 946 mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist])) + 947 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] + 948 + 949 for name in mc_names: + 950 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T + 951 + 952 fig = plt.figure() + 953 ax = fig.add_subplot(111) + 954 for dat in data: + 955 ax.plot(x0_vals, dat, ls='-', marker='') + 956 + 957 if logscale is True: + 958 ax.set_yscale('log') + 959 + 960 ax.set_xlabel(r'$x_0 / a$') + 961 plt.title(name) + 962 plt.draw() + 963 + 964 def dump(self, filename, datatype="json.gz", **kwargs): + 965 """Dumps the Corr into a file of chosen type + 966 Parameters + 967 ---------- + 968 filename : str + 969 Name of the file to be saved. + 970 datatype : str + 971 Format of the exported file. Supported formats include + 972 "json.gz" and "pickle" + 973 path : str + 974 specifies a custom path for the file (default '.') + 975 """ + 976 if datatype == "json.gz": + 977 from .input.json import dump_to_json + 978 if 'path' in kwargs: + 979 file_name = kwargs.get('path') + '/' + filename + 980 else: + 981 file_name = filename + 982 dump_to_json(self, file_name) + 983 elif datatype == "pickle": + 984 dump_object(self, filename, **kwargs) + 985 else: + 986 raise Exception("Unknown datatype " + str(datatype)) + 987 + 988 def print(self, print_range=None): + 989 print(self.__repr__(print_range)) + 990 + 991 def __repr__(self, print_range=None): + 992 if print_range is None: + 993 print_range = [0, None] + 994 + 995 content_string = "" + 996 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here + 997 + 998 if self.tag is not None: + 999 content_string += "Description: " + self.tag + "\n" +1000 if self.N != 1: +1001 return content_string +1002 if isinstance(self[0], CObs): +1003 return content_string +1004 +1005 if print_range[1]: +1006 print_range[1] += 1 +1007 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' +1008 for i, sub_corr in enumerate(self.content[print_range[0]:print_range[1]]): +1009 if sub_corr is None: +1010 content_string += str(i + print_range[0]) + '\n' +1011 else: +1012 content_string += str(i + print_range[0]) +1013 for element in sub_corr: +1014 content_string += '\t' + ' ' * int(element >= 0) + str(element) +1015 content_string += '\n' +1016 return content_string +1017 +1018 def __str__(self): +1019 return self.__repr__() +1020 +1021 # We define the basic operations, that can be performed with correlators. +1022 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. +1023 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. +1024 # One could try and tell Obs to check if the y in __mul__ is a Corr and +1025 +1026 def __add__(self, y): +1027 if isinstance(y, Corr): +1028 if ((self.N != y.N) or (self.T != y.T)): +1029 raise Exception("Addition of Corrs with different shape") +1030 newcontent = [] +1031 for t in range(self.T): +1032 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): +1033 newcontent.append(None) +1034 else: +1035 newcontent.append(self.content[t] + y.content[t]) +1036 return Corr(newcontent) +1037 +1038 elif isinstance(y, (Obs, int, float, CObs)): +1039 newcontent = [] +1040 for t in range(self.T): +1041 if _check_for_none(self, self.content[t]): +1042 newcontent.append(None) +1043 else: +1044 newcontent.append(self.content[t] + y) +1045 return Corr(newcontent, prange=self.prange) +1046 elif isinstance(y, np.ndarray): +1047 if y.shape == (self.T,): +1048 return Corr(list((np.array(self.content).T + y).T)) +1049 else: +1050 raise ValueError("operands could not be broadcast together") +1051 else: +1052 raise TypeError("Corr + wrong type") +1053 +1054 def __mul__(self, y): +1055 if isinstance(y, Corr): +1056 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): +1057 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") +1058 newcontent = [] +1059 for t in range(self.T): +1060 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): +1061 newcontent.append(None) +1062 else: +1063 newcontent.append(self.content[t] * y.content[t]) +1064 return Corr(newcontent) +1065 +1066 elif isinstance(y, (Obs, int, float, CObs)): +1067 newcontent = [] +1068 for t in range(self.T): +1069 if _check_for_none(self, self.content[t]): +1070 newcontent.append(None) +1071 else: +1072 newcontent.append(self.content[t] * y) +1073 return Corr(newcontent, prange=self.prange) +1074 elif isinstance(y, np.ndarray): +1075 if y.shape == (self.T,): +1076 return Corr(list((np.array(self.content).T * y).T)) +1077 else: +1078 raise ValueError("operands could not be broadcast together") +1079 else: +1080 raise TypeError("Corr * wrong type") +1081 +1082 def __truediv__(self, y): +1083 if isinstance(y, Corr): +1084 if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): +1085 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") +1086 newcontent = [] +1087 for t in range(self.T): +1088 if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]): +1089 newcontent.append(None) +1090 else: +1091 newcontent.append(self.content[t] / y.content[t]) +1092 for t in range(self.T): +1093 if _check_for_none(self, newcontent[t]): +1094 continue +1095 if np.isnan(np.sum(newcontent[t]).value): +1096 newcontent[t] = None +1097 +1098 if all([item is None for item in newcontent]): +1099 raise Exception("Division returns completely undefined correlator") +1100 return Corr(newcontent) +1101 +1102 elif isinstance(y, (Obs, CObs)): +1103 if isinstance(y, Obs): +1104 if y.value == 0: +1105 raise Exception('Division by zero will return undefined correlator') +1106 if isinstance(y, CObs): +1107 if y.is_zero(): +1108 raise Exception('Division by zero will return undefined correlator') +1109 +1110 newcontent = [] +1111 for t in range(self.T): +1112 if _check_for_none(self, self.content[t]): +1113 newcontent.append(None) +1114 else: +1115 newcontent.append(self.content[t] / y) +1116 return Corr(newcontent, prange=self.prange) 1117 -1118 def __neg__(self): -1119 newcontent = [None if _check_for_none(self, item) else -1. * item for item in self.content] -1120 return Corr(newcontent, prange=self.prange) -1121 -1122 def __sub__(self, y): -1123 return self + (-y) -1124 -1125 def __pow__(self, y): -1126 if isinstance(y, (Obs, int, float, CObs)): -1127 newcontent = [None if _check_for_none(self, item) else item**y for item in self.content] -1128 return Corr(newcontent, prange=self.prange) -1129 else: -1130 raise TypeError('Type of exponent not supported') -1131 -1132 def __abs__(self): -1133 newcontent = [None if _check_for_none(self, item) else np.abs(item) for item in self.content] -1134 return Corr(newcontent, prange=self.prange) +1118 elif isinstance(y, (int, float)): +1119 if y == 0: +1120 raise Exception('Division by zero will return undefined correlator') +1121 newcontent = [] +1122 for t in range(self.T): +1123 if _check_for_none(self, self.content[t]): +1124 newcontent.append(None) +1125 else: +1126 newcontent.append(self.content[t] / y) +1127 return Corr(newcontent, prange=self.prange) +1128 elif isinstance(y, np.ndarray): +1129 if y.shape == (self.T,): +1130 return Corr(list((np.array(self.content).T / y).T)) +1131 else: +1132 raise ValueError("operands could not be broadcast together") +1133 else: +1134 raise TypeError('Corr / wrong type') 1135 -1136 # The numpy functions: -1137 def sqrt(self): -1138 return self ** 0.5 +1136 def __neg__(self): +1137 newcontent = [None if _check_for_none(self, item) else -1. * item for item in self.content] +1138 return Corr(newcontent, prange=self.prange) 1139 -1140 def log(self): -1141 newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content] -1142 return Corr(newcontent, prange=self.prange) -1143 -1144 def exp(self): -1145 newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content] -1146 return Corr(newcontent, prange=self.prange) -1147 -1148 def _apply_func_to_corr(self, func): -1149 newcontent = [None if _check_for_none(self, item) else func(item) for item in self.content] -1150 for t in range(self.T): -1151 if _check_for_none(self, newcontent[t]): -1152 continue -1153 tmp_sum = np.sum(newcontent[t]) -1154 if hasattr(tmp_sum, "value"): -1155 if np.isnan(tmp_sum.value): -1156 newcontent[t] = None -1157 if all([item is None for item in newcontent]): -1158 raise Exception('Operation returns undefined correlator') -1159 return Corr(newcontent) -1160 -1161 def sin(self): -1162 return self._apply_func_to_corr(np.sin) -1163 -1164 def cos(self): -1165 return self._apply_func_to_corr(np.cos) -1166 -1167 def tan(self): -1168 return self._apply_func_to_corr(np.tan) -1169 -1170 def sinh(self): -1171 return self._apply_func_to_corr(np.sinh) -1172 -1173 def cosh(self): -1174 return self._apply_func_to_corr(np.cosh) -1175 -1176 def tanh(self): -1177 return self._apply_func_to_corr(np.tanh) +1140 def __sub__(self, y): +1141 return self + (-y) +1142 +1143 def __pow__(self, y): +1144 if isinstance(y, (Obs, int, float, CObs)): +1145 newcontent = [None if _check_for_none(self, item) else item**y for item in self.content] +1146 return Corr(newcontent, prange=self.prange) +1147 else: +1148 raise TypeError('Type of exponent not supported') +1149 +1150 def __abs__(self): +1151 newcontent = [None if _check_for_none(self, item) else np.abs(item) for item in self.content] +1152 return Corr(newcontent, prange=self.prange) +1153 +1154 # The numpy functions: +1155 def sqrt(self): +1156 return self ** 0.5 +1157 +1158 def log(self): +1159 newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content] +1160 return Corr(newcontent, prange=self.prange) +1161 +1162 def exp(self): +1163 newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content] +1164 return Corr(newcontent, prange=self.prange) +1165 +1166 def _apply_func_to_corr(self, func): +1167 newcontent = [None if _check_for_none(self, item) else func(item) for item in self.content] +1168 for t in range(self.T): +1169 if _check_for_none(self, newcontent[t]): +1170 continue +1171 tmp_sum = np.sum(newcontent[t]) +1172 if hasattr(tmp_sum, "value"): +1173 if np.isnan(tmp_sum.value): +1174 newcontent[t] = None +1175 if all([item is None for item in newcontent]): +1176 raise Exception('Operation returns undefined correlator') +1177 return Corr(newcontent) 1178 -1179 def arcsin(self): -1180 return self._apply_func_to_corr(np.arcsin) +1179 def sin(self): +1180 return self._apply_func_to_corr(np.sin) 1181 -1182 def arccos(self): -1183 return self._apply_func_to_corr(np.arccos) +1182 def cos(self): +1183 return self._apply_func_to_corr(np.cos) 1184 -1185 def arctan(self): -1186 return self._apply_func_to_corr(np.arctan) +1185 def tan(self): +1186 return self._apply_func_to_corr(np.tan) 1187 -1188 def arcsinh(self): -1189 return self._apply_func_to_corr(np.arcsinh) +1188 def sinh(self): +1189 return self._apply_func_to_corr(np.sinh) 1190 -1191 def arccosh(self): -1192 return self._apply_func_to_corr(np.arccosh) +1191 def cosh(self): +1192 return self._apply_func_to_corr(np.cosh) 1193 -1194 def arctanh(self): -1195 return self._apply_func_to_corr(np.arctanh) +1194 def tanh(self): +1195 return self._apply_func_to_corr(np.tanh) 1196 -1197 # Right hand side operations (require tweak in main module to work) -1198 def __radd__(self, y): -1199 return self + y -1200 -1201 def __rsub__(self, y): -1202 return -self + y -1203 -1204 def __rmul__(self, y): -1205 return self * y -1206 -1207 def __rtruediv__(self, y): -1208 return (self / y) ** (-1) -1209 -1210 @property -1211 def real(self): -1212 def return_real(obs_OR_cobs): -1213 if isinstance(obs_OR_cobs.flatten()[0], CObs): -1214 return np.vectorize(lambda x: x.real)(obs_OR_cobs) -1215 else: -1216 return obs_OR_cobs -1217 -1218 return self._apply_func_to_corr(return_real) -1219 -1220 @property -1221 def imag(self): -1222 def return_imag(obs_OR_cobs): -1223 if isinstance(obs_OR_cobs.flatten()[0], CObs): -1224 return np.vectorize(lambda x: x.imag)(obs_OR_cobs) -1225 else: -1226 return obs_OR_cobs * 0 # So it stays the right type +1197 def arcsin(self): +1198 return self._apply_func_to_corr(np.arcsin) +1199 +1200 def arccos(self): +1201 return self._apply_func_to_corr(np.arccos) +1202 +1203 def arctan(self): +1204 return self._apply_func_to_corr(np.arctan) +1205 +1206 def arcsinh(self): +1207 return self._apply_func_to_corr(np.arcsinh) +1208 +1209 def arccosh(self): +1210 return self._apply_func_to_corr(np.arccosh) +1211 +1212 def arctanh(self): +1213 return self._apply_func_to_corr(np.arctanh) +1214 +1215 # Right hand side operations (require tweak in main module to work) +1216 def __radd__(self, y): +1217 return self + y +1218 +1219 def __rsub__(self, y): +1220 return -self + y +1221 +1222 def __rmul__(self, y): +1223 return self * y +1224 +1225 def __rtruediv__(self, y): +1226 return (self / y) ** (-1) 1227 -1228 return self._apply_func_to_corr(return_imag) -1229 -1230 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): -1231 r''' Project large correlation matrix to lowest states -1232 -1233 This method can be used to reduce the size of an (N x N) correlation matrix -1234 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise -1235 is still small. -1236 -1237 Parameters -1238 ---------- -1239 Ntrunc: int -1240 Rank of the target matrix. -1241 tproj: int -1242 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. -1243 The default value is 3. -1244 t0proj: int -1245 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly -1246 discouraged for O(a) improved theories, since the correctness of the procedure -1247 cannot be granted in this case. The default value is 2. -1248 basematrix : Corr -1249 Correlation matrix that is used to determine the eigenvectors of the -1250 lowest states based on a GEVP. basematrix is taken to be the Corr itself if -1251 is is not specified. -1252 -1253 Notes -1254 ----- -1255 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving -1256 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ -1257 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the -1258 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via -1259 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large -1260 correlation matrix and to remove some noise that is added by irrelevant operators. -1261 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated -1262 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. -1263 ''' -1264 -1265 if self.N == 1: -1266 raise Exception('Method cannot be applied to one-dimensional correlators.') -1267 if basematrix is None: -1268 basematrix = self -1269 if Ntrunc >= basematrix.N: -1270 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) -1271 if basematrix.N != self.N: -1272 raise Exception('basematrix and targetmatrix have to be of the same size.') -1273 -1274 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] -1275 -1276 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) -1277 rmat = [] -1278 for t in range(basematrix.T): -1279 for i in range(Ntrunc): -1280 for j in range(Ntrunc): -1281 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] -1282 rmat.append(np.copy(tmpmat)) -1283 -1284 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] -1285 return Corr(newcontent) +1228 @property +1229 def real(self): +1230 def return_real(obs_OR_cobs): +1231 if isinstance(obs_OR_cobs.flatten()[0], CObs): +1232 return np.vectorize(lambda x: x.real)(obs_OR_cobs) +1233 else: +1234 return obs_OR_cobs +1235 +1236 return self._apply_func_to_corr(return_real) +1237 +1238 @property +1239 def imag(self): +1240 def return_imag(obs_OR_cobs): +1241 if isinstance(obs_OR_cobs.flatten()[0], CObs): +1242 return np.vectorize(lambda x: x.imag)(obs_OR_cobs) +1243 else: +1244 return obs_OR_cobs * 0 # So it stays the right type +1245 +1246 return self._apply_func_to_corr(return_imag) +1247 +1248 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): +1249 r''' Project large correlation matrix to lowest states +1250 +1251 This method can be used to reduce the size of an (N x N) correlation matrix +1252 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise +1253 is still small. +1254 +1255 Parameters +1256 ---------- +1257 Ntrunc: int +1258 Rank of the target matrix. +1259 tproj: int +1260 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. +1261 The default value is 3. +1262 t0proj: int +1263 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly +1264 discouraged for O(a) improved theories, since the correctness of the procedure +1265 cannot be granted in this case. The default value is 2. +1266 basematrix : Corr +1267 Correlation matrix that is used to determine the eigenvectors of the +1268 lowest states based on a GEVP. basematrix is taken to be the Corr itself if +1269 is is not specified. +1270 +1271 Notes +1272 ----- +1273 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving +1274 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ +1275 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the +1276 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via +1277 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large +1278 correlation matrix and to remove some noise that is added by irrelevant operators. +1279 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated +1280 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. +1281 ''' +1282 +1283 if self.N == 1: +1284 raise Exception('Method cannot be applied to one-dimensional correlators.') +1285 if basematrix is None: +1286 basematrix = self +1287 if Ntrunc >= basematrix.N: +1288 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) +1289 if basematrix.N != self.N: +1290 raise Exception('basematrix and targetmatrix have to be of the same size.') +1291 +1292 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] +1293 +1294 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) +1295 rmat = [] +1296 for t in range(basematrix.T): +1297 for i in range(Ntrunc): +1298 for j in range(Ntrunc): +1299 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] +1300 rmat.append(np.copy(tmpmat)) +1301 +1302 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] +1303 return Corr(newcontent) @@ -3971,49 +4007,67 @@ Available choice: symmetric, forward, backward, improved, log, default: symmetri
580    def second_deriv(self, variant="symmetric"):
-581        """Return the second derivative of the correlator with respect to x0.
+581        r"""Return the second derivative of the correlator with respect to x0.
 582
 583        Parameters
 584        ----------
 585        variant : str
 586            decides which definition of the finite differences derivative is used.
-587            Available choice: symmetric, improved, log, default: symmetric
-588        """
-589        if self.N != 1:
-590            raise Exception("second_deriv only implemented for one-dimensional correlators.")
-591        if variant == "symmetric":
-592            newcontent = []
-593            for t in range(1, self.T - 1):
-594                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
-595                    newcontent.append(None)
-596                else:
-597                    newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
-598            if (all([x is None for x in newcontent])):
-599                raise Exception("Derivative is undefined at all timeslices")
-600            return Corr(newcontent, padding=[1, 1])
-601        elif variant == "improved":
-602            newcontent = []
-603            for t in range(2, self.T - 2):
-604                if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None):
-605                    newcontent.append(None)
-606                else:
-607                    newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
-608            if (all([x is None for x in newcontent])):
-609                raise Exception("Derivative is undefined at all timeslices")
-610            return Corr(newcontent, padding=[2, 2])
-611        elif variant == 'log':
-612            newcontent = []
-613            for t in range(self.T):
-614                if (self.content[t] is None) or (self.content[t] <= 0):
-615                    newcontent.append(None)
-616                else:
-617                    newcontent.append(np.log(self.content[t]))
-618            if (all([x is None for x in newcontent])):
-619                raise Exception("Log is undefined at all timeslices")
-620            logcorr = Corr(newcontent)
-621            return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2)
-622        else:
-623            raise Exception("Unknown variant.")
+587            Available choice:
+588                - symmetric (default)
+589                    $$\tilde{\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$
+590                - big_symmetric
+591                    $$\partial^2_0 f(x_0) = \frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$
+592                - improved
+593                    $$\partial^2_0 f(x_0) = \frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$
+594                - log
+595                    $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$
+596        """
+597        if self.N != 1:
+598            raise Exception("second_deriv only implemented for one-dimensional correlators.")
+599        if variant == "symmetric":
+600            newcontent = []
+601            for t in range(1, self.T - 1):
+602                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
+603                    newcontent.append(None)
+604                else:
+605                    newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
+606            if (all([x is None for x in newcontent])):
+607                raise Exception("Derivative is undefined at all timeslices")
+608            return Corr(newcontent, padding=[1, 1])
+609        elif variant == "big_symmetric":
+610            newcontent = []
+611            for t in range(2, self.T - 2):
+612                if (self.content[t - 2] is None) or (self.content[t + 2] is None):
+613                    newcontent.append(None)
+614                else:
+615                    newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4)
+616            if (all([x is None for x in newcontent])):
+617                raise Exception("Derivative is undefined at all timeslices")
+618            return Corr(newcontent, padding=[2, 2])
+619        elif variant == "improved":
+620            newcontent = []
+621            for t in range(2, self.T - 2):
+622                if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None):
+623                    newcontent.append(None)
+624                else:
+625                    newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
+626            if (all([x is None for x in newcontent])):
+627                raise Exception("Derivative is undefined at all timeslices")
+628            return Corr(newcontent, padding=[2, 2])
+629        elif variant == 'log':
+630            newcontent = []
+631            for t in range(self.T):
+632                if (self.content[t] is None) or (self.content[t] <= 0):
+633                    newcontent.append(None)
+634                else:
+635                    newcontent.append(np.log(self.content[t]))
+636            if (all([x is None for x in newcontent])):
+637                raise Exception("Log is undefined at all timeslices")
+638            logcorr = Corr(newcontent)
+639            return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2)
+640        else:
+641            raise Exception("Unknown variant.")
 
