From 27746701c0afe02b316d5639dfd7a37ba6ace2e7 Mon Sep 17 00:00:00 2001 From: s-kuberski Date: Thu, 2 Dec 2021 11:47:02 +0000 Subject: [PATCH] Documentation updated --- docs/pyerrors/input/json.html | 115 ++++++++++++++++++---------------- docs/search.js | 2 +- 2 files changed, 63 insertions(+), 54 deletions(-) diff --git a/docs/pyerrors/input/json.html b/docs/pyerrors/input/json.html index 10cf078d..b310585c 100644 --- a/docs/pyerrors/input/json.html +++ b/docs/pyerrors/input/json.html @@ -77,14 +77,14 @@ View Source
import json
 import gzip
-from ..obs import Obs
+import numpy as np
 import getpass
 import socket
 import datetime
-from .. import version as pyerrorsversion
 import platform
-import numpy as np
 import warnings
+from ..obs import Obs
+from .. import version as pyerrorsversion
 
 
 def create_json_string(ol, description='', indent=1):
@@ -92,13 +92,13 @@
     to a .json(.gz) file
 
     Parameters
-    -----------------
+    ----------
     ol : list
         List of objects that will be exported. At the moments, these objects can be
-        either of: Obs, list, np.ndarray
+        either of: Obs, list, numpy.ndarray.
         All Obs inside a structure have to be defined on the same set of configurations.
     description : str
-        Optional string that describes the contents of the json file
+        Optional string that describes the contents of the json file.
     indent : int
         Specify the indentation level of the json file. None or 0 is permissible and
         saves disk space.
@@ -110,7 +110,7 @@
     _default.default = json.JSONEncoder().default
     my_encoder.default = _default
 
-    class deltalist:
+    class Deltalist:
         def __init__(self, li):
             self.cnfg = li[0]
             self.deltas = li[1:]
@@ -141,7 +141,7 @@
                     rd['deltas'].append([ol[0].idl[r_name][i]])
                     for o in ol:
                         rd['deltas'][-1].append(o.deltas[r_name][i])
-                    rd['deltas'][-1] = deltalist(rd['deltas'][-1])
+                    rd['deltas'][-1] = Deltalist(rd['deltas'][-1])
                 ed['replica'].append(rd)
             dl.append(ed)
         return dl
@@ -149,15 +149,16 @@
     def _assert_equal_properties(ol, otype=Obs):
         for o in ol:
             if not isinstance(o, otype):
-                raise Exception('Wrong data type in list!')
+                raise Exception("Wrong data type in list.")
         for o in ol[1:]:
             if not ol[0].is_merged == o.is_merged:
-                raise Exception('All Obs in list have to be defined on the same set of configs!')
+                raise Exception("All Obs in list have to be defined on the same set of configs.")
             if not ol[0].reweighted == o.reweighted:
-                raise Exception('All Obs in list have to have the same property .reweighted!')
+                raise Exception("All Obs in list have to have the same property 'reweighted'.")
             if not ol[0].e_content == o.e_content:
-                raise Exception('All Obs in list have to be defined on the same set of configs!')
-            # more stringend tests --> compare idl?
+                raise Exception("All Obs in list have to be defined on the same set of configs.")
+            if not ol[0].idl == o.idl:
+                raise Exception("All Obs in list have to be defined on the same set of configurations.")
 
     def write_Obs_to_dict(o):
         d = {}
@@ -183,7 +184,6 @@
             d['reweighted'] = ol[0].reweighted
         d['value'] = [o.value for o in ol]
         d['data'] = _gen_data_d_from_list(ol)
-
         return d
 
     def write_Array_to_dict(oa):
@@ -200,13 +200,15 @@
         d['value'] = [o.value for o in ol]
         d['data'] = _gen_data_d_from_list(ol)
         return d
+
     if not isinstance(ol, list):
         ol = [ol]
+
     d = {}
     d['program'] = 'pyerrors %s' % (pyerrorsversion.__version__)
     d['version'] = '0.1'
     d['who'] = getpass.getuser()
-    d['date'] = str(datetime.datetime.now())[:-7]
+    d['date'] = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z')
     d['host'] = socket.gethostname() + ', ' + platform.platform()
 
     if description:
@@ -222,9 +224,10 @@
 
     jsonstring = json.dumps(d, indent=indent, cls=my_encoder, ensure_ascii=False)
 
-    # workaround for un-quoting of delta lists, adds 5% of work
-    # but is save, compared to a simple replace that could destroy the structure
     def remove_quotationmarks(s):
+        """Workaround for un-quoting of delta lists, adds 5% of work
+           but is save, compared to a simple replace that could destroy the structure
+        """
         deltas = False
         split = s.split('\n')
         for i in range(len(split)):
@@ -244,15 +247,15 @@
     """Export a list of Obs or structures containing Obs to a .json(.gz) file
 
     Parameters
-    -----------------
+    ----------
     ol : list
         List of objects that will be exported. At the moments, these objects can be
-        either of: Obs, list, np.ndarray
+        either of: Obs, list, numpy.ndarray.
         All Obs inside a structure have to be defined on the same set of configurations.
     fname : str
-        Filename of the output file
+        Filename of the output file.
     description : str
-        Optional string that describes the contents of the json file
+        Optional string that describes the contents of the json file.
     indent : int
         Specify the indentation level of the json file. None or 0 is permissible and
         saves disk space.
@@ -279,13 +282,14 @@
 
 def load_json(fname, verbose=True, gz=True, full_output=False):
     """Import a list of Obs or structures containing Obs from a .json.gz file.
-    The following structures are supported: Obs, list, np.ndarray
+
+    The following structures are supported: Obs, list, numpy.ndarray
     If the list contains only one element, it is unpacked from the list.
 
     Parameters
-    -----------------
+    ----------
     fname : str
-        Filename of the input file
+        Filename of the input file.
     verbose : bool
         Print additional information that was written to the file.
     gz : bool
@@ -428,13 +432,13 @@
     to a .json(.gz) file
 
     Parameters
-    -----------------
+    ----------
     ol : list
         List of objects that will be exported. At the moments, these objects can be
-        either of: Obs, list, np.ndarray
+        either of: Obs, list, numpy.ndarray.
         All Obs inside a structure have to be defined on the same set of configurations.
     description : str
-        Optional string that describes the contents of the json file
+        Optional string that describes the contents of the json file.
     indent : int
         Specify the indentation level of the json file. None or 0 is permissible and
         saves disk space.
@@ -446,7 +450,7 @@
     _default.default = json.JSONEncoder().default
     my_encoder.default = _default
 
