From 6cdb15fa76129ac2f860ea95980f36be06797a4b Mon Sep 17 00:00:00 2001
From: fjosw
Date: Sat, 4 Dec 2021 11:23:57 +0000
Subject: [PATCH] Documentation updated
---
docs/pyerrors/obs.html | 20 ++++++++++----------
1 file changed, 10 insertions(+), 10 deletions(-)
diff --git a/docs/pyerrors/obs.html b/docs/pyerrors/obs.html
index 9013aace..92601937 100644
--- a/docs/pyerrors/obs.html
+++ b/docs/pyerrors/obs.html
@@ -1564,22 +1564,22 @@
for i in range(len(obs)):
if len(obs[i].cov_names):
raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
- if sorted(weight.names) != sorted(obs[i].names):
+ if not set(obs[i].names).issubset(weight.names):
raise Exception('Error: Ensembles do not fit')
- for name in weight.names:
+ for name in obs[i].names:
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
new_samples = []
w_deltas = {}
- for name in sorted(weight.names):
+ for name in sorted(obs[i].names):
w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name])
new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name]))
- tmp_obs = Obs(new_samples, sorted(weight.names), idl=[obs[i].idl[name] for name in sorted(weight.names)])
+ tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)])
if kwargs.get('all_configs'):
new_weight = weight
else:
- new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(weight.names)], sorted(weight.names), idl=[obs[i].idl[name] for name in sorted(weight.names)])
+ new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)])
result.append(derived_observable(lambda x, **kwargs: x[0] / x[1], [tmp_obs, new_weight], **kwargs))
result[-1].reweighted = True
@@ -4809,22 +4809,22 @@ functions. For the ratio of two observables one can e.g. use
for i in range(len(obs)):
if len(obs[i].cov_names):
raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
- if sorted(weight.names) != sorted(obs[i].names):
+ if not set(obs[i].names).issubset(weight.names):
raise Exception('Error: Ensembles do not fit')
- for name in weight.names:
+ for name in obs[i].names:
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
new_samples = []
w_deltas = {}
- for name in sorted(weight.names):
+ for name in sorted(obs[i].names):
w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name])
new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name]))
- tmp_obs = Obs(new_samples, sorted(weight.names), idl=[obs[i].idl[name] for name in sorted(weight.names)])
+ tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)])
if kwargs.get('all_configs'):
new_weight = weight
else:
- new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(weight.names)], sorted(weight.names), idl=[obs[i].idl[name] for name in sorted(weight.names)])
+ new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)])
result.append(derived_observable(lambda x, **kwargs: x[0] / x[1], [tmp_obs, new_weight], **kwargs))
result[-1].reweighted = True