@@ -4024,7 +4078,15 @@ Available choice: symmetric, forward, backward, improved, log, default: symmetri @@ -4041,89 +4103,89 @@ Available choice: symmetric, improved, log, default: symmetric -
625    def m_eff(self, variant='log', guess=1.0):
-626        """Returns the effective mass of the correlator as correlator object
-627
-628        Parameters
-629        ----------
-630        variant : str
-631            log : uses the standard effective mass log(C(t) / C(t+1))
-632            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
-633            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
-634            See, e.g., arXiv:1205.5380
-635            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
-636            logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
-637        guess : float
-638            guess for the root finder, only relevant for the root variant
-639        """
-640        if self.N != 1:
-641            raise Exception('Correlator must be projected before getting m_eff')
-642        if variant == 'log':
-643            newcontent = []
-644            for t in range(self.T - 1):
-645                if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0):
-646                    newcontent.append(None)
-647                elif self.content[t][0].value / self.content[t + 1][0].value < 0:
-648                    newcontent.append(None)
-649                else:
-650                    newcontent.append(self.content[t] / self.content[t + 1])
-651            if (all([x is None for x in newcontent])):
-652                raise Exception('m_eff is undefined at all timeslices')
-653
-654            return np.log(Corr(newcontent, padding=[0, 1]))
-655
-656        elif variant == 'logsym':
-657            newcontent = []
-658            for t in range(1, self.T - 1):
-659                if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0):
-660                    newcontent.append(None)
-661                elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0:
-662                    newcontent.append(None)
-663                else:
-664                    newcontent.append(self.content[t - 1] / self.content[t + 1])
-665            if (all([x is None for x in newcontent])):
-666                raise Exception('m_eff is undefined at all timeslices')
-667
-668            return np.log(Corr(newcontent, padding=[1, 1])) / 2
-669
-670        elif variant in ['periodic', 'cosh', 'sinh']:
-671            if variant in ['periodic', 'cosh']:
-672                func = anp.cosh
-673            else:
-674                func = anp.sinh
-675
-676            def root_function(x, d):
-677                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d
-678
-679            newcontent = []
-680            for t in range(self.T - 1):
-681                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0):
-682                    newcontent.append(None)
-683                # Fill the two timeslices in the middle of the lattice with their predecessors
-684                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
-685                    newcontent.append(newcontent[-1])
-686                elif self.content[t][0].value / self.content[t + 1][0].value < 0:
-687                    newcontent.append(None)
-688                else:
-689                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
-690            if (all([x is None for x in newcontent])):
-691                raise Exception('m_eff is undefined at all timeslices')
-692
-693            return Corr(newcontent, padding=[0, 1])
-694
-695        elif variant == 'arccosh':
-696            newcontent = []
-697            for t in range(1, self.T - 1):
-698                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0):
-699                    newcontent.append(None)
-700                else:
-701                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
-702            if (all([x is None for x in newcontent])):
-703                raise Exception("m_eff is undefined at all timeslices")
-704            return np.arccosh(Corr(newcontent, padding=[1, 1]))
-705
-706        else:
-707            raise Exception('Unknown variant.')
+            
643    def m_eff(self, variant='log', guess=1.0):
+644        """Returns the effective mass of the correlator as correlator object
+645
+646        Parameters
+647        ----------
+648        variant : str
+649            log : uses the standard effective mass log(C(t) / C(t+1))
+650            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
+651            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
+652            See, e.g., arXiv:1205.5380
+653            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
+654            logsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
+655        guess : float
+656            guess for the root finder, only relevant for the root variant
+657        """
+658        if self.N != 1:
+659            raise Exception('Correlator must be projected before getting m_eff')
+660        if variant == 'log':
+661            newcontent = []
+662            for t in range(self.T - 1):
+663                if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0):
+664                    newcontent.append(None)
+665                elif self.content[t][0].value / self.content[t + 1][0].value < 0:
+666                    newcontent.append(None)
+667                else:
+668                    newcontent.append(self.content[t] / self.content[t + 1])
+669            if (all([x is None for x in newcontent])):
+670                raise Exception('m_eff is undefined at all timeslices')
+671
+672            return np.log(Corr(newcontent, padding=[0, 1]))
+673
+674        elif variant == 'logsym':
+675            newcontent = []
+676            for t in range(1, self.T - 1):
+677                if ((self.content[t - 1] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0):
+678                    newcontent.append(None)
+679                elif self.content[t - 1][0].value / self.content[t + 1][0].value < 0:
+680                    newcontent.append(None)
+681                else:
+682                    newcontent.append(self.content[t - 1] / self.content[t + 1])
+683            if (all([x is None for x in newcontent])):
+684                raise Exception('m_eff is undefined at all timeslices')
+685
+686            return np.log(Corr(newcontent, padding=[1, 1])) / 2
+687
+688        elif variant in ['periodic', 'cosh', 'sinh']:
+689            if variant in ['periodic', 'cosh']:
+690                func = anp.cosh
+691            else:
+692                func = anp.sinh
+693
+694            def root_function(x, d):
+695                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d
+696
+697            newcontent = []
+698            for t in range(self.T - 1):
+699                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0):
+700                    newcontent.append(None)
+701                # Fill the two timeslices in the middle of the lattice with their predecessors
+702                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
+703                    newcontent.append(newcontent[-1])
+704                elif self.content[t][0].value / self.content[t + 1][0].value < 0:
+705                    newcontent.append(None)
+706                else:
+707                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
+708            if (all([x is None for x in newcontent])):
+709                raise Exception('m_eff is undefined at all timeslices')
+710
+711            return Corr(newcontent, padding=[0, 1])
+712
+713        elif variant == 'arccosh':
+714            newcontent = []
+715            for t in range(1, self.T - 1):
+716                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0):
+717                    newcontent.append(None)
+718                else:
+719                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
+720            if (all([x is None for x in newcontent])):
+721                raise Exception("m_eff is undefined at all timeslices")
+722            return np.arccosh(Corr(newcontent, padding=[1, 1]))
+723
+724        else:
+725            raise Exception('Unknown variant.')
 