-    class deltalist:
+    class Deltalist:
         def __init__(self, li):
             self.cnfg = li[0]
             self.deltas = li[1:]
@@ -477,7 +481,7 @@
                     rd['deltas'].append([ol[0].idl[r_name][i]])
                     for o in ol:
                         rd['deltas'][-1].append(o.deltas[r_name][i])
-                    rd['deltas'][-1] = deltalist(rd['deltas'][-1])
+                    rd['deltas'][-1] = Deltalist(rd['deltas'][-1])
                 ed['replica'].append(rd)
             dl.append(ed)
         return dl
@@ -485,15 +489,16 @@
     def _assert_equal_properties(ol, otype=Obs):
         for o in ol:
             if not isinstance(o, otype):
-                raise Exception('Wrong data type in list!')
+                raise Exception("Wrong data type in list.")
         for o in ol[1:]:
             if not ol[0].is_merged == o.is_merged:
-                raise Exception('All Obs in list have to be defined on the same set of configs!')
+                raise Exception("All Obs in list have to be defined on the same set of configs.")
             if not ol[0].reweighted == o.reweighted:
-                raise Exception('All Obs in list have to have the same property .reweighted!')
+                raise Exception("All Obs in list have to have the same property 'reweighted'.")
             if not ol[0].e_content == o.e_content:
-                raise Exception('All Obs in list have to be defined on the same set of configs!')
-            # more stringend tests --> compare idl?
+                raise Exception("All Obs in list have to be defined on the same set of configs.")
+            if not ol[0].idl == o.idl:
+                raise Exception("All Obs in list have to be defined on the same set of configurations.")
 
     def write_Obs_to_dict(o):
         d = {}
@@ -519,7 +524,6 @@
             d['reweighted'] = ol[0].reweighted
         d['value'] = [o.value for o in ol]
         d['data'] = _gen_data_d_from_list(ol)
-
         return d
 
     def write_Array_to_dict(oa):
@@ -536,13 +540,15 @@
         d['value'] = [o.value for o in ol]
         d['data'] = _gen_data_d_from_list(ol)
         return d
+
     if not isinstance(ol, list):
         ol = [ol]
+
     d = {}
     d['program'] = 'pyerrors %s' % (pyerrorsversion.__version__)
     d['version'] = '0.1'
     d['who'] = getpass.getuser()
-    d['date'] = str(datetime.datetime.now())[:-7]
+    d['date'] = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z')
     d['host'] = socket.gethostname() + ', ' + platform.platform()
 
     if description:
@@ -558,9 +564,10 @@
 
     jsonstring = json.dumps(d, indent=indent, cls=my_encoder, ensure_ascii=False)
 
-    # workaround for un-quoting of delta lists, adds 5% of work
-    # but is save, compared to a simple replace that could destroy the structure
     def remove_quotationmarks(s):
+        """Workaround for un-quoting of delta lists, adds 5% of work
+           but is save, compared to a simple replace that could destroy the structure
+        """
         deltas = False
         split = s.split('\n')
         for i in range(len(split)):
@@ -586,10 +593,10 @@ to a .json(.gz) file

  • ol (list): List of objects that will be exported. At the moments, these objects can be -either of: Obs, list, np.ndarray +either of: Obs, list, numpy.ndarray. All Obs inside a structure have to be defined on the same set of configurations.
  • description (str): -Optional string that describes the contents of the json file
  • +Optional string that describes the contents of the json file.
  • indent (int): Specify the indentation level of the json file. None or 0 is permissible and saves disk space.
  • @@ -612,15 +619,15 @@ saves disk space. """Export a list of Obs or structures containing Obs to a .json(.gz) file Parameters - ----------------- + ---------- ol : list List of objects that will be exported. At the moments, these objects can be - either of: Obs, list, np.ndarray + either of: Obs, list, numpy.ndarray. All Obs inside a structure have to be defined on the same set of configurations. fname : str - Filename of the output file + Filename of the output file. description : str - Optional string that describes the contents of the json file + Optional string that describes the contents of the json file. indent : int Specify the indentation level of the json file. None or 0 is permissible and saves disk space. @@ -654,12 +661,12 @@ saves disk space.
    • ol (list): List of objects that will be exported. At the moments, these objects can be -either of: Obs, list, np.ndarray +either of: Obs, list, numpy.ndarray. All Obs inside a structure have to be defined on the same set of configurations.
    • fname (str): -Filename of the output file
    • +Filename of the output file.
    • description (str): -Optional string that describes the contents of the json file
    • +Optional string that describes the contents of the json file.
    • indent (int): Specify the indentation level of the json file. None or 0 is permissible and saves disk space.
    • @@ -682,13 +689,14 @@ If True, the output is a gzipped json. If False, the output is a json file. View Source
      def load_json(fname, verbose=True, gz=True, full_output=False):
           """Import a list of Obs or structures containing Obs from a .json.gz file.
      -    The following structures are supported: Obs, list, np.ndarray
      +
      +    The following structures are supported: Obs, list, numpy.ndarray
           If the list contains only one element, it is unpacked from the list.
       
           Parameters
      -    -----------------
      +    ----------
           fname : str
      -        Filename of the input file
      +        Filename of the input file.
           verbose : bool
               Print additional information that was written to the file.
           gz : bool
      @@ -815,15 +823,16 @@ If True, the output is a gzipped json. If False, the output is a json file.
       
               
       
      -            

      Import a list of Obs or structures containing Obs from a .json.gz file. -The following structures are supported: Obs, list, np.ndarray +

      Import a list of Obs or structures containing Obs from a .json.gz file.

      + +

      The following structures are supported: Obs, list, numpy.ndarray If the list contains only one element, it is unpacked from the list.

      Parameters
      • fname (str): -Filename of the input file
      • +Filename of the input file.
      • verbose (bool): Print additional information that was written to the file.
      • gz (bool): diff --git a/docs/search.js b/docs/search.js index 361b0a7d..259ed25e 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWhat is pyerrors?\n\n

        pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

        \n\n
          \n
        • automatic differentiation as suggested in arXiv:1809.01289 (partly based on the autograd package)
        • \n
        • treatment of slow modes in the simulation as suggested in arXiv:1009.5228
        • \n
        • coherent error propagation for data from different Markov chains
        • \n
        • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289
        • \n
        • real and complex matrix operations and their error propagation based on automatic differentiation (Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)
        • \n
        \n\n

        There exist similar publicly available implementations of gamma method error analysis suites in

        \n\n\n\n

        Basic example

        \n\n
        import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
        \n\n

        The Obs class

        \n\n

        pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an Observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.

        \n\n

        Example:

        \n\n
        import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
        \n\n

        Error propagation

        \n\n

        When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

        \n\n

        The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

        \n\n

        Example:

        \n\n
        import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
        \n\n

        Error estimation

        \n\n

        The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

        \n\n

        Example:

        \n\n
        my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
        \n\n

        We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

        \n\n

        Example:

        \n\n
        my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
        \n\n

        The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_tauint.