@@ -4157,39 +4219,39 @@ guess for the root finder, only relevant for the root variant
-
709    def fit(self, function, fitrange=None, silent=False, **kwargs):
-710        r'''Fits function to the data
-711
-712        Parameters
-713        ----------
-714        function : obj
-715            function to fit to the data. See fits.least_squares for details.
-716        fitrange : list
-717            Two element list containing the timeslices on which the fit is supposed to start and stop.
-718            Caution: This range is inclusive as opposed to standard python indexing.
-719            `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6.
-720            If not specified, self.prange or all timeslices are used.
-721        silent : bool
-722            Decides whether output is printed to the standard output.
-723        '''
-724        if self.N != 1:
-725            raise Exception("Correlator must be projected before fitting")
-726
-727        if fitrange is None:
-728            if self.prange:
-729                fitrange = self.prange
-730            else:
-731                fitrange = [0, self.T - 1]
-732        else:
-733            if not isinstance(fitrange, list):
-734                raise Exception("fitrange has to be a list with two elements")
-735            if len(fitrange) != 2:
-736                raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
-737
-738        xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
-739        ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
-740        result = least_squares(xs, ys, function, silent=silent, **kwargs)
-741        return result
+            
727    def fit(self, function, fitrange=None, silent=False, **kwargs):
+728        r'''Fits function to the data
+729
+730        Parameters
+731        ----------
+732        function : obj
+733            function to fit to the data. See fits.least_squares for details.
+734        fitrange : list
+735            Two element list containing the timeslices on which the fit is supposed to start and stop.
+736            Caution: This range is inclusive as opposed to standard python indexing.
+737            `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6.
+738            If not specified, self.prange or all timeslices are used.
+739        silent : bool
+740            Decides whether output is printed to the standard output.
+741        '''
+742        if self.N != 1:
+743            raise Exception("Correlator must be projected before fitting")
+744
+745        if fitrange is None:
+746            if self.prange:
+747                fitrange = self.prange
+748            else:
+749                fitrange = [0, self.T - 1]
+750        else:
+751            if not isinstance(fitrange, list):
+752                raise Exception("fitrange has to be a list with two elements")
+753            if len(fitrange) != 2:
+754                raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
+755
+756        xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
+757        ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
+758        result = least_squares(xs, ys, function, silent=silent, **kwargs)
+759        return result
 
@@ -4223,42 +4285,42 @@ Decides whether output is printed to the standard output.
-
743    def plateau(self, plateau_range=None, method="fit", auto_gamma=False):
-744        """ Extract a plateau value from a Corr object
-745
-746        Parameters
-747        ----------
-748        plateau_range : list
-749            list with two entries, indicating the first and the last timeslice
-750            of the plateau region.
-751        method : str
-752            method to extract the plateau.
-753                'fit' fits a constant to the plateau region
-754                'avg', 'average' or 'mean' just average over the given timeslices.
-755        auto_gamma : bool
-756            apply gamma_method with default parameters to the Corr. Defaults to None
-757        """
-758        if not plateau_range:
-759            if self.prange:
-760                plateau_range = self.prange
-761            else:
-762                raise Exception("no plateau range provided")
-763        if self.N != 1:
-764            raise Exception("Correlator must be projected before getting a plateau.")
-765        if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
-766            raise Exception("plateau is undefined at all timeslices in plateaurange.")
-767        if auto_gamma:
-768            self.gamma_method()
-769        if method == "fit":
-770            def const_func(a, t):
-771                return a[0]
-772            return self.fit(const_func, plateau_range)[0]
-773        elif method in ["avg", "average", "mean"]:
-774            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
-775            return returnvalue
-776
-777        else:
-778            raise Exception("Unsupported plateau method: " + method)
+            
761    def plateau(self, plateau_range=None, method="fit", auto_gamma=False):
+762        """ Extract a plateau value from a Corr object
+763
+764        Parameters
+765        ----------
+766        plateau_range : list
+767            list with two entries, indicating the first and the last timeslice
+768            of the plateau region.
+769        method : str
+770            method to extract the plateau.
+771                'fit' fits a constant to the plateau region
+772                'avg', 'average' or 'mean' just average over the given timeslices.
+773        auto_gamma : bool
+774            apply gamma_method with default parameters to the Corr. Defaults to None
+775        """
+776        if not plateau_range:
+777            if self.prange:
+778                plateau_range = self.prange
+779            else:
+780                raise Exception("no plateau range provided")
+781        if self.N != 1:
+782            raise Exception("Correlator must be projected before getting a plateau.")
+783        if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
+784            raise Exception("plateau is undefined at all timeslices in plateaurange.")
+785        if auto_gamma:
+786            self.gamma_method()
+787        if method == "fit":
+788            def const_func(a, t):
+789                return a[0]
+790            return self.fit(const_func, plateau_range)[0]
+791        elif method in ["avg", "average", "mean"]:
+792            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
+793            return returnvalue
+794
+795        else:
+796            raise Exception("Unsupported plateau method: " + method)
 
@@ -4292,17 +4354,17 @@ apply gamma_method with default parameters to the Corr. Defaults to None
-
780    def set_prange(self, prange):
-781        """Sets the attribute prange of the Corr object."""
-782        if not len(prange) == 2:
-783            raise Exception("prange must be a list or array with two values")
-784        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
-785            raise Exception("Start and end point must be integers")
-786        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
-787            raise Exception("Start and end point must define a range in the interval 0,T")
-788
-789        self.prange = prange
-790        return
+            
798    def set_prange(self, prange):
+799        """Sets the attribute prange of the Corr object."""
+800        if not len(prange) == 2:
+801            raise Exception("prange must be a list or array with two values")
+802        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
+803            raise Exception("Start and end point must be integers")
+804        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
+805            raise Exception("Start and end point must define a range in the interval 0,T")
+806
+807        self.prange = prange
+808        return
 
@@ -4322,130 +4384,130 @@ apply gamma_method with default parameters to the Corr. Defaults to None
-
792    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None):
-793        """Plots the correlator using the tag of the correlator as label if available.
-794
-795        Parameters
-796        ----------
-797        x_range : list
-798            list of two values, determining the range of the x-axis e.g. [4, 8].
-799        comp : Corr or list of Corr
-800            Correlator or list of correlators which are plotted for comparison.
-801            The tags of these correlators are used as labels if available.
-802        logscale : bool
-803            Sets y-axis to logscale.
-804        plateau : Obs
-805            Plateau value to be visualized in the figure.
-806        fit_res : Fit_result
-807            Fit_result object to be visualized.
-808        fit_key : str
-809            Key for the fit function in Fit_result.fit_function (for combined fits).
-810        ylabel : str
-811            Label for the y-axis.
-812        save : str
-813            path to file in which the figure should be saved.
-814        auto_gamma : bool
-815            Apply the gamma method with standard parameters to all correlators and plateau values before plotting.
-816        hide_sigma : float
-817            Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
-818        references : list
-819            List of floating point values that are displayed as horizontal lines for reference.
-820        title : string
-821            Optional title of the figure.
-822        """
-823        if self.N != 1:
-824            raise Exception("Correlator must be projected before plotting")
-825
-826        if auto_gamma:
-827            self.gamma_method()
-828
-829        if x_range is None:
-830            x_range = [0, self.T - 1]
-831
-832        fig = plt.figure()
-833        ax1 = fig.add_subplot(111)
-834
-835        x, y, y_err = self.plottable()
-836        if hide_sigma:
-837            hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
-838        else:
-839            hide_from = None
-840        ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag)
-841        if logscale:
-842            ax1.set_yscale('log')
-843        else:
-844            if y_range is None:
-845                try:
-846                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
-847                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
-848                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
-849                except Exception:
-850                    pass
-851            else:
-852                ax1.set_ylim(y_range)
-853        if comp:
-854            if isinstance(comp, (Corr, list)):
-855                for corr in comp if isinstance(comp, list) else [comp]:
-856                    if auto_gamma:
-857                        corr.gamma_method()
-858                    x, y, y_err = corr.plottable()
-859                    if hide_sigma:
-860                        hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
-861                    else:
-862                        hide_from = None
-863                    ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
-864            else:
-865                raise Exception("'comp' must be a correlator or a list of correlators.")
-866
-867        if plateau:
-868            if isinstance(plateau, Obs):
-869                if auto_gamma:
-870                    plateau.gamma_method()
-871                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
-872                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
-873            else:
-874                raise Exception("'plateau' must be an Obs")
-875
-876        if references:
-877            if isinstance(references, list):
-878                for ref in references:
-879                    ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
-880            else:
-881                raise Exception("'references' must be a list of floating pint values.")
-882
-883        if self.prange:
-884            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0)
-885            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0)
-886
-887        if fit_res:
-888            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
-889            if isinstance(fit_res.fit_function, dict):
-890                if fit_key:
-891                    ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2)
-892                else:
-893                    raise ValueError("Please provide a 'fit_key' for visualizing combined fits.")
-894            else:
-895                ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2)
-896
-897        ax1.set_xlabel(r'$x_0 / a$')
-898        if ylabel:
-899            ax1.set_ylabel(ylabel)
-900        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])
-901
-902        handles, labels = ax1.get_legend_handles_labels()
-903        if labels:
-904            ax1.legend()
-905
-906        if title:
-907            plt.title(title)
-908
-909        plt.draw()
-910
-911        if save:
-912            if isinstance(save, str):
-913                fig.savefig(save, bbox_inches='tight')
-914            else:
-915                raise Exception("'save' has to be a string.")
+            
810    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, fit_key=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None, title=None):
+811        """Plots the correlator using the tag of the correlator as label if available.
+812
+813        Parameters
+814        ----------
+815        x_range : list
+816            list of two values, determining the range of the x-axis e.g. [4, 8].
+817        comp : Corr or list of Corr
+818            Correlator or list of correlators which are plotted for comparison.
+819            The tags of these correlators are used as labels if available.
+820        logscale : bool
+821            Sets y-axis to logscale.
+822        plateau : Obs
+823            Plateau value to be visualized in the figure.
+824        fit_res : Fit_result
+825            Fit_result object to be visualized.
+826        fit_key : str
+827            Key for the fit function in Fit_result.fit_function (for combined fits).
+828        ylabel : str
+829            Label for the y-axis.
+830        save : str
+831            path to file in which the figure should be saved.
+832        auto_gamma : bool
+833            Apply the gamma method with standard parameters to all correlators and plateau values before plotting.
+834        hide_sigma : float
+835            Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
+836        references : list
+837            List of floating point values that are displayed as horizontal lines for reference.
+838        title : string
+839            Optional title of the figure.
+840        """
+841        if self.N != 1:
+842            raise Exception("Correlator must be projected before plotting")
+843
+844        if auto_gamma:
+845            self.gamma_method()
+846
+847        if x_range is None:
+848            x_range = [0, self.T - 1]
+849
+850        fig = plt.figure()
+851        ax1 = fig.add_subplot(111)
+852
+853        x, y, y_err = self.plottable()
+854        if hide_sigma:
+855            hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
+856        else:
+857            hide_from = None
+858        ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag)
+859        if logscale:
+860            ax1.set_yscale('log')
+861        else:
+862            if y_range is None:
+863                try:
+864                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
+865                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
+866                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
+867                except Exception:
+868                    pass
+869            else:
+870                ax1.set_ylim(y_range)
+871        if comp:
+872            if isinstance(comp, (Corr, list)):
+873                for corr in comp if isinstance(comp, list) else [comp]:
+874                    if auto_gamma:
+875                        corr.gamma_method()
+876                    x, y, y_err = corr.plottable()
+877                    if hide_sigma:
+878                        hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
+879                    else:
+880                        hide_from = None
+881                    ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
+882            else:
+883                raise Exception("'comp' must be a correlator or a list of correlators.")
+884
+885        if plateau:
+886            if isinstance(plateau, Obs):
+887                if auto_gamma:
+888                    plateau.gamma_method()
+889                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
+890                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
+891            else:
+892                raise Exception("'plateau' must be an Obs")
+893
+894        if references:
+895            if isinstance(references, list):
+896                for ref in references:
+897                    ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
+898            else:
+899                raise Exception("'references' must be a list of floating pint values.")
+900
+901        if self.prange:
+902            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0)
+903            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',', color="black", zorder=0)
+904
+905        if fit_res:
+906            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
+907            if isinstance(fit_res.fit_function, dict):
+908                if fit_key:
+909                    ax1.plot(x_samples, fit_res.fit_function[fit_key]([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2)
+910                else:
+911                    raise ValueError("Please provide a 'fit_key' for visualizing combined fits.")
+912            else:
+913                ax1.plot(x_samples, fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), ls='-', marker=',', lw=2)
+914
+915        ax1.set_xlabel(r'$x_0 / a$')
+916        if ylabel:
+917            ax1.set_ylabel(ylabel)
+918        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])
+919
+920        handles, labels = ax1.get_legend_handles_labels()
+921        if labels:
+922            ax1.legend()
+923
+924        if title:
+925            plt.title(title)
+926
+927        plt.draw()
+928
+929        if save:
+930            if isinstance(save, str):
+931                fig.savefig(save, bbox_inches='tight')
+932            else:
+933                raise Exception("'save' has to be a string.")
 
@@ -4495,34 +4557,34 @@ Optional title of the figure.
-
917    def spaghetti_plot(self, logscale=True):
-918        """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
-919
-920        Parameters
-921        ----------
-922        logscale : bool
-923            Determines whether the scale of the y-axis is logarithmic or standard.
-924        """
-925        if self.N != 1:
-926            raise Exception("Correlator needs to be projected first.")
-927
-928        mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist]))
-929        x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
-930
-931        for name in mc_names:
-932            data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T
-933
-934            fig = plt.figure()
-935            ax = fig.add_subplot(111)
-936            for dat in data:
-937                ax.plot(x0_vals, dat, ls='-', marker='')
-938
-939            if logscale is True:
-940                ax.set_yscale('log')
-941
-942            ax.set_xlabel(r'$x_0 / a$')
-943            plt.title(name)
-944            plt.draw()
+            
935    def spaghetti_plot(self, logscale=True):
+936        """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
+937
+938        Parameters
+939        ----------
+940        logscale : bool
+941            Determines whether the scale of the y-axis is logarithmic or standard.
+942        """
+943        if self.N != 1:
+944            raise Exception("Correlator needs to be projected first.")
+945
+946        mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist]))
+947        x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
+948
+949        for name in mc_names:
+950            data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T
+951
+952            fig = plt.figure()
+953            ax = fig.add_subplot(111)
+954            for dat in data:
+955                ax.plot(x0_vals, dat, ls='-', marker='')
+956
+957            if logscale is True:
+958                ax.set_yscale('log')
+959
+960            ax.set_xlabel(r'$x_0 / a$')
+961            plt.title(name)
+962            plt.draw()
 
@@ -4549,29 +4611,29 @@ Determines whether the scale of the y-axis is logarithmic or standard.
-
946    def dump(self, filename, datatype="json.gz", **kwargs):
-947        """Dumps the Corr into a file of chosen type
-948        Parameters
-949        ----------
-950        filename : str
-951            Name of the file to be saved.
-952        datatype : str
-953            Format of the exported file. Supported formats include
-954            "json.gz" and "pickle"
-955        path : str
-956            specifies a custom path for the file (default '.')
-957        """
-958        if datatype == "json.gz":
-959            from .input.json import dump_to_json
-960            if 'path' in kwargs:
-961                file_name = kwargs.get('path') + '/' + filename
-962            else:
-963                file_name = filename
-964            dump_to_json(self, file_name)
-965        elif datatype == "pickle":
-966            dump_object(self, filename, **kwargs)
-967        else:
-968            raise Exception("Unknown datatype " + str(datatype))
+            
964    def dump(self, filename, datatype="json.gz", **kwargs):
+965        """Dumps the Corr into a file of chosen type
+966        Parameters
+967        ----------
+968        filename : str
+969            Name of the file to be saved.
+970        datatype : str
+971            Format of the exported file. Supported formats include
+972            "json.gz" and "pickle"
+973        path : str
+974            specifies a custom path for the file (default '.')
+975        """
+976        if datatype == "json.gz":
+977            from .input.json import dump_to_json
+978            if 'path' in kwargs:
+979                file_name = kwargs.get('path') + '/' + filename
+980            else:
+981                file_name = filename
+982            dump_to_json(self, file_name)
+983        elif datatype == "pickle":
+984            dump_object(self, filename, **kwargs)
+985        else:
+986            raise Exception("Unknown datatype " + str(datatype))
 
@@ -4603,8 +4665,8 @@ specifies a custom path for the file (default '.')
-
970    def print(self, print_range=None):
-971        print(self.__repr__(print_range))
+            
988    def print(self, print_range=None):
+989        print(self.__repr__(print_range))
 
@@ -4622,8 +4684,8 @@ specifies a custom path for the file (default '.')
-
1137    def sqrt(self):
-1138        return self ** 0.5
+            
1155    def sqrt(self):
+1156        return self ** 0.5
 
@@ -4641,9 +4703,9 @@ specifies a custom path for the file (default '.')
-
1140    def log(self):
-1141        newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content]
-1142        return Corr(newcontent, prange=self.prange)
+            
1158    def log(self):
+1159        newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content]
+1160        return Corr(newcontent, prange=self.prange)
 
@@ -4661,9 +4723,9 @@ specifies a custom path for the file (default '.')
-
1144    def exp(self):
-1145        newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content]
-1146        return Corr(newcontent, prange=self.prange)
+            
1162    def exp(self):
+1163        newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content]
+1164        return Corr(newcontent, prange=self.prange)
 
@@ -4681,8 +4743,8 @@ specifies a custom path for the file (default '.')
-
1161    def sin(self):
-1162        return self._apply_func_to_corr(np.sin)
+            
1179    def sin(self):
+1180        return self._apply_func_to_corr(np.sin)
 
@@ -4700,8 +4762,8 @@ specifies a custom path for the file (default '.')
-
1164    def cos(self):
-1165        return self._apply_func_to_corr(np.cos)
+            
1182    def cos(self):
+1183        return self._apply_func_to_corr(np.cos)
 
@@ -4719,8 +4781,8 @@ specifies a custom path for the file (default '.')
-
1167    def tan(self):
-1168        return self._apply_func_to_corr(np.tan)
+            
1185    def tan(self):
+1186        return self._apply_func_to_corr(np.tan)
 
@@ -4738,8 +4800,8 @@ specifies a custom path for the file (default '.')
-
1170    def sinh(self):
-1171        return self._apply_func_to_corr(np.sinh)
+            
1188    def sinh(self):
+1189        return self._apply_func_to_corr(np.sinh)
 
@@ -4757,8 +4819,8 @@ specifies a custom path for the file (default '.')
-
1173    def cosh(self):
-1174        return self._apply_func_to_corr(np.cosh)
+            
1191    def cosh(self):
+1192        return self._apply_func_to_corr(np.cosh)
 
@@ -4776,8 +4838,8 @@ specifies a custom path for the file (default '.')
-
1176    def tanh(self):
-1177        return self._apply_func_to_corr(np.tanh)
+            
1194    def tanh(self):
+1195        return self._apply_func_to_corr(np.tanh)
 
@@ -4795,8 +4857,8 @@ specifies a custom path for the file (default '.')
-
1179    def arcsin(self):
-1180        return self._apply_func_to_corr(np.arcsin)
+            
1197    def arcsin(self):
+1198        return self._apply_func_to_corr(np.arcsin)
 
@@ -4814,8 +4876,8 @@ specifies a custom path for the file (default '.')
-
1182    def arccos(self):
-1183        return self._apply_func_to_corr(np.arccos)
+            
1200    def arccos(self):
+1201        return self._apply_func_to_corr(np.arccos)
 
@@ -4833,8 +4895,8 @@ specifies a custom path for the file (default '.')
-
1185    def arctan(self):
-1186        return self._apply_func_to_corr(np.arctan)
+            
1203    def arctan(self):
+1204        return self._apply_func_to_corr(np.arctan)
 
@@ -4852,8 +4914,8 @@ specifies a custom path for the file (default '.')
-
1188    def arcsinh(self):
-1189        return self._apply_func_to_corr(np.arcsinh)
+            
1206    def arcsinh(self):
+1207        return self._apply_func_to_corr(np.arcsinh)
 
@@ -4871,8 +4933,8 @@ specifies a custom path for the file (default '.')
-
1191    def arccosh(self):
-1192        return self._apply_func_to_corr(np.arccosh)
+            
1209    def arccosh(self):
+1210        return self._apply_func_to_corr(np.arccosh)
 
@@ -4890,8 +4952,8 @@ specifies a custom path for the file (default '.')
-
1194    def arctanh(self):
-1195        return self._apply_func_to_corr(np.arctanh)
+            
1212    def arctanh(self):
+1213        return self._apply_func_to_corr(np.arctanh)
 
@@ -4931,62 +4993,62 @@ specifies a custom path for the file (default '.')
-
1230    def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):
-1231        r''' Project large correlation matrix to lowest states
-1232
-1233        This method can be used to reduce the size of an (N x N) correlation matrix
-1234        to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise
-1235        is still small.
-1236
-1237        Parameters
-1238        ----------
-1239        Ntrunc: int
-1240            Rank of the target matrix.
-1241        tproj: int
-1242            Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method.
-1243            The default value is 3.
-1244        t0proj: int
-1245            Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly
-1246            discouraged for O(a) improved theories, since the correctness of the procedure
-1247            cannot be granted in this case. The default value is 2.
-1248        basematrix : Corr
-1249            Correlation matrix that is used to determine the eigenvectors of the
-1250            lowest states based on a GEVP. basematrix is taken to be the Corr itself if
-1251            is is not specified.
-1252
-1253        Notes
-1254        -----
-1255        We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving
-1256        the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$
-1257        and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the
-1258        resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via
-1259        $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large
-1260        correlation matrix and to remove some noise that is added by irrelevant operators.
-1261        This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated
-1262        bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
-1263        '''
-1264
-1265        if self.N == 1:
-1266            raise Exception('Method cannot be applied to one-dimensional correlators.')
-1267        if basematrix is None:
-1268            basematrix = self
-1269        if Ntrunc >= basematrix.N:
-1270            raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
-1271        if basematrix.N != self.N:
-1272            raise Exception('basematrix and targetmatrix have to be of the same size.')
-1273
-1274        evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc]
-1275
-1276        tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object)
-1277        rmat = []
-1278        for t in range(basematrix.T):
-1279            for i in range(Ntrunc):
-1280                for j in range(Ntrunc):
-1281                    tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j]
-1282            rmat.append(np.copy(tmpmat))
-1283
-1284        newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)]
-1285        return Corr(newcontent)
+            
1248    def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):
+1249        r''' Project large correlation matrix to lowest states
+1250
+1251        This method can be used to reduce the size of an (N x N) correlation matrix
+1252        to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise
+1253        is still small.
+1254
+1255        Parameters
+1256        ----------
+1257        Ntrunc: int
+1258            Rank of the target matrix.
+1259        tproj: int
+1260            Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method.
+1261            The default value is 3.
+1262        t0proj: int
+1263            Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly
+1264            discouraged for O(a) improved theories, since the correctness of the procedure
+1265            cannot be granted in this case. The default value is 2.
+1266        basematrix : Corr
+1267            Correlation matrix that is used to determine the eigenvectors of the
+1268            lowest states based on a GEVP. basematrix is taken to be the Corr itself if
+1269            is is not specified.
+1270
+1271        Notes
+1272        -----
+1273        We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving
+1274        the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$
+1275        and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the
+1276        resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via
+1277        $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large
+1278        correlation matrix and to remove some noise that is added by irrelevant operators.
+1279        This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated
+1280        bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
+1281        '''
+1282
+1283        if self.N == 1:
+1284            raise Exception('Method cannot be applied to one-dimensional correlators.')
+1285        if basematrix is None:
+1286            basematrix = self
+1287        if Ntrunc >= basematrix.N:
+1288            raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
+1289        if basematrix.N != self.N:
+1290            raise Exception('basematrix and targetmatrix have to be of the same size.')
+1291
+1292        evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc]
+1293
+1294        tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object)
+1295        rmat = []
+1296        for t in range(basematrix.T):
+1297            for i in range(Ntrunc):
+1298                for j in range(Ntrunc):
+1299                    tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j]
+1300            rmat.append(np.copy(tmpmat))
+1301
+1302        newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)]
+1303        return Corr(newcontent)
 
diff --git a/docs/search.js b/docs/search.js index 54e25c6e..073bd233 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWhat is pyerrors?\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
  • \n
  • coherent error propagation for data from different Markov chains.
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
  • \n
\n\n

More detailed examples can found in the GitHub repository \"badge\".

\n\n

If you use pyerrors for research that leads to a publication please consider citing:

\n\n
    \n
  • Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
  • \n
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • \n
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • \n
\n\n

and

\n\n
    \n
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
  • \n
\n\n

where applicable.

\n\n

There exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.