        \n\n

        If the parameter $S$ is set to zero it is assumed that dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

        \n\n

        Exponential tails

        \n\n

        Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

        \n\n

        Example:

        \n\n
        my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
        \n\n

        For the full API see pyerrors.obs.Obs.gamma_method

        \n\n

        Multiple ensembles/replica

        \n\n

        Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

        \n\n

        Example:

        \n\n
        obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
        \n\n

        pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

        \n\n

        Example:

        \n\n
        obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
        \n\n

        Error estimation for multiple ensembles

        \n\n

        In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

        \n\n

        Example:

        \n\n
        pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
        \n\n

        In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

        \n\n

        Irregular Monte Carlo chains

        \n\n

        Irregular Monte Carlo chains can be initialized with the parameter idl.

        \n\n

        Example:

        \n\n
        # Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
        \n\n

        Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

        \n\n

        For the full API see pyerrors.obs.Obs

        \n\n

        Correlators

        \n\n

        For the full API see pyerrors.correlators.Corr

        \n\n

        Complex observables

        \n\n

        pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

        \n\n

        Example:

        \n\n
        my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
        \n\n

        Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

        \n\n
        my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
        \n\n

        Optimization / fits / roots

        \n\n

        pyerrors.fits\npyerrors.roots

        \n\n

        Matrix operations

        \n\n

        pyerrors.linalg

        \n\n

        Export data

        \n\n

        The preferred exported file format within pyerrors is

        \n\n

        Jackknife samples

        \n\n

        For comparison with other analysis workflows pyerrors can generate jackknife samples from an Obs object.\nSee pyerrors.obs.Obs.export_jackknife for details.

        \n\n

        Input

        \n\n

        pyerrors.input

        \n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "

        The class for a correlator (time dependent sequence of pe.Obs).

        \n\n

        Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.

        \n\n

        The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nsmearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.

        \n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "

        \n", "parameters": ["self", "data_input", "padding_front", "padding_back", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "

        \n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "

        Apply the gamma method to the content of the Corr.

        \n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "

        \n", "parameters": ["self", "vector_l", "vector_r"], "funcdef": "def"}, "pyerrors.correlators.Corr.sum": {"fullname": "pyerrors.correlators.Corr.sum", "modulename": "pyerrors.correlators", "qualname": "Corr.sum", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing": {"fullname": "pyerrors.correlators.Corr.smearing", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing", "type": "function", "doc": "

        \n", "parameters": ["self", "i", "j"], "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "

        Outputs the correlator in a plotable format.

        \n\n

        Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "

        Symmetrize the correlator around x0=0.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "

        Anti-symmetrize the correlator around x0=0.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing_symmetric": {"fullname": "pyerrors.correlators.Corr.smearing_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing_symmetric", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "

        \n", "parameters": ["self", "t0", "ts", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "

        \n", "parameters": ["self", "t0", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "

        Periodically shift the correlator by dt timeslices

        \n\n
        Parameters
        \n\n
          \n
        • dt (int):\nnumber of timeslices
        • \n
        \n", "parameters": ["self", "dt"], "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "

        Reverse the time ordering of the Corr

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "

        Correlate the correlator with another correlator or Obs

        \n\n
        Parameters
        \n\n
          \n
        • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
        • \n
        \n", "parameters": ["self", "partner"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "

        Reweight the correlator.

        \n\n
        Parameters
        \n\n
          \n
        • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
        • \n
        • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
        • \n
        \n", "parameters": ["self", "weight", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "

        Return the time symmetry average of the correlator and its partner

        \n\n
        Parameters
        \n\n
          \n
        • partner (Corr):\nTime symmetry partner of the Corr
        • \n
        • partity (int):\nParity quantum number of the correlator, can be +1 or -1
        • \n
        \n", "parameters": ["self", "partner", "parity"], "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "

        Return the first derivative of the correlator with respect to x0.

        \n\n
        Parameters
        \n\n
          \n
        • symmetric (bool):\ndecides whether symmetric of simple finite differences are used. Default: True
        • \n
        \n", "parameters": ["self", "symmetric"], "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "

        Return the second derivative of the correlator with respect to x0.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "

        Returns the effective mass of the correlator as correlator object

        \n\n
        Parameters
        \n\n
          \n
        • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)
        • \n
        • guess (float):\nguess for the root finder, only relevant for the root variant
        • \n
        \n", "parameters": ["self", "variant", "guess"], "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "

        Fits function to the data

        \n\n
        Parameters
        \n\n
          \n
        • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
        • \n
        • fitrange (list):\nRange in which the function is to be fitted to the data.\nIf not specified, self.prange or all timeslices are used.
        • \n
        • silent (bool):\nDecides whether output is printed to the standard output.
        • \n
        \n", "parameters": ["self", "function", "fitrange", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "

        Extract a plateau value from a Corr object

        \n\n
        Parameters
        \n\n
          \n
        • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
        • \n
        • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
        • \n
        \n", "parameters": ["self", "plateau_range", "method"], "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "

        Sets the attribute prange of the Corr object.

        \n", "parameters": ["self", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "

        Plots the correlator, uses tag as label if available.

        \n\n
        Parameters
        \n\n
          \n
        • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
        • \n
        • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.
        • \n
        • logscale (bool):\nSets y-axis to logscale
        • \n
        • plateau (Obs):\nplateau to be visualized in the figure
        • \n
        • fit_res (Fit_result):\nFit_result object to be visualized
        • \n
        • ylabel (str):\nLabel for the y-axis
        • \n
        • save (str):\npath to file in which the figure should be saved
        • \n
        \n", "parameters": ["self", "x_range", "comp", "y_range", "logscale", "plateau", "fit_res", "ylabel", "save"], "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "

        Dumps the Corr into a pickle file

        \n\n
        Parameters
        \n\n
          \n
        • filename (str):\nName of the file
        • \n
        \n", "parameters": ["self", "filename"], "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "

        \n", "parameters": ["self", "range"], "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "type": "class", "doc": "

        \n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "type": "function", "doc": "

        Initialize Covobs object.

        \n\n
        Parameters
        \n\n
          \n
        • mean (float):\nMean value of the new Obs
        • \n
        • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
        • \n
        • name (str):\nidentifier for the covariance matrix
        • \n
        • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
        • \n
        • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
        • \n
        \n", "parameters": ["self", "mean", "cov", "name", "pos", "grad"], "funcdef": "def"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "type": "function", "doc": "

        Return the variance (= square of the error) of the Covobs

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "

        Returns gamma matrix in Grid labeling.

        \n", "parameters": ["gamma_tag"], "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "

        Represents fit results.

        \n\n
        Attributes
        \n\n
          \n
        • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
        • \n
        \n"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "

        Apply the gamma method to all fit parameters

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "

        Performs a non-linear fit to y = func(x).