\n\n

Installation

\n\n

Install the most recent release using pip and pypi:

\n\n
\n
pip install pyerrors     # Fresh install\npip install -U pyerrors  # Update\n
\n
\n\n

Install the most recent release using conda and conda-forge:

\n\n
\n
conda install -c conda-forge pyerrors  # Fresh install\nconda update -c conda-forge pyerrors   # Update\n
\n
\n\n

Install the current develop version:

\n\n
\n
pip install git+https://github.com/fjosw/pyerrors.git@develop\n
\n
\n\n

Basic example

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
\n
\n\n

The Obs class

\n\n

pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.

\n\n
\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n
\n\n

Error propagation

\n\n

When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

\n\n

The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
\n
\n\n

Error estimation

\n\n

The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

\n\n
\n
my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

\n\n
\n
my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_rho.

\n\n

If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

\n\n

Exponential tails

\n\n

Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

\n\n
\n
my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

For the full API see pyerrors.obs.Obs.gamma_method.

\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
\n
\n\n

Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.

\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
\n
\n\n

Error estimation for multiple ensembles

\n\n

In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

\n\n
\n
pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
\n
\n\n

In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

\n\n

Irregular Monte Carlo chains

\n\n

Obs objects defined on irregular Monte Carlo chains can be initialized with the parameter idl.

\n\n
\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n
\n\n

Obs objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.

\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

For the full API see pyerrors.obs.Obs.

\n\n

Correlators

\n\n

When one is not interested in single observables but correlation functions, pyerrors offers the Corr class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize a Corr objects one needs to arrange the data as a list of Obs

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0      0.7957(80)\n> 1      0.5156(51)\n> 2      0.3227(33)\n> 3      0.2041(21)\n
\n
\n\n

In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0\n> 1      0.7957(80)\n> 2      0.5156(51)\n> 3      0.3227(33)\n> 4      0.2041(21)\n> 5\n
\n
\n\n

The individual entries of a correlator can be accessed via slicing

\n\n
\n
print(my_corr[3])\n> 0.3227(33)\n
\n
\n\n

Error propagation with the Corr class works very similar to Obs objects. Mathematical operations are overloaded and Corr objects can be computed together with other Corr objects, Obs objects or real numbers and integers.

\n\n
\n
my_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n
\n\n

pyerrors provides the user with a set of regularly used methods for the manipulation of correlator objects:

\n\n
    \n
  • Corr.gamma_method applies the gamma method to all entries of the correlator.
  • \n
  • Corr.m_eff to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.
  • \n
  • Corr.deriv returns the first derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.second_deriv returns the second derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.symmetric symmetrizes parity even correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.anti_symmetric anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.T_symmetry averages a correlator with its time symmetry partner, assuming fixed boundary conditions.
  • \n
  • Corr.plateau extracts a plateau value from the correlator in a given range.
  • \n
  • Corr.roll periodically shifts the correlator.
  • \n
  • Corr.reverse reverses the time ordering of the correlator.
  • \n
  • Corr.correlate constructs a disconnected correlation function from the correlator and another Corr or Obs object.
  • \n
  • Corr.reweight reweights the correlator.
  • \n
\n\n

pyerrors can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (see pyerrors.correlators.Corr.GEVP).

\n\n

For the full API see pyerrors.correlators.Corr.

\n\n

Complex valued observables

\n\n

pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

\n\n
\n
my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
\n
\n\n

Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

\n\n
\n
my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
\n
\n\n

The Covobs class

\n\n

In many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The Covobs class allows to define such quantities in pyerrors. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.

\n\n

This concept is built into the definition of Covobs. In pyerrors, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enters cov_Obs, since the second argument of this function is the covariance matrix of the Covobs.

\n\n
\n
import pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result         1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n>  pi^0 mass     5.00000000e-04\n> 0 samples in 1 ensemble:\n>   \u00b7 Covobs   'pi^0 mass'\n
\n
\n\n

The resulting object mpi is an Obs that contains a Covobs. In the following, it may be handled as any other Obs. The contribution of the covariance matrix to the error of an Obs is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of the Obs with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.

\n\n

Correlated auxiliary data is defined similarly to above, e.g., via

\n\n
\n
RAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
\n
\n\n

where RAP now is a list of two Obs that contains the two correlated parameters.

\n\n

Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the Covobs class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of an Obs o with respect to a covariance matrix with the identifying string k may be accessed via

\n\n
\n
o.covobs[k].grad\n
\n
\n\n

Error propagation in iterative algorithms

\n\n

pyerrors supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.

\n\n

Least squares fits

\n\n

Standard non-linear least square fits with errors on the dependent but not the independent variables can be performed with pyerrors.fits.least_squares. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.

\n\n

Fit functions have to be of the following form

\n\n
\n
import autograd.numpy as anp\n\ndef func(a, x):\n    return a[1] * anp.exp(-a[0] * x)\n
\n
\n\n

It is important that numerical functions refer to autograd.numpy instead of numpy for the automatic differentiation in iterative algorithms to work properly.

\n\n

Fits can then be performed via

\n\n
\n
fit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n>  Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value   = 0.5673\n> Fit parameters:\n> 0      0.0548(28)\n> 1      1.933(64)\n
\n
\n\n

where x is a list or numpy.array of floats and y is a list or numpy.array of Obs.

\n\n

Data stored in Corr objects can be fitted directly using the Corr.fit method.

\n\n
\n
my_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
\n
\n\n

this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.

\n\n

For fit functions with multiple independent variables the fit function can be of the form

\n\n
\n
def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
\n
\n\n

pyerrors also supports correlated fits which can be triggered via the parameter correlated_fit=True.\nDetails about how the required covariance matrix is estimated can be found in pyerrors.obs.covariance.

\n\n

Direct visualizations of the performed fits can be triggered via resplot=True or qqplot=True. For all available options see pyerrors.fits.least_squares.

\n\n

Total least squares fits

\n\n

pyerrors can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in scipy, see pyerrors.fits.least_squares. The syntax is identical to the standard least squares case, the only difference being that x also has to be a list or numpy.array of Obs.

\n\n

For the full API see pyerrors.fits for fits and pyerrors.roots for finding roots of functions.

\n\n

Matrix operations

\n\n

pyerrors provides wrappers for Obs- and CObs-valued matrix operations based on numpy.linalg. The supported functions include:

\n\n
    \n
  • inv for the matrix inverse.
  • \n
  • cholseky for the Cholesky decomposition.
  • \n
  • det for the matrix determinant.
  • \n
  • eigh for eigenvalues and eigenvectors of hermitean matrices.
  • \n
  • eig for eigenvalues of general matrices.
  • \n
  • pinv for the Moore-Penrose pseudoinverse.
  • \n
  • svd for the singular-value-decomposition.
  • \n
\n\n

For the full API see pyerrors.linalg.

\n\n

Export data

\n\n

\n\n

The preferred exported file format within pyerrors is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:

\n\n
    \n
  • What observables are stored? Possibly: How exactly are they defined.
  • \n
  • How does each single ensemble or external quantity contribute to the error of the observable?
  • \n
  • Who did write the file when and on which machine?
  • \n
\n\n

This can be achieved by storing all information in one single file. The export routines of pyerrors are written such that as much information as possible is written automatically as described in the following example

\n\n
\n
my_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
\n
\n\n

The format also allows to directly write out the content of Corr objects or lists and arrays of Obs objects by passing the desired data to pyerrors.input.json.dump_to_json.

\n\n

json.gz format specification

\n\n

The first entries of the file provide optional auxiliary information:

\n\n
    \n
  • program is a string that indicates which program was used to write the file.
  • \n
  • version is a string that specifies the version of the format.
  • \n
  • who is a string that specifies the user name of the creator of the file.
  • \n
  • date is a string and contains the creation date of the file.
  • \n
  • host is a string and contains the hostname of the machine where the file has been written.
  • \n
  • description contains information on the content of the file. This field is not filled automatically in pyerrors. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.
  • \n
\n\n

The only necessary entry of the file is the field\n-obsdata, an array that contains the actual data.

\n\n

Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of Obs, list, numpy.ndarray, Corr. All Obs inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the array obsdata, are treated independently. Each entry of the array obsdata has the following required entries:

\n\n
    \n
  • type is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.
  • \n
  • value is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:
  • \n
  • layout is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).
  • \n
  • tag is any JSON type. It contains additional information concerning the structure. The tag of an Obs in pyerrors is written here.
  • \n
  • reweighted is a Bool that may be used to specify, whether the Obs in the structure have been reweighted.
  • \n
  • data is an array that contains the data from MC chains. We will define it below.
  • \n
  • cdata is an array that contains the data from external quantities with an error (Covobs in pyerrors). We will define it below.
  • \n
\n\n

The array data contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:

\n\n
    \n
  • id, a string that contains the name of the ensemble
  • \n
  • replica, an array that contains an entry per replica of the ensemble.
  • \n
\n\n

Each entry of replica contains\nname, a string that contains the name of the replica\ndeltas, an array that contains the actual data.

\n\n

Each entry in deltas corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of each Obs inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.

\n\n

The array cdata contains information about the contribution of auxiliary observables, represented by Covobs in pyerrors, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:

\n\n
    \n
  • id, a string that identifies the covariance matrix
  • \n
  • layout, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").
  • \n
  • cov, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.
  • \n
  • grad, an array that contains N entries, one for each Obs inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.
  • \n
\n\n

A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.

\n\n

Julia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.

\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nmatrix at every timeslice. Other dependency (eg. spatial) are not supported.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "

Initialize a Corr object.

\n\n
Parameters
\n\n
    \n
  • data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs
  • \n
  • padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
  • \n
  • prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion indentified for this correlator.
  • \n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "

We need to project the Correlator with a Vector to get a single value at each timeslice.

\n\n

The method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "

Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.

\n\n
Parameters
\n\n
    \n
  • i (int):\nFirst index to be picked.
  • \n
  • j (int):\nSecond index to be picked.
  • \n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "

Checks whether a correlator matrices is symmetric on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "

Symmetrizes the correlator matrices on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "

Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.

\n\n

The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing

\n\n
\n
C.GEVP(t0=2)[0]  # Ground state vector(s)\nC.GEVP(t0=2)[:3]  # Vectors for the lowest three states\n
\n
\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
  • \n
  • ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
  • \n
  • sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
      \n
    • \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
    • \n
    • \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
    • \n
  • \n
\n\n
Other Parameters
\n\n
    \n
  • state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
  • \n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "

Determines the eigenvalue of the GEVP by solving and projecting the correlator

\n\n
Parameters
\n\n
    \n
  • state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
  • \n
  • All other parameters are identical to the ones of Corr.GEVP.
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue'):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "

Constructs an NxN Hankel matrix

\n\n

C(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))

\n\n
Parameters
\n\n
    \n
  • N (int):\nDimension of the Hankel matrix
  • \n
  • periodic (bool, optional):\ndetermines whether the matrix is extended periodically
  • \n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "

Reverse the time ordering of the Corr

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "

Thin out a correlator to suppress correlations

\n\n
Parameters
\n\n
    \n
  • spacing (int):\nKeep only every 'spacing'th entry of the correlator
  • \n
  • offset (int):\nOffset the equal spacing
  • \n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n\n
Parameters
\n\n
    \n
  • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
  • \n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • partity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, improved, log, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\nfitrange=[4, 6] corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "

Extract a plateau value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
  • auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
  • \n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "

Plots the correlator using the tag of the correlator as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
  • \n
  • logscale (bool):\nSets y-axis to logscale.
  • \n
  • plateau (Obs):\nPlateau value to be visualized in the figure.
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized.
  • \n
  • fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
  • \n
  • ylabel (str):\nLabel for the y-axis.
  • \n
  • save (str):\npath to file in which the figure should be saved.
  • \n
  • auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
  • \n
  • hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
  • \n
  • references (list):\nList of floating point values that are displayed as horizontal lines for reference.
  • \n
  • title (string):\nOptional title of the figure.
  • \n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "

Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.

\n\n
Parameters
\n\n
    \n
  • logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
  • \n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "

Dumps the Corr into a file of chosen type

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "

\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "

Project large correlation matrix to lowest states

\n\n

This method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.

\n\n
Parameters
\n\n
    \n
  • Ntrunc (int):\nRank of the target matrix.
  • \n
  • tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
  • \n
  • t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
  • \n
  • basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
  • \n
\n\n
Notes
\n\n

We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.

\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "

\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "

\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "

Initialize Covobs object.

\n\n
Parameters
\n\n
    \n
  • mean (float):\nMean value of the new Obs
  • \n
  • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "

Return the variance (= square of the error) of the Covobs

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "

\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "

\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "

\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "

\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "

\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "

\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "

Rank-3 epsilon tensor

\n\n

Based on https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
  • \n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "

Rank-4 epsilon tensor

\n\n

Extension of https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
  • \n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
  • \n
  • chisquare_by_dof (float):\nreduced chisquare.
  • \n
  • p_value (float):\np-value of the fit
  • \n
  • t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
  • \n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "

\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x).\n ```

\n\n
Parameters
\n\n
    \n
  • For an uncombined fit:
  • \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • OR For a combined fit:
  • \n
  • x (dict):\ndict of lists.
  • \n
  • y (dict):\ndict of lists of Obs.
  • \n
  • funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}

    \n\n

    def func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)

    \n\n

    def func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)

    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
  • \n
  • method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
  • \n
  • correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see pyerrors.obs.covariance.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
  • \n
  • expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
  • \n
  • resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
  • \n
\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
  • \n
\n\n
Notes
\n\n

Based on the orthogonal distance regression module of scipy.