        \n\n
        Parameters
        \n\n
          \n
        • x (list):\nlist of floats.
        • \n
        • y (list):\nlist of Obs.
        • \n
        • func (object):\nfit function, has to be of the form

          \n\n
          def func(a, x):\n   y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n   return y\n
          \n\n

          For multiple x values func can be of the form

          \n\n
          def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
          \n\n

          It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work

        • \n
        • priors (list, optional):\npriors has to be a list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
        • \n
        • silent (bool, optional):\nIf true all output to the console is omitted (default False).
        • \n
        • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\n non-linear fits with many parameters.
        • \n
        • method (str):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
        • \n
        • resplot (bool):\nIf true, a plot which displays fit, data and residuals is generated (default False).
        • \n
        • qqplot (bool):\nIf true, a quantile-quantile plot of the fit result is generated (default False).
        • \n
        • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
        • \n
        • correlated_fit (bool):\nIf true, use the full correlation matrix in the definition of the chisquare\n(only works for prior==None and when no method is given, at the moment).
        • \n
        • const_par (list, optional):\nList of N Obs that are used to constrain the last N fit parameters of func.
        • \n
        \n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "

        Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

        \n\n
        Parameters
        \n\n
          \n
        • x (list):\nlist of Obs, or a tuple of lists of Obs
        • \n
        • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
        • \n
        • func (object):\nfunc has to be of the form

          \n\n
          def func(a, x):\n   y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n   return y\n
          \n\n

          For multiple x values func can be of the form

          \n\n
          def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
          \n\n

          It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

        • \n
        • silent (bool, optional):\nIf true all output to the console is omitted (default False).
        • \n
        • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
        • \n
        • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
        • \n
        • const_par (list, optional):\nList of N Obs that are used to constrain the last N fit parameters of func.
        • \n
        • Based on the orthogonal distance regression module of scipy
        • \n
        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.prior_fit": {"fullname": "pyerrors.fits.prior_fit", "modulename": "pyerrors.fits", "qualname": "prior_fit", "type": "function", "doc": "

        \n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.standard_fit": {"fullname": "pyerrors.fits.standard_fit", "modulename": "pyerrors.fits", "qualname": "standard_fit", "type": "function", "doc": "

        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.odr_fit": {"fullname": "pyerrors.fits.odr_fit", "modulename": "pyerrors.fits", "qualname": "odr_fit", "type": "function", "doc": "

        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "

        Performs a linear fit to y = n + m * x and returns two Obs n, m.

        \n\n

        y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.

        \n", "parameters": ["x", "y", "kwargs"], "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "

        Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.

        \n", "parameters": ["x", "o_y", "func", "p"], "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "

        Generates a plot which compares the fit to the data and displays the corresponding residuals

        \n", "parameters": ["x", "y", "func", "fit_res"], "funcdef": "def"}, "pyerrors.fits.covariance_matrix": {"fullname": "pyerrors.fits.covariance_matrix", "modulename": "pyerrors.fits", "qualname": "covariance_matrix", "type": "function", "doc": "

        Returns the covariance matrix of y.

        \n", "parameters": ["y"], "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "

        Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.

        \n", "parameters": ["x", "func", "beta"], "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "

        Performs a Kolmogorov\u2013Smirnov test for the Q-values of all fit object.

        \n\n

        If no list is given all Obs in memory are used.

        \n\n

        Disclaimer: The determination of the individual Q-values as well as this function have not been tested yet.

        \n", "parameters": ["obs"], "funcdef": "def"}, "pyerrors.fits.fit_general": {"fullname": "pyerrors.fits.fit_general", "modulename": "pyerrors.fits", "qualname": "fit_general", "type": "function", "doc": "

        Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

        \n\n

        Plausibility of the results should be checked. To control the numerical differentiation\nthe kwargs of numdifftools.step_generators.MaxStepGenerator can be used.

        \n\n

        func has to be of the form

        \n\n

        def func(a, x):\n y = a[0] + a[1] * x + a[2] * np.sinh(x)\n return y

        \n\n

        y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.

        \n\n
        Keyword arguments
        \n\n

        silent -- If true all output to the console is omitted (default False).\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear fits\n with many parameters.

        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "

        Extract generic MCMC data from a bdio file

        \n\n

        read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        \n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "

        Write Obs to a bdio file according to ADerrors conventions

        \n\n

        read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        \n", "parameters": ["obs_list", "file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "

        Extract mesons data from a bdio file and return it as a dictionary

        \n\n

        The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

        \n\n

        read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        • stop -- stops reading at given configuration number (default None)
        • \n
        • alternative_ensemble_name -- Manually overwrite ensemble name
        • \n
        \n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "

        Extract dSdm data from a bdio file and return it as a dictionary

        \n\n

        The dictionary can be accessed with a tuple consisting of (type, kappa)

        \n\n

        read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        • stop -- stops reading at given configuration number (default None)
        • \n
        \n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "

        Read hadrons meson hdf5 file and extract the meson labeled 'meson'

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
        • \n
        • tree (str):\nLabel of the upmost directory in the hdf5 file, default 'meson'\nfor outputs of the Meson module. Can be altered to read input\nfrom other modules with similar structures.
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "meson", "tree", "idl"], "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "type": "class", "doc": "

        ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

        \n\n

        An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

        \n\n

        Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

        \n\n

        For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

        \n\n
        Parameters
        \n\n
          \n
        • (for the __new__ method; see Notes below)
        • \n
        • shape (tuple of ints):\nShape of created array.
        • \n
        • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
        • \n
        • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
        • \n
        • offset (int, optional):\nOffset of array data in buffer.
        • \n
        • strides (tuple of ints, optional):\nStrides of data in memory.
        • \n
        • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
        • \n
        \n\n
        Attributes
        \n\n
          \n
        • T (ndarray):\nTranspose of the array.
        • \n
        • data (buffer):\nThe array's elements, in memory.
        • \n
        • dtype (dtype object):\nDescribes the format of the elements in the array.
        • \n
        • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
        • \n
        • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
        • \n
        • imag (ndarray):\nImaginary part of the array.
        • \n
        • real (ndarray):\nReal part of the array.
        • \n
        • size (int):\nNumber of elements in the array.
        • \n
        • itemsize (int):\nThe memory use of each array element in bytes.
        • \n
        • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
        • \n
        • ndim (int):\nThe array's number of dimensions.
        • \n
        • shape (tuple of ints):\nShape of the array.
        • \n
        • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
        • \n
        • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
        • \n
        • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
        • \n
        \n\n
        See Also
        \n\n

        array: Construct an array.
        \nzeros: Create an array, each element of which is zero.
        \nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
        \ndtype: Create a data-type.
        \nnumpy.typing.NDArray: A :term:generic <generic type> version\nof ndarray.

        \n\n
        Notes
        \n\n

        There are two modes of creating an array using __new__:

        \n\n
          \n
        1. If buffer is None, then only shape, dtype, and order\nare used.
        2. \n
        3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
        4. \n
        \n\n

        No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

        \n\n
        Examples
        \n\n

        These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

        \n\n

        First mode, buffer is None:

        \n\n
        >>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
        \n\n

        Second mode:

        \n\n
        >>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
        \n"}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"fullname": "pyerrors.input.hadrons.Npr_matrix.__init__", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "

        \n", "parameters": [], "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": "

        Gamma_5 hermitean conjugate

        \n\n

        Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

        \n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "

        Read hadrons ExternalLeg hdf5 file and output an array of CObs

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "idl"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "

        Read hadrons Bilinear hdf5 file and output an array of CObs

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "idl"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "type": "function", "doc": "

        Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        • vertices (list):\nVertex functions to be extracted.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "idl", "vertices"], "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "type": "function", "doc": "

        Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

        \n\n
        Parameters
        \n\n
          \n
        • ol (list):\nList of objects that will be exported. At the moments, these objects can be\neither of: Obs, list, np.ndarray\nAll Obs inside a structure have to be defined on the same set of configurations.
        • \n
        • description (str):\nOptional string that describes the contents of the json file
        • \n
        • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
        • \n
        \n", "parameters": ["ol", "description", "indent"], "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "type": "function", "doc": "

        Export a list of Obs or structures containing Obs to a .json(.gz) file

        \n\n
        Parameters
        \n\n
          \n
        • ol (list):\nList of objects that will be exported. At the moments, these objects can be\neither of: Obs, list, np.ndarray\nAll Obs inside a structure have to be defined on the same set of configurations.
        • \n
        • fname (str):\nFilename of the output file
        • \n
        • description (str):\nOptional string that describes the contents of the json file
        • \n
        • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
        • \n
        • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
        • \n
        \n", "parameters": ["ol", "fname", "description", "indent", "gz"], "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "type": "function", "doc": "

        Import a list of Obs or structures containing Obs from a .json.gz file.\nThe following structures are supported: Obs, list, np.ndarray\nIf the list contains only one element, it is unpacked from the list.

        \n\n
        Parameters
        \n\n
          \n
        • fname (str):\nFilename of the input file
        • \n
        • verbose (bool):\nPrint additional information that was written to the file.
        • \n
        • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
        • \n
        • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
        • \n
        \n", "parameters": ["fname", "verbose", "gz", "full_output"], "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "

        Read pbp format from given folder structure. Returns a list of length nrw

        \n\n
        Keyword arguments
        \n\n

        r_start -- list which contains the first config to be read for each replicum\nr_stop -- list which contains the last config to be read for each replicum

        \n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "

        Read rwms format from given folder structure. Returns a list of length nrw

        \n\n
        Parameters
        \n\n
          \n
        • version (str):\nversion of openQCD, default 2.0
        • \n
        • r_start (list):\nlist which contains the first config to be read for each replicum
        • \n
        • r_stop (list):\nlist which contains the last config to be read for each replicum
        • \n
        • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
        • \n
        \n", "parameters": ["path", "prefix", "version", "names", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "

        Extract t0 from given .ms.dat files. Returns t0 as Obs.

        \n\n

        It is assumed that all boundary effects have sufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - 0.3 is fitted with a linear function\nfrom which the exact root is extracted.\nOnly works with openQCD v 1.2.

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\nPath to .ms.dat files
        • \n
        • prefix (str):\nEnsemble prefix
        • \n
        • dtr_read (int):\nDetermines how many trajectories should be skipped when reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
        • \n
        • xmin (int):\nFirst timeslice where the boundary effects have sufficiently decayed.
        • \n
        • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
        • \n
        • fit_range (int):\nNumber of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
        • \n
        • r_start (list):\nlist which contains the first config to be read for each replicum.
        • \n
        • r_stop (list):\nlist which contains the last config to be read for each replicum.
        • \n
        • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
        • \n
        \n", "parameters": ["path", "prefix", "dtr_read", "xmin", "spatial_extent", "fit_range", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "

        Read sfcf C format from given folder structure.

        \n\n
        Parameters
        \n\n
          \n
        • im -- if True, read imaginary instead of real part of the correlation function.
        • \n
        • single -- if True, read a boundary-to-boundary correlation function with a single value
        • \n
        • b2b -- if True, read a time-dependent boundary-to-boundary correlation function
        • \n
        • names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
        • \n
        \n", "parameters": ["path", "prefix", "name", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_c": {"fullname": "pyerrors.input.sfcf.read_sfcf_c", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_c", "type": "function", "doc": "

        Read sfcf c format from given folder structure.

        \n\n
        Parameters
        \n\n
          \n
        • quarks -- Label of the quarks used in the sfcf input file
        • \n
        • noffset -- Offset of the source (only relevant when wavefunctions are used)
        • \n
        • wf -- ID of wave function
        • \n
        • wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
        • \n
        • im -- if True, read imaginary instead of real part of the correlation function.
        • \n
        • b2b -- if True, read a time-dependent boundary-to-boundary correlation function
        • \n
        • names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
        • \n
        • ens_name (str):\nreplaces the name of the ensemble
        • \n
        \n", "parameters": ["path", "prefix", "name", "quarks", "noffset", "wf", "wf2", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_qtop": {"fullname": "pyerrors.input.sfcf.read_qtop", "modulename": "pyerrors.input.sfcf", "qualname": "read_qtop", "type": "function", "doc": "

        Read qtop format from given folder structure.

        \n\n
        Parameters
        \n\n
          \n
        • target -- specifies the topological sector to be reweighted to (default 0)
        • \n
        • full -- if true read the charge instead of the reweighting factor.
        • \n
        \n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.linalg.derived_array": {"fullname": "pyerrors.linalg.derived_array", "modulename": "pyerrors.linalg", "qualname": "derived_array", "type": "function", "doc": "

        Construct a derived Obs for a matrix valued function according to func(data, **kwargs) using automatic differentiation.

        \n\n
        Parameters
        \n\n
          \n
        • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
        • \n
        • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
        • \n
        • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
        • \n
        \n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "

        Matrix multiply all operands.

        \n\n
        Parameters
        \n\n
          \n
        • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
        • \n
        • This implementation is faster compared to standard multiplication via the @ operator.
        • \n
        \n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "type": "function", "doc": "

        Matrix multiply both operands making use of the jackknife approximation.

        \n\n
        Parameters
        \n\n
          \n
        • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
        • \n
        • For large matrices this is considerably faster compared to matmul.
        • \n
        \n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "type": "function", "doc": "

        Wrapper for numpy.einsum

        \n\n
        Parameters
        \n\n
          \n
        • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
        • \n
        • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
        • \n
        \n", "parameters": ["subscripts", "operands"], "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "

        Inverse of Obs or CObs valued matrices.

        \n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "

        Cholesky decomposition of Obs or CObs valued matrices.