\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n
Parameters
\n\n
    \n
  • x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
  • \n
  • y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
  • \n
\n\n
Returns
\n\n
    \n
  • fit_parameters (list[Obs]):\nLIist of fitted observables.
  • \n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n\n

For uncorrelated data the residuals are expected to be distributed ~N(0,1).

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "

Calculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n\n
Returns
\n\n
    \n
  • err (np.array(Obs)):\nError band for an array of sample values x
  • \n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the p-values of all fit object.

\n\n
Parameters
\n\n
    \n
  • objects (list):\nList of fit results to include in the analysis (optional).
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "

pyerrors includes an input submodule in which input routines and parsers for the output of various numerical programs are contained.

\n\n

Jackknife samples

\n\n

For comparison with other analysis workflows pyerrors can also generate jackknife samples from an Obs object or import jackknife samples into an Obs object.\nSee pyerrors.obs.Obs.export_jackknife and pyerrors.obs.import_jackknife for details.

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • data (List[Obs]):\nExtracted data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • success (int):\nreturns 0 is successful
  • \n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n\n
Returns
\n\n
    \n
  • data (dict):\nExtracted meson data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "

\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML formatted string of the input data
  • \n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "

Import a list of Obs from a string in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • content (str):\nXML string containing the data
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator |is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML string generated from the data
  • \n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at source and sink.\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • corr (Corr):\nCorrelator of the source sink combination in question.
  • \n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "

Read hadrons FlowObservables hdf5 file and extract t0

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "

Read hadrons DistillationContraction hdf5 files in given directory structure

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the directories to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (dict):\nextracted DistillationContration data
  • \n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: An ndarray alias :term:generic <generic type>\nw.r.t. its dtype.type <numpy.dtype.type>.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
\n
>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n
\n\n

Second mode:

\n\n
\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n
\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Npr_matrix):\nread Cobs-matrix
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict[Npr_matrix]):\nextracted Bilinears
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • vertices (list):\nVertex functions to be extracted.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict):\nextracted fourquark matrizes
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "

\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
\n\n
Returns
\n\n
    \n
  • json_string (str):\nString for export to .json(.gz) file
  • \n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • Null
  • \n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "

Reconstruct a list of Obs or structures containing Obs from a json string.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • json_string (str):\njson string containing the data.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "

Import a list of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "

Export a dict of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "

Import a dict of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
  • \n
\n\n
Returns
\n\n
    \n
  • data (Obs / list / Corr):\nRead data
  • \n
  • or
  • \n
  • data (dict):\nRead data and meta-data
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "

\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "

Compute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).

\n\n

It is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.

\n\n

A linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.

\n\n
Parameters
\n\n
    \n
  • t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
  • \n
  • observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
  • \n
\n\n
Returns
\n\n
    \n
  • root (Obs):\nThe root of the data series.
  • \n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "

Read pbp format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of observables read
  • \n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • path (str):\npath that contains the data files
  • \n
  • prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
  • \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • print_err (bool):\nPrint additional information that is useful for debugging.
  • \n
\n\n
Returns
\n\n
    \n
  • rwms (Obs):\nReweighting factors read
  • \n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "

Extract t0/a^2 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • t0 (Obs):\nExtracted t0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "

Extract w0/a from given .ms.dat files. Returns w0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • w0 (Obs):\nExtracted w0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "

Read the topologial charge based on openQCD gradient flow measurements.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nEither openQCD or sfqcd, depending on the data.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
  • integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Obs):\nRead topological charge
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "

Read the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.

\n\n

Note: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "

Returns the projection to the topological charge sector defined by target.

\n\n
Parameters
\n\n
    \n
  • path (Obs):\nTopological charge.
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "

Constructs reweighting factors to a specified topological sector.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
  • \n
  • r_stop (list):\nlast configurations that need to be read (per replicum)
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "

Read data from files in the specified directory with the specified prefix and quark combination extension, and return a Corr object containing the data.

\n\n
Parameters
\n\n
    \n
  • path (str):\nThe directory to search for the files in.
  • \n
  • prefix (str):\nThe prefix to match the files against.
  • \n
  • qc (str):\nThe quark combination extension to match the files against.
  • \n
  • corr (str):\nThe correlator to extract data for.
  • \n
  • sep (str, optional):\nThe separator to use when parsing the replika names.
  • \n
  • **kwargs: Additional keyword arguments. The following keyword arguments are recognized:

    \n\n
      \n
    • names (List[str]): A list of names to use for the replicas.
    • \n
    • files (List[str]): A list of files to read data from.
    • \n
    • idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
    • \n
  • \n
\n\n
Returns
\n\n
    \n
  • Corr: A complex valued Corr object containing the data read from the files. In case of boudary to bulk correlators.
  • \n
  • or
  • \n
  • CObs: A complex valued CObs object containing the data read from the files. In case of boudary to boundary correlators.
  • \n
\n\n
Raises
\n\n
    \n
  • FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
  • \n
  • IOError: If there is an error reading a file.
  • \n
  • struct.error: If there is an error unpacking binary data.
  • \n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "

\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "

Write DataFrame including Obs or Corr valued columns to sqlite database.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be written to the database.
  • \n
  • table_name (str):\nName of the table in the database.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
  • \n
  • gz (bool):\nIf True the json strings are gzipped.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "

Execute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.

\n\n
Parameters
\n\n
    \n
  • sql (str):\nSQL query to be executed.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "

Exports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.

\n\n

Before making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be dumped to a file.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "

Imports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "

\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "

Read sfcf files from given folder structure.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to the sfcf files.
  • \n
  • prefix (str):\nPrefix of the sfcf files.
  • \n
  • name (str):\nName of the correlation function to read.
  • \n
  • quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • corr_type (str):\nType of correlation function to read. Can be\n
      \n
    • 'bi' for boundary-inner
    • \n
    • 'bb' for boundary-boundary
    • \n
    • 'bib' for boundary-inner-boundary
    • \n
  • \n
  • noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf (int):\nID of wave function
  • \n
  • wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
  • \n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "

\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "

Sorts a list of names of replika with searches for r and id in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.

\n\n
Parameters
\n\n
    \n
  • ll (list):\nlist to sort
  • \n
\n\n
Returns
\n\n
    \n
  • ll (list):\nsorted list
  • \n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "

Checks if list of configurations is contained in an idl

\n\n
Parameters
\n\n
    \n
  • idl (range or list):\nidl of the current replicum
  • \n
  • che (list):\nlist of configurations to be checked against
  • \n
\n\n
Returns
\n\n
    \n
  • miss_str (str):\nstring with integers of which idls are missing
  • \n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "

\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "

Matrix multiply all operands.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • This implementation is faster compared to standard multiplication via the @ operator.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "

Matrix multiply both operands making use of the jackknife approximation.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • For large matrices this is considerably faster compared to matmul.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "

Wrapper for numpy.einsum

\n\n
Parameters
\n\n
    \n
  • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
  • \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "

Cholesky decomposition of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "

Determinant of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "

\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "

Print information about version of python, pyerrors and dependencies.

\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "

pyerrors wrapper for the errorbars method of matplotlib

\n\n
Parameters
\n\n
    \n
  • x (list):\nA list of x-values which can be Obs.
  • \n
  • y (list):\nA list of y-values which can be Obs.
  • \n
  • axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
  • \n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "

Load object from pickle file.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the file
  • \n
\n\n
Returns
\n\n
    \n
  • object (Obs):\nLoaded Object
  • \n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "

Generate an Obs object with given value, dvalue and name for test purposes

\n\n
Parameters
\n\n
    \n
  • value (float):\ncentral value of the Obs to be generated.
  • \n
  • dvalue (float):\nerror of the Obs to be generated.
  • \n
  • name (str):\nname of the ensemble for which the Obs is to be generated.
  • \n
  • samples (int):\nnumber of samples for the Obs (default 1000).
  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nGenerated Observable
  • \n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means (list):\nlist containing the mean value of each observable.
  • \n
  • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
  • \n
  • name (str):\nensemble name for the data to be geneated.
  • \n
  • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
  • \n
  • samples (int):\nnumber of samples to be generated for each observable.
  • \n
\n\n
Returns
\n\n
    \n
  • corr_obs (list[Obs]):\nGenerated observable list
  • \n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
  • \n
  • k (int):\nNumber of states to extract (default 1).
  • \n
  • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n\n
Returns
\n\n
    \n
  • energy_levels (list[Obs]):\nExtracted energy levels
  • \n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
  • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the individual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "

\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "

\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "

\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "

Output detailed properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • ens_content (bool):\nprint details about the ensembles and replica if true.
  • \n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "

Reweight the obs with given rewighting factors.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n
Parameters
\n\n
    \n
  • sigma (int):\nNumber of standard errors used for the check.
  • \n
  • Works only properly when the gamma method was run.
  • \n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "

Checks whether the observable is zero within a given tolerance.

\n\n
Parameters
\n\n
    \n
  • atol (float):\nAbsolute tolerance (for details see numpy documentation).
  • \n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "

Plot derived Monte Carlo history for each ensemble

\n\n
Parameters
\n\n
    \n
  • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
  • \n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "

Dump the Obs to a file 'name' of chosen format.

\n\n
Parameters
\n\n
    \n
  • filename (str):\nname of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • description (str):\nDescription for output file, only relevant for json.gz format.
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "

Export jackknife samples from the Obs

\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
  • \n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "

\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
\n\n
Notes
\n\n

Keep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).

\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "

Calculates the error covariance matrix of a set of observables.

\n\n

WARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.

\n\n

The gamma method has to be applied first to all observables.

\n\n
Parameters
\n\n
    \n
  • obs (list or numpy.ndarray):\nList or one dimensional array of Obs
  • \n
  • visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
  • \n
  • correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
  • \n
  • smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
  • \n
\n\n
Notes
\n\n

The error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).

\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "

Imports jackknife samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "

Combine all observables in list_of_obs into one new observable

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
\n\n
Notes
\n\n

It is not possible to combine obs which are based on the same replicum

\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "

Create an Obs based on mean(s) and a covariance matrix

\n\n
Parameters
\n\n
    \n
  • mean (list of floats or float):\nN mean value(s) of the new Obs
  • \n
  • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d (Obs):\nObs passed to the function.
  • \n
  • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:

    \n\n
    \n
    import autograd.numpy as anp\ndef root_func(x, d):\n   return anp.exp(-x ** 2) - d\n
    \n
  • \n
  • guess (float):\nInitial guess for the minimization.

  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nObs valued root of the function.
  • \n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8260}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 108}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 94}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 326}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 45}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 902}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 468}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 181}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1069}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 421}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 181}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 242, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 54, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 67, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 242}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 54, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 55}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 52}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 9}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 11}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 81, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 10, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 35}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.44030650891055}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.708203932499369}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}}, "df": 157, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 9}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 20}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 78}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 43}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "l": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 19}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 27, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "9": {"5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 6, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"4": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "8": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 63.85138996137829}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 10.535653752852738}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 17.86057109949175}, "pyerrors.fits.total_least_squares": {"tf": 15.427248620541512}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 20.904544960366874}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.utils": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.488088481701515}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 242, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 15}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 10}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 11}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 39}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 37, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 12}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 8.06225774829855}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 62}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 49, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 37, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 13}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 58}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 4, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 99}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 26}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 10}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 6, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 4.69041575982343}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 75, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 32, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 65}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 10}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 57}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.082762530298219}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 35, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 2}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.0710678118654755}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 68, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 5}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}}, "df": 37}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 20}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}}, "df": 40, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 15, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 4}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 30, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 9}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 9}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 16}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 12, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 26}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 14}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 20}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 10}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 25, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 6}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 31, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 8, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.123105625617661}, "pyerrors.fits.total_least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 107, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 35, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 27}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 70, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 20}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 10}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 44, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 22}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 9}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 8}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 6}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 8, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 36, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}}, "df": 19, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 17}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 64, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 5}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 40}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.46207763315433}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.total_least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}}, "df": 121, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 3, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 6}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 35}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 30}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 35}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.717797887081348}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 94, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 5}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 30}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}}, "df": 4}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 5}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 48, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 9}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 11, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}, "k": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 54, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}}, "df": 8}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 15}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 5}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13, "o": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 13, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 21}}, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 31, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 21}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 5, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 19, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 15}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 11, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 20, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 14}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 15, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 61}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 8}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 8}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 7}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 26}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "j": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 21}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "kind": "module", "doc": "

What is pyerrors?

\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
  • \n
  • coherent error propagation for data from different Markov chains.
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
  • \n
\n\n

More detailed examples can found in the GitHub repository \"badge\".