        \n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.scalar_mat_op": {"fullname": "pyerrors.linalg.scalar_mat_op", "modulename": "pyerrors.linalg", "qualname": "scalar_mat_op", "type": "function", "doc": "

        Computes the matrix to scalar operation op to a given matrix of Obs.

        \n", "parameters": ["op", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "

        Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "

        Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "

        Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "

        Computes the singular value decomposition of a matrix of Obs.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.slogdet": {"fullname": "pyerrors.linalg.slogdet", "modulename": "pyerrors.linalg", "qualname": "slogdet", "type": "function", "doc": "

        Computes the determinant of a matrix of Obs via np.linalg.slogdet.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.grad_eig": {"fullname": "pyerrors.linalg.grad_eig", "modulename": "pyerrors.linalg", "qualname": "grad_eig", "type": "function", "doc": "

        Gradient of a general square (complex valued) matrix

        \n", "parameters": ["ans", "x"], "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "type": "function", "doc": "

        Dump object into pickle file.

        \n\n
        Parameters
        \n\n
          \n
        • obj (object):\nobject to be saved in the pickle file
        • \n
        • name (str):\nname of the file
        • \n
        • path (str):\nspecifies a custom path for the file (default '.')
        • \n
        \n", "parameters": ["obj", "name", "kwargs"], "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "type": "function", "doc": "

        Load object from pickle file.

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the file
        • \n
        \n", "parameters": ["path"], "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "

        Generate observables with given covariance and autocorrelation times.

        \n\n
        Parameters
        \n\n
          \n
        • means (list):\nlist containing the mean value of each observable.
        • \n
        • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
        • \n
        • name (str):\nensemble name for the data to be geneated.
        • \n
        • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
        • \n
        • samples (int):\nnumber of samples to be generated for each observable.
        • \n
        \n", "parameters": ["means", "cov", "name", "tau", "samples"], "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "

        Matrix pencil method to extract k energy levels from data

        \n\n

        Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

        \n\n
        Parameters
        \n\n
          \n
        • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
        • \n
        • k (int):\nNumber of states to extract (default 1).
        • \n
        • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
        • \n
        \n", "parameters": ["corrs", "k", "p", "kwargs"], "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "

        Class for a general observable.

        \n\n

        Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

        \n\n
        Attributes
        \n\n
          \n
        • S_global (float):\nStandard value for S (default 2.0)
        • \n
        • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
        • \n
        • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
        • \n
        • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
        • \n
        • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
        • \n
        • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
        • \n
        \n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "

        Initialize Obs object.

        \n\n
        Parameters
        \n\n
          \n
        • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
        • \n
        • names (list):\nlist of strings labeling the individual samples
        • \n
        • idl (list, optional):\nlist of ranges or lists on which the samples are defined
        • \n
        • means (list, optional):\nlist of mean values for the case that the mean values were\nalready subtracted from the samples
        • \n
        \n", "parameters": ["self", "samples", "names", "idl", "means", "covobs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "

        Estimate the error and related properties of the Obs.

        \n\n
        Parameters
        \n\n
          \n
        • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
        • \n
        • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
        • \n
        • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
        • \n
        • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
        • \n
        \n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "

        Output detailed properties of the Obs.

        \n\n
        Parameters
        \n\n
          \n
        • ens_content (bool):\nprint details about the ensembles and replica if true.
        • \n
        \n", "parameters": ["self", "ens_content"], "funcdef": "def"}, "pyerrors.obs.Obs.print": {"fullname": "pyerrors.obs.Obs.print", "modulename": "pyerrors.obs", "qualname": "Obs.print", "type": "function", "doc": "

        \n", "parameters": ["self", "level"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "

        Checks whether the observable is zero within 'sigma' standard errors.

        \n\n
        Parameters
        \n\n
          \n
        • sigma (int):\nNumber of standard errors used for the check.
        • \n
        • Works only properly when the gamma method was run.
        • \n
        \n", "parameters": ["self", "sigma"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "

        Checks whether the observable is zero within a given tolerance.

        \n\n
        Parameters
        \n\n
          \n
        • rtol (float):\nRelative tolerance (for details see numpy documentation).
        • \n
        • atol (float):\nAbsolute tolerance (for details see numpy documentation).
        • \n
        \n", "parameters": ["self", "rtol", "atol"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "

        Plot integrated autocorrelation time for each ensemble.

        \n\n
        Parameters
        \n\n
          \n
        • save (str):\nsaves the figure to a file named 'save' if.
        • \n
        \n", "parameters": ["self", "save"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "

        Plot normalized autocorrelation function time for each ensemble.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "

        Plot replica distribution for each ensemble with more than one replicum.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "

        Plot derived Monte Carlo history for each ensemble

        \n\n
        Parameters
        \n\n
          \n
        • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
        • \n
        \n", "parameters": ["self", "expand"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "

        Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "

        Dump the Obs to a pickle file 'name'.

        \n\n
        Parameters
        \n\n
          \n
        • name (str):\nname of the file to be saved.
        • \n
        • path (str):\nspecifies a custom path for the file (default '.')
        • \n
        \n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "type": "function", "doc": "

        Export jackknife samples from the Obs

        \n\n
        Returns
        \n\n
          \n
        • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
        • \n
        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinc": {"fullname": "pyerrors.obs.Obs.sinc", "modulename": "pyerrors.obs", "qualname": "Obs.sinc", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "

        Class for a complex valued observable.

        \n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "

        \n", "parameters": ["self", "real", "imag"], "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "

        Executes the gamma_method for the real and the imaginary part.

        \n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "

        Checks whether both real and imaginary part are zero within machine precision.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "

        Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

        \n\n
        Parameters
        \n\n
          \n
        • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
        • \n
        • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
        • \n
        • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
        • \n
        • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
        • \n
        \n\n
        Notes
        \n\n

        For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

        \n\n

        new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

        \n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "

        Reweight a list of observables.

        \n\n
        Parameters
        \n\n
          \n
        • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
        • \n
        • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
        • \n
        • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
        • \n
        \n", "parameters": ["weight", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "

        Correlate two observables.

        \n\n
        Parameters
        \n\n
          \n
        • obs_a (Obs):\nFirst observable
        • \n
        • obs_b (Obs):\nSecond observable
        • \n
        • Keep in mind to only correlate primary observables which have not been reweighted
        • \n
        • yet. The reweighting has to be applied after correlating the observables.
        • \n
        • Currently only works if ensembles are identical. This is not really necessary.
        • \n
        \n", "parameters": ["obs_a", "obs_b"], "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "

        Calculates the covariance of two observables.

        \n\n

        covariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.

        \n\n

        If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

        \n\n
        Parameters
        \n\n
          \n
        • obs1 (Obs):\nFirst Obs
        • \n
        • obs2 (Obs):\nSecond Obs
        • \n
        • correlation (bool):\nif true the correlation instead of the covariance is\nreturned (default False)
        • \n
        \n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance2": {"fullname": "pyerrors.obs.covariance2", "modulename": "pyerrors.obs", "qualname": "covariance2", "type": "function", "doc": "

        Alternative implementation of the covariance of two observables.