\n\n

If you use pyerrors for research that leads to a publication please consider citing:

\n\n
    \n
  • Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
  • \n
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • \n
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • \n
\n\n

and

\n\n
    \n
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
  • \n
\n\n

where applicable.

\n\n

There exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.

\n\n

Installation

\n\n

Install the most recent release using pip and pypi:

\n\n
\n
pip install pyerrors     # Fresh install\npip install -U pyerrors  # Update\n
\n
\n\n

Install the most recent release using conda and conda-forge:

\n\n
\n
conda install -c conda-forge pyerrors  # Fresh install\nconda update -c conda-forge pyerrors   # Update\n
\n
\n\n

Install the current develop version:

\n\n
\n
pip install git+https://github.com/fjosw/pyerrors.git@develop\n
\n
\n\n

Basic example

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
\n
\n\n

The Obs class

\n\n

pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.

\n\n
\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n
\n\n

Error propagation

\n\n

When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

\n\n

The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
\n
\n\n

Error estimation

\n\n

The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

\n\n
\n
my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

\n\n
\n
my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_rho.

\n\n

If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

\n\n

Exponential tails

\n\n

Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

\n\n
\n
my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

For the full API see pyerrors.obs.Obs.gamma_method.

\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
\n
\n\n

Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.

\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
\n
\n\n

Error estimation for multiple ensembles

\n\n

In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

\n\n
\n
pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
\n
\n\n

In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

\n\n

Irregular Monte Carlo chains

\n\n

Obs objects defined on irregular Monte Carlo chains can be initialized with the parameter idl.

\n\n
\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n
\n\n

Obs objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.

\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

For the full API see pyerrors.obs.Obs.

\n\n

Correlators

\n\n

When one is not interested in single observables but correlation functions, pyerrors offers the Corr class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize a Corr objects one needs to arrange the data as a list of Obs

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0      0.7957(80)\n> 1      0.5156(51)\n> 2      0.3227(33)\n> 3      0.2041(21)\n
\n
\n\n

In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0\n> 1      0.7957(80)\n> 2      0.5156(51)\n> 3      0.3227(33)\n> 4      0.2041(21)\n> 5\n
\n
\n\n

The individual entries of a correlator can be accessed via slicing

\n\n
\n
print(my_corr[3])\n> 0.3227(33)\n
\n
\n\n

Error propagation with the Corr class works very similar to Obs objects. Mathematical operations are overloaded and Corr objects can be computed together with other Corr objects, Obs objects or real numbers and integers.

\n\n
\n
my_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n
\n\n

pyerrors provides the user with a set of regularly used methods for the manipulation of correlator objects:

\n\n
    \n
  • Corr.gamma_method applies the gamma method to all entries of the correlator.
  • \n
  • Corr.m_eff to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.
  • \n
  • Corr.deriv returns the first derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.second_deriv returns the second derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.symmetric symmetrizes parity even correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.anti_symmetric anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.T_symmetry averages a correlator with its time symmetry partner, assuming fixed boundary conditions.
  • \n
  • Corr.plateau extracts a plateau value from the correlator in a given range.
  • \n
  • Corr.roll periodically shifts the correlator.
  • \n
  • Corr.reverse reverses the time ordering of the correlator.
  • \n
  • Corr.correlate constructs a disconnected correlation function from the correlator and another Corr or Obs object.
  • \n
  • Corr.reweight reweights the correlator.
  • \n
\n\n

pyerrors can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (see pyerrors.correlators.Corr.GEVP).

\n\n

For the full API see pyerrors.correlators.Corr.

\n\n

Complex valued observables

\n\n

pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

\n\n
\n
my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
\n
\n\n

Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

\n\n
\n
my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
\n
\n\n

The Covobs class

\n\n

In many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The Covobs class allows to define such quantities in pyerrors. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.

\n\n

This concept is built into the definition of Covobs. In pyerrors, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enters cov_Obs, since the second argument of this function is the covariance matrix of the Covobs.

\n\n
\n
import pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result         1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n>  pi^0 mass     5.00000000e-04\n> 0 samples in 1 ensemble:\n>   \u00b7 Covobs   'pi^0 mass'\n
\n
\n\n

The resulting object mpi is an Obs that contains a Covobs. In the following, it may be handled as any other Obs. The contribution of the covariance matrix to the error of an Obs is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of the Obs with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.

\n\n

Correlated auxiliary data is defined similarly to above, e.g., via

\n\n
\n
RAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
\n
\n\n

where RAP now is a list of two Obs that contains the two correlated parameters.

\n\n

Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the Covobs class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of an Obs o with respect to a covariance matrix with the identifying string k may be accessed via

\n\n
\n
o.covobs[k].grad\n
\n
\n\n

Error propagation in iterative algorithms

\n\n

pyerrors supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.

\n\n

Least squares fits

\n\n

Standard non-linear least square fits with errors on the dependent but not the independent variables can be performed with pyerrors.fits.least_squares. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.

\n\n

Fit functions have to be of the following form

\n\n
\n
import autograd.numpy as anp\n\ndef func(a, x):\n    return a[1] * anp.exp(-a[0] * x)\n
\n
\n\n

It is important that numerical functions refer to autograd.numpy instead of numpy for the automatic differentiation in iterative algorithms to work properly.

\n\n

Fits can then be performed via

\n\n
\n
fit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n>  Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value   = 0.5673\n> Fit parameters:\n> 0      0.0548(28)\n> 1      1.933(64)\n
\n
\n\n

where x is a list or numpy.array of floats and y is a list or numpy.array of Obs.

\n\n

Data stored in Corr objects can be fitted directly using the Corr.fit method.

\n\n
\n
my_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
\n
\n\n

this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.

\n\n

For fit functions with multiple independent variables the fit function can be of the form

\n\n
\n
def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
\n
\n\n

pyerrors also supports correlated fits which can be triggered via the parameter correlated_fit=True.\nDetails about how the required covariance matrix is estimated can be found in pyerrors.obs.covariance.

\n\n

Direct visualizations of the performed fits can be triggered via resplot=True or qqplot=True. For all available options see pyerrors.fits.least_squares.

\n\n

Total least squares fits

\n\n

pyerrors can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in scipy, see pyerrors.fits.least_squares. The syntax is identical to the standard least squares case, the only difference being that x also has to be a list or numpy.array of Obs.

\n\n

For the full API see pyerrors.fits for fits and pyerrors.roots for finding roots of functions.

\n\n

Matrix operations

\n\n

pyerrors provides wrappers for Obs- and CObs-valued matrix operations based on numpy.linalg. The supported functions include:

\n\n
    \n
  • inv for the matrix inverse.
  • \n
  • cholseky for the Cholesky decomposition.
  • \n
  • det for the matrix determinant.
  • \n
  • eigh for eigenvalues and eigenvectors of hermitean matrices.
  • \n
  • eig for eigenvalues of general matrices.
  • \n
  • pinv for the Moore-Penrose pseudoinverse.
  • \n
  • svd for the singular-value-decomposition.
  • \n
\n\n

For the full API see pyerrors.linalg.

\n\n

Export data

\n\n

\n\n

The preferred exported file format within pyerrors is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:

\n\n
    \n
  • What observables are stored? Possibly: How exactly are they defined.
  • \n
  • How does each single ensemble or external quantity contribute to the error of the observable?
  • \n
  • Who did write the file when and on which machine?
  • \n
\n\n

This can be achieved by storing all information in one single file. The export routines of pyerrors are written such that as much information as possible is written automatically as described in the following example

\n\n
\n
my_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
\n
\n\n

The format also allows to directly write out the content of Corr objects or lists and arrays of Obs objects by passing the desired data to pyerrors.input.json.dump_to_json.

\n\n

json.gz format specification

\n\n

The first entries of the file provide optional auxiliary information:

\n\n
    \n
  • program is a string that indicates which program was used to write the file.
  • \n
  • version is a string that specifies the version of the format.
  • \n
  • who is a string that specifies the user name of the creator of the file.
  • \n
  • date is a string and contains the creation date of the file.
  • \n
  • host is a string and contains the hostname of the machine where the file has been written.
  • \n
  • description contains information on the content of the file. This field is not filled automatically in pyerrors. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.
  • \n
\n\n

The only necessary entry of the file is the field\n-obsdata, an array that contains the actual data.

\n\n

Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of Obs, list, numpy.ndarray, Corr. All Obs inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the array obsdata, are treated independently. Each entry of the array obsdata has the following required entries:

\n\n
    \n
  • type is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.
  • \n
  • value is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:
  • \n
  • layout is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).
  • \n
  • tag is any JSON type. It contains additional information concerning the structure. The tag of an Obs in pyerrors is written here.
  • \n
  • reweighted is a Bool that may be used to specify, whether the Obs in the structure have been reweighted.
  • \n
  • data is an array that contains the data from MC chains. We will define it below.
  • \n
  • cdata is an array that contains the data from external quantities with an error (Covobs in pyerrors). We will define it below.
  • \n
\n\n

The array data contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:

\n\n
    \n
  • id, a string that contains the name of the ensemble
  • \n
  • replica, an array that contains an entry per replica of the ensemble.
  • \n
\n\n

Each entry of replica contains\nname, a string that contains the name of the replica\ndeltas, an array that contains the actual data.

\n\n

Each entry in deltas corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of each Obs inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.

\n\n

The array cdata contains information about the contribution of auxiliary observables, represented by Covobs in pyerrors, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:

\n\n
    \n
  • id, a string that identifies the covariance matrix
  • \n
  • layout, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").
  • \n
  • cov, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.
  • \n
  • grad, an array that contains N entries, one for each Obs inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.
  • \n
\n\n

A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.

\n\n

Julia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.

\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nmatrix at every timeslice. Other dependency (eg. spatial) are not supported.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "

Initialize a Corr object.

\n\n
Parameters
\n\n
    \n
  • data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs
  • \n
  • padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
  • \n
  • prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion indentified for this correlator.
  • \n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "

We need to project the Correlator with a Vector to get a single value at each timeslice.

\n\n

The method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "

Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.

\n\n
Parameters
\n\n
    \n
  • i (int):\nFirst index to be picked.
  • \n
  • j (int):\nSecond index to be picked.
  • \n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "

Checks whether a correlator matrices is symmetric on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "

Symmetrizes the correlator matrices on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "

Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.

\n\n

The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing

\n\n
\n
C.GEVP(t0=2)[0]  # Ground state vector(s)\nC.GEVP(t0=2)[:3]  # Vectors for the lowest three states\n
\n
\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
  • \n
  • ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
  • \n
  • sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
      \n
    • \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
    • \n
    • \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
    • \n
  • \n
\n\n
Other Parameters
\n\n
    \n
  • state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
  • \n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "

Determines the eigenvalue of the GEVP by solving and projecting the correlator

\n\n
Parameters
\n\n
    \n
  • state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
  • \n
  • All other parameters are identical to the ones of Corr.GEVP.
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue'):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "

Constructs an NxN Hankel matrix

\n\n

C(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))

\n\n
Parameters
\n\n
    \n
  • N (int):\nDimension of the Hankel matrix
  • \n
  • periodic (bool, optional):\ndetermines whether the matrix is extended periodically
  • \n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "

Reverse the time ordering of the Corr

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "

Thin out a correlator to suppress correlations

\n\n
Parameters
\n\n
    \n
  • spacing (int):\nKeep only every 'spacing'th entry of the correlator
  • \n
  • offset (int):\nOffset the equal spacing
  • \n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n\n
Parameters
\n\n
    \n
  • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
  • \n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • partity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\nfitrange=[4, 6] corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "

Extract a plateau value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
  • auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
  • \n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "

Plots the correlator using the tag of the correlator as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
  • \n
  • logscale (bool):\nSets y-axis to logscale.
  • \n
  • plateau (Obs):\nPlateau value to be visualized in the figure.
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized.
  • \n
  • fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
  • \n
  • ylabel (str):\nLabel for the y-axis.
  • \n
  • save (str):\npath to file in which the figure should be saved.
  • \n
  • auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
  • \n
  • hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
  • \n
  • references (list):\nList of floating point values that are displayed as horizontal lines for reference.
  • \n
  • title (string):\nOptional title of the figure.
  • \n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "

Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.

\n\n
Parameters
\n\n
    \n
  • logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
  • \n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "

Dumps the Corr into a file of chosen type

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "

\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "

Project large correlation matrix to lowest states

\n\n

This method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.

\n\n
Parameters
\n\n
    \n
  • Ntrunc (int):\nRank of the target matrix.
  • \n
  • tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
  • \n
  • t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
  • \n
  • basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
  • \n
\n\n
Notes
\n\n

We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.

\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "

\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "

\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "

Initialize Covobs object.