        \n\n

        covariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.

        \n\n

        If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

        \n\n
        Keyword arguments
        \n\n

        correlation -- if true the correlation instead of the covariance is\n returned (default False)

        \n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance3": {"fullname": "pyerrors.obs.covariance3", "modulename": "pyerrors.obs", "qualname": "covariance3", "type": "function", "doc": "

        Another alternative implementation of the covariance of two observables.

        \n\n

        covariance2(obs, obs) is equal to obs.dvalue ** 2\nCurrently only works if ensembles are identical.\nThe gamma method has to be applied first to both observables.

        \n\n

        If abs(covariance2(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

        \n\n
        Keyword arguments
        \n\n

        correlation -- if true the correlation instead of the covariance is\n returned (default False)\nplot -- if true, the integrated autocorrelation time for each ensemble is\n plotted.

        \n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.pseudo_Obs": {"fullname": "pyerrors.obs.pseudo_Obs", "modulename": "pyerrors.obs", "qualname": "pseudo_Obs", "type": "function", "doc": "

        Generate a pseudo Obs with given value, dvalue and name

        \n\n
        Parameters
        \n\n
          \n
        • value (float):\ncentral value of the Obs to be generated.
        • \n
        • dvalue (float):\nerror of the Obs to be generated.
        • \n
        • name (str):\nname of the ensemble for which the Obs is to be generated.
        • \n
        • samples (int):\nnumber of samples for the Obs (default 1000).
        • \n
        \n", "parameters": ["value", "dvalue", "name", "samples"], "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "type": "function", "doc": "

        Imports jackknife samples and returns an Obs

        \n\n
        Parameters
        \n\n
          \n
        • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
        • \n
        • name (str):\nname of the ensemble the samples are defined on.
        • \n
        \n", "parameters": ["jacks", "name", "idl"], "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "

        Combine all observables in list_of_obs into one new observable

        \n\n
        Parameters
        \n\n
          \n
        • list_of_obs (list):\nlist of the Obs object to be combined
        • \n
        • It is not possible to combine obs which are based on the same replicum
        • \n
        \n", "parameters": ["list_of_obs"], "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "type": "function", "doc": "

        Create an Obs based on mean(s) and a covariance matrix

        \n\n
        Parameters
        \n\n
          \n
        • mean (list of floats or float):\nN mean value(s) of the new Obs
        • \n
        • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
        • \n
        • name (str):\nidentifier for the covariance matrix
        • \n
        • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
        • \n
        \n", "parameters": ["means", "cov", "name", "grad"], "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "

        Finds the root of the function func(x, d) where d is an Obs.

        \n\n
        Parameters
        \n\n
          \n
        • d (Obs):\nObs passed to the function.
        • \n
        • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:\npython\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
        • \n
        • guess (float):\nInitial guess for the minimization.
        • \n
        \n\n
        Returns
        \n\n
          \n
        • Obs: Obs valued root of the function.
        • \n
        \n", "parameters": ["d", "func", "guess", "kwargs"], "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "qualname": "", "type": "module", "doc": "

        \n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "doc": 1044}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "doc": 51}, "pyerrors.correlators.Corr.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sum": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.smearing": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.smearing_symmetric": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "doc": 19}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "doc": 28}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.correlators.Corr.m_eff": {"qualname": 2, "fullname": 4, "doc": 68}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "doc": 32}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "doc": 34}, "pyerrors.correlators.Corr.set_prange": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "doc": 56}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "doc": 9}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.covobs.Covobs.__init__": {"qualname": 2, "fullname": 4, "doc": 45}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.dirac.Grid_gamma": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.fits.Fit_result": {"qualname": 1, "fullname": 3, "doc": 13}, "pyerrors.fits.Fit_result.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.fits.least_squares": {"qualname": 1, "fullname": 3, "doc": 203}, "pyerrors.fits.total_least_squares": {"qualname": 1, "fullname": 3, "doc": 133}, "pyerrors.fits.prior_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.standard_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.odr_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.fit_lin": {"qualname": 1, "fullname": 3, "doc": 33}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.fits.residual_plot": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.fits.covariance_matrix": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.fits.error_band": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.fits.ks_test": {"qualname": 1, "fullname": 3, "doc": 20}, "pyerrors.fits.fit_general": {"qualname": 1, "fullname": 3, "doc": 79}, "pyerrors.input": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 1, "fullname": 4, "doc": 47}, "pyerrors.input.bdio.read_mesons": {"qualname": 1, "fullname": 4, "doc": 68}, "pyerrors.input.bdio.read_dSdm": {"qualname": 1, "fullname": 4, "doc": 61}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 1, "fullname": 4, "doc": 66}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 1, "fullname": 4, "doc": 425}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"qualname": 2, "fullname": 5, "doc": 0}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 2, "fullname": 5, "doc": 12}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 1, "fullname": 4, "doc": 33}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 1, "fullname": 4, "doc": 33}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 1, "fullname": 4, "doc": 38}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.json.create_json_string": {"qualname": 1, "fullname": 4, "doc": 51}, "pyerrors.input.json.dump_to_json": {"qualname": 1, "fullname": 4, "doc": 64}, "pyerrors.input.json.load_json": {"qualname": 1, "fullname": 4, "doc": 57}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.misc.read_pbp": {"qualname": 1, "fullname": 4, "doc": 28}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.openQCD.read_rwms": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.openQCD.extract_t0": {"qualname": 1, "fullname": 4, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 1, "fullname": 4, "doc": 41}, "pyerrors.input.sfcf.read_sfcf_c": {"qualname": 1, "fullname": 4, "doc": 63}, "pyerrors.input.sfcf.read_qtop": {"qualname": 1, "fullname": 4, "doc": 21}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.linalg.derived_array": {"qualname": 1, "fullname": 3, "doc": 56}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "doc": 23}, "pyerrors.linalg.jack_matmul": {"qualname": 1, "fullname": 3, "doc": 27}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "doc": 24}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.scalar_mat_op": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "doc": 11}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.slogdet": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.grad_eig": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.misc.dump_object": {"qualname": 1, "fullname": 3, "doc": 22}, "pyerrors.misc.load_object": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.misc.gen_correlated_data": {"qualname": 1, "fullname": 3, "doc": 43}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 1, "fullname": 3, "doc": 75}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "doc": 107}, "pyerrors.obs.Obs.__init__": {"qualname": 2, "fullname": 4, "doc": 40}, "pyerrors.obs.Obs.S_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.filter_eps": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.r_values": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cov_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.mc_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_content": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 66}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.obs.Obs.is_zero": {"qualname": 2, "fullname": 4, "doc": 24}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 14}, "pyerrors.obs.Obs.plot_rho": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 2, "fullname": 4, "doc": 8}, "pyerrors.obs.Obs.plot_history": {"qualname": 2, "fullname": 4, "doc": 19}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 2, "fullname": 4, "doc": 54}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinc": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_drho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_rho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_merged": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.CObs.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.obs.CObs.is_zero": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.derived_observable": {"qualname": 1, "fullname": 3, "doc": 93}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "doc": 38}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "doc": 52}, "pyerrors.obs.covariance2": {"qualname": 1, "fullname": 3, "doc": 45}, "pyerrors.obs.covariance3": {"qualname": 1, "fullname": 3, "doc": 58}, "pyerrors.obs.pseudo_Obs": {"qualname": 1, "fullname": 3, "doc": 32}, "pyerrors.obs.import_jackknife": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.merge_obs": {"qualname": 1, "fullname": 3, "doc": 19}, "pyerrors.obs.cov_Obs": {"qualname": 1, "fullname": 3, "doc": 42}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.roots.find_root": {"qualname": 1, "fullname": 3, "doc": 49}, "pyerrors.version": {"qualname": 0, "fullname": 2, "doc": 0}}, "length": 201, "save": true}, "index": {"qualname": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.cov_names": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 66}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 201}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 44}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.cov_names": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 17, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 14}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.print": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinc": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 85}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 27}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}}, "df": 12, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 2}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}}, "df": 12, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "2": {"0": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "(": {"4": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {}, "df": 0, "(": {"2": {"3": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "6": {"7": {"4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "(": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "8": {"1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 1, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 4.898979485566356}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 60}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 13}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "=": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 10, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 10}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}, "p": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 8}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 21, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 9}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 10}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 18}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 3, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 11}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 22, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.covariance2": {"tf": 2}, "pyerrors.obs.covariance3": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 7, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 5}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1, "+": {"1": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 20}, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 7, "(": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}}, "df": 2, "_": {"0": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "y": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"1": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 6}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 7, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}, "=": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 4}, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 23}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1, "=": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance3": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "b": {"2": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 15}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3}}, "df": 1, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8, "_": {"5": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 3}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 2}}, "df": 11}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 25}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "z": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 18, "'": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "(": {"docs": {}, "df": 0, "[": {"2": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "[": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 5}}, "z": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 3}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}}, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 1}}, "[": {"0": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.linalg.derived_array": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 29, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 8}}}, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 12}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 21, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}, "x": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 9}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 16}}}}, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "a": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 5, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 14}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 3, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "x": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 25, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 5}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 9}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 6}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "=": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 21}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "=": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 4}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1.7320508075688772}}, "df": 1}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 5}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 15}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 15}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 9}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 19, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 10, "(": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}, "x": {"0": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 10, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 11, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}, "_": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 8}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.obs.Obs": {"tf": 2}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 8}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}}, "df": 12, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 11}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 2}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 25}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 5}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 3}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 8}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "b": {"docs": {"pyerrors": {"tf": 6.48074069840786}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 46, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}}}}, "s": {"1": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}, "2": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 7}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 15}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "_": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 9, "c": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 12}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "(": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}, "v": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 32, "e": {"docs": {}, "df": 0, "(": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "c": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.6457513110645907}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer", "stopWordFilter", "stemmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "qualname": "", "type": "module", "doc": "