\n\n
Parameters
\n\n
    \n
  • mean (float):\nMean value of the new Obs
  • \n
  • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "

Return the variance (= square of the error) of the Covobs

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "

\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "

\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "

\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "

\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "

\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "

\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "

Rank-3 epsilon tensor

\n\n

Based on https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
  • \n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "

Rank-4 epsilon tensor

\n\n

Extension of https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
  • \n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
  • \n
  • chisquare_by_dof (float):\nreduced chisquare.
  • \n
  • p_value (float):\np-value of the fit
  • \n
  • t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
  • \n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "

\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x).\n ```

\n\n
Parameters
\n\n
    \n
  • For an uncombined fit:
  • \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • OR For a combined fit:
  • \n
  • x (dict):\ndict of lists.
  • \n
  • y (dict):\ndict of lists of Obs.
  • \n
  • funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}

    \n\n

    def func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)

    \n\n

    def func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)

    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
  • \n
  • method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
  • \n
  • correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see pyerrors.obs.covariance.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
  • \n
  • expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
  • \n
  • resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
  • \n
\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
  • \n
\n\n
Notes
\n\n

Based on the orthogonal distance regression module of scipy.

\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n
Parameters
\n\n
    \n
  • x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
  • \n
  • y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
  • \n
\n\n
Returns
\n\n
    \n
  • fit_parameters (list[Obs]):\nLIist of fitted observables.
  • \n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n\n

For uncorrelated data the residuals are expected to be distributed ~N(0,1).

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "

Calculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n\n
Returns
\n\n
    \n
  • err (np.array(Obs)):\nError band for an array of sample values x
  • \n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the p-values of all fit object.

\n\n
Parameters
\n\n
    \n
  • objects (list):\nList of fit results to include in the analysis (optional).
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "

pyerrors includes an input submodule in which input routines and parsers for the output of various numerical programs are contained.

\n\n

Jackknife samples

\n\n

For comparison with other analysis workflows pyerrors can also generate jackknife samples from an Obs object or import jackknife samples into an Obs object.\nSee pyerrors.obs.Obs.export_jackknife and pyerrors.obs.import_jackknife for details.

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • data (List[Obs]):\nExtracted data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • success (int):\nreturns 0 is successful
  • \n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n\n
Returns
\n\n
    \n
  • data (dict):\nExtracted meson data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "

\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML formatted string of the input data
  • \n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "

Import a list of Obs from a string in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • content (str):\nXML string containing the data
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator |is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML string generated from the data
  • \n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at source and sink.\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • corr (Corr):\nCorrelator of the source sink combination in question.
  • \n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "

Read hadrons FlowObservables hdf5 file and extract t0

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "

Read hadrons DistillationContraction hdf5 files in given directory structure

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the directories to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (dict):\nextracted DistillationContration data
  • \n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: An ndarray alias :term:generic <generic type>\nw.r.t. its dtype.type <numpy.dtype.type>.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
\n
>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n
\n\n

Second mode:

\n\n
\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n
\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Npr_matrix):\nread Cobs-matrix
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict[Npr_matrix]):\nextracted Bilinears
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • vertices (list):\nVertex functions to be extracted.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict):\nextracted fourquark matrizes
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "

\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
\n\n
Returns
\n\n
    \n
  • json_string (str):\nString for export to .json(.gz) file
  • \n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • Null
  • \n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "

Reconstruct a list of Obs or structures containing Obs from a json string.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • json_string (str):\njson string containing the data.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "

Import a list of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "

Export a dict of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "

Import a dict of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
  • \n
\n\n
Returns
\n\n
    \n
  • data (Obs / list / Corr):\nRead data
  • \n
  • or
  • \n
  • data (dict):\nRead data and meta-data
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "

\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "

Compute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).

\n\n

It is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.

\n\n

A linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.

\n\n
Parameters
\n\n
    \n
  • t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
  • \n
  • observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
  • \n
\n\n
Returns
\n\n
    \n
  • root (Obs):\nThe root of the data series.
  • \n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "

Read pbp format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of observables read
  • \n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • path (str):\npath that contains the data files
  • \n
  • prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
  • \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • print_err (bool):\nPrint additional information that is useful for debugging.
  • \n
\n\n
Returns
\n\n
    \n
  • rwms (Obs):\nReweighting factors read
  • \n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "

Extract t0/a^2 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • t0 (Obs):\nExtracted t0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "

Extract w0/a from given .ms.dat files. Returns w0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • w0 (Obs):\nExtracted w0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "

Read the topologial charge based on openQCD gradient flow measurements.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nEither openQCD or sfqcd, depending on the data.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
  • integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Obs):\nRead topological charge
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "

Read the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.

\n\n

Note: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "

Returns the projection to the topological charge sector defined by target.

\n\n
Parameters
\n\n
    \n
  • path (Obs):\nTopological charge.
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "

Constructs reweighting factors to a specified topological sector.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
  • \n
  • r_stop (list):\nlast configurations that need to be read (per replicum)
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "

Read data from files in the specified directory with the specified prefix and quark combination extension, and return a Corr object containing the data.

\n\n
Parameters
\n\n
    \n
  • path (str):\nThe directory to search for the files in.
  • \n
  • prefix (str):\nThe prefix to match the files against.
  • \n
  • qc (str):\nThe quark combination extension to match the files against.
  • \n
  • corr (str):\nThe correlator to extract data for.
  • \n
  • sep (str, optional):\nThe separator to use when parsing the replika names.
  • \n
  • **kwargs: Additional keyword arguments. The following keyword arguments are recognized:

    \n\n
      \n
    • names (List[str]): A list of names to use for the replicas.
    • \n
    • files (List[str]): A list of files to read data from.
    • \n
    • idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
    • \n
  • \n
\n\n
Returns
\n\n
    \n
  • Corr: A complex valued Corr object containing the data read from the files. In case of boudary to bulk correlators.
  • \n
  • or
  • \n
  • CObs: A complex valued CObs object containing the data read from the files. In case of boudary to boundary correlators.
  • \n
\n\n
Raises
\n\n
    \n
  • FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
  • \n
  • IOError: If there is an error reading a file.
  • \n
  • struct.error: If there is an error unpacking binary data.
  • \n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "

\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "

Write DataFrame including Obs or Corr valued columns to sqlite database.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be written to the database.
  • \n
  • table_name (str):\nName of the table in the database.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
  • \n
  • gz (bool):\nIf True the json strings are gzipped.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "

Execute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.

\n\n
Parameters
\n\n
    \n
  • sql (str):\nSQL query to be executed.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "

Exports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.

\n\n

Before making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be dumped to a file.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "

Imports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "

\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "

Read sfcf files from given folder structure.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to the sfcf files.
  • \n
  • prefix (str):\nPrefix of the sfcf files.
  • \n
  • name (str):\nName of the correlation function to read.
  • \n
  • quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • corr_type (str):\nType of correlation function to read. Can be\n
      \n
    • 'bi' for boundary-inner
    • \n
    • 'bb' for boundary-boundary
    • \n
    • 'bib' for boundary-inner-boundary
    • \n
  • \n
  • noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf (int):\nID of wave function
  • \n
  • wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
  • \n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "

\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "

Sorts a list of names of replika with searches for r and id in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.

\n\n
Parameters
\n\n
    \n
  • ll (list):\nlist to sort
  • \n
\n\n
Returns
\n\n
    \n
  • ll (list):\nsorted list
  • \n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "

Checks if list of configurations is contained in an idl

\n\n
Parameters
\n\n
    \n
  • idl (range or list):\nidl of the current replicum
  • \n
  • che (list):\nlist of configurations to be checked against
  • \n
\n\n
Returns
\n\n
    \n
  • miss_str (str):\nstring with integers of which idls are missing
  • \n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "

\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "

Matrix multiply all operands.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • This implementation is faster compared to standard multiplication via the @ operator.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "

Matrix multiply both operands making use of the jackknife approximation.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • For large matrices this is considerably faster compared to matmul.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "

Wrapper for numpy.einsum

\n\n
Parameters
\n\n
    \n
  • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
  • \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "

Cholesky decomposition of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "

Determinant of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "

\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "

Print information about version of python, pyerrors and dependencies.

\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "

pyerrors wrapper for the errorbars method of matplotlib

\n\n
Parameters
\n\n
    \n
  • x (list):\nA list of x-values which can be Obs.
  • \n
  • y (list):\nA list of y-values which can be Obs.
  • \n
  • axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
  • \n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "

Load object from pickle file.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the file
  • \n
\n\n
Returns
\n\n
    \n
  • object (Obs):\nLoaded Object
  • \n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "

Generate an Obs object with given value, dvalue and name for test purposes

\n\n
Parameters
\n\n
    \n
  • value (float):\ncentral value of the Obs to be generated.
  • \n
  • dvalue (float):\nerror of the Obs to be generated.
  • \n
  • name (str):\nname of the ensemble for which the Obs is to be generated.
  • \n
  • samples (int):\nnumber of samples for the Obs (default 1000).
  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nGenerated Observable
  • \n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means (list):\nlist containing the mean value of each observable.
  • \n
  • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
  • \n
  • name (str):\nensemble name for the data to be geneated.
  • \n
  • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
  • \n
  • samples (int):\nnumber of samples to be generated for each observable.
  • \n
\n\n
Returns
\n\n
    \n
  • corr_obs (list[Obs]):\nGenerated observable list
  • \n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
  • \n
  • k (int):\nNumber of states to extract (default 1).
  • \n
  • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n\n
Returns
\n\n
    \n
  • energy_levels (list[Obs]):\nExtracted energy levels
  • \n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
  • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the individual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "

\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "

\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "

\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "

Output detailed properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • ens_content (bool):\nprint details about the ensembles and replica if true.
  • \n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "

Reweight the obs with given rewighting factors.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n
Parameters
\n\n
    \n
  • sigma (int):\nNumber of standard errors used for the check.
  • \n
  • Works only properly when the gamma method was run.
  • \n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "

Checks whether the observable is zero within a given tolerance.

\n\n
Parameters
\n\n
    \n
  • atol (float):\nAbsolute tolerance (for details see numpy documentation).
  • \n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "

Plot derived Monte Carlo history for each ensemble

\n\n
Parameters
\n\n
    \n
  • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
  • \n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "

Dump the Obs to a file 'name' of chosen format.

\n\n
Parameters
\n\n
    \n
  • filename (str):\nname of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • description (str):\nDescription for output file, only relevant for json.gz format.
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "

Export jackknife samples from the Obs

\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
  • \n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "

\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
\n\n
Notes
\n\n

Keep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).

\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "

Calculates the error covariance matrix of a set of observables.

\n\n

WARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.

\n\n

The gamma method has to be applied first to all observables.

\n\n
Parameters
\n\n
    \n
  • obs (list or numpy.ndarray):\nList or one dimensional array of Obs
  • \n
  • visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
  • \n
  • correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
  • \n
  • smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
  • \n
\n\n
Notes
\n\n

The error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).

\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "

Imports jackknife samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "

Combine all observables in list_of_obs into one new observable

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
\n\n
Notes
\n\n

It is not possible to combine obs which are based on the same replicum

\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "

Create an Obs based on mean(s) and a covariance matrix

\n\n
Parameters
\n\n
    \n
  • mean (list of floats or float):\nN mean value(s) of the new Obs
  • \n
  • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d (Obs):\nObs passed to the function.
  • \n
  • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:

    \n\n
    \n
    import autograd.numpy as anp\ndef root_func(x, d):\n   return anp.exp(-x ** 2) - d\n
    \n
  • \n
  • guess (float):\nInitial guess for the minimization.

  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nObs valued root of the function.
  • \n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8260}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 108}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 94}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 326}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 902}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 468}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 181}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1069}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 421}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 181}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 242, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 54, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 67, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 242}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 54, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 55}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 52}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 6, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 9}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 11}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 81, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 10, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 35}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.44030650891055}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.708203932499369}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}}, "df": 157, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 9}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 20}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 78}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 43}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "l": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 19}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 28, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 23, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "9": {"5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 7, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"4": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "8": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 63.85138996137829}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 10.535653752852738}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 17.86057109949175}, "pyerrors.fits.total_least_squares": {"tf": 15.427248620541512}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 20.904544960366874}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.utils": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.488088481701515}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 242, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 15}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 10}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 11}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 39}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 37, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 12}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 8.06225774829855}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 62}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 49, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 37, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 13}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 58}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 4, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 99}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 26}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 10}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 6, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 4.69041575982343}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 75, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 32, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 65}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 10}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 57}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.082762530298219}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 35, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 2}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.0710678118654755}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 68, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 5}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}}, "df": 37}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 20}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}}, "df": 40, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 15, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 4}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 30, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 9}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 9}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 16}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 12, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 26}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 14}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 20}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 10}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 25, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 6}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 31, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 8, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.123105625617661}, "pyerrors.fits.total_least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 107, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 35, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 27}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 70, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 20}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 10}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 44, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 22}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 9}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 8}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 6}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 8, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 36, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}}, "df": 19, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 17}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 64, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 5}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 40}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.46207763315433}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.total_least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}}, "df": 121, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 3, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 6}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 35}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 30}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 35}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.717797887081348}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 94, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 22}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 5}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 30}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}}, "df": 4}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 5}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 48, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 9}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 11, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}, "k": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 8}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 54, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}}, "df": 8}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 15}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 5}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13, "o": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 13, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 21}}, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 31, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 21}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 5, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 19, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 15}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 20, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 14}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 15, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 61}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 21, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 8}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 8}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 7}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 26}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "j": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 21}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.