        What is pyerrors?

        \n\n

        pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

        \n\n
          \n
        • automatic differentiation as suggested in arXiv:1809.01289 (partly based on the autograd package)
        • \n
        • treatment of slow modes in the simulation as suggested in arXiv:1009.5228
        • \n
        • coherent error propagation for data from different Markov chains
        • \n
        • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289
        • \n
        • real and complex matrix operations and their error propagation based on automatic differentiation (Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)
        • \n
        \n\n

        There exist similar publicly available implementations of gamma method error analysis suites in

        \n\n\n\n

        Basic example

        \n\n
        import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
        \n\n

        The Obs class

        \n\n

        pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an Observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.

        \n\n

        Example:

        \n\n
        import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
        \n\n

        Error propagation

        \n\n

        When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

        \n\n

        The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

        \n\n

        Example:

        \n\n
        import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
        \n\n

        Error estimation

        \n\n

        The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

        \n\n

        Example:

        \n\n
        my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
        \n\n

        We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

        \n\n

        Example:

        \n\n
        my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
        \n\n

        The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_tauint.

        \n\n

        If the parameter $S$ is set to zero it is assumed that dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

        \n\n

        Exponential tails

        \n\n

        Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

        \n\n

        Example:

        \n\n
        my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
        \n\n

        For the full API see pyerrors.obs.Obs.gamma_method

        \n\n

        Multiple ensembles/replica

        \n\n

        Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

        \n\n

        Example:

        \n\n
        obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
        \n\n

        pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

        \n\n

        Example:

        \n\n
        obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
        \n\n

        Error estimation for multiple ensembles

        \n\n

        In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

        \n\n

        Example:

        \n\n
        pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
        \n\n

        In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

        \n\n

        Irregular Monte Carlo chains

        \n\n

        Irregular Monte Carlo chains can be initialized with the parameter idl.

        \n\n

        Example:

        \n\n
        # Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
        \n\n

        Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

        \n\n

        For the full API see pyerrors.obs.Obs

        \n\n

        Correlators

        \n\n

        For the full API see pyerrors.correlators.Corr

        \n\n

        Complex observables

        \n\n

        pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

        \n\n

        Example:

        \n\n
        my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
        \n\n

        Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

        \n\n
        my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
        \n\n

        Optimization / fits / roots

        \n\n

        pyerrors.fits\npyerrors.roots

        \n\n

        Matrix operations

        \n\n

        pyerrors.linalg

        \n\n

        Export data

        \n\n

        The preferred exported file format within pyerrors is

        \n\n

        Jackknife samples

        \n\n

        For comparison with other analysis workflows pyerrors can generate jackknife samples from an Obs object.\nSee pyerrors.obs.Obs.export_jackknife for details.

        \n\n

        Input

        \n\n

        pyerrors.input

        \n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "

        The class for a correlator (time dependent sequence of pe.Obs).

        \n\n

        Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.

        \n\n

        The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nsmearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.

        \n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "

        \n", "parameters": ["self", "data_input", "padding_front", "padding_back", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "

        \n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "

        Apply the gamma method to the content of the Corr.

        \n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "

        \n", "parameters": ["self", "vector_l", "vector_r"], "funcdef": "def"}, "pyerrors.correlators.Corr.sum": {"fullname": "pyerrors.correlators.Corr.sum", "modulename": "pyerrors.correlators", "qualname": "Corr.sum", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing": {"fullname": "pyerrors.correlators.Corr.smearing", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing", "type": "function", "doc": "

        \n", "parameters": ["self", "i", "j"], "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "

        Outputs the correlator in a plotable format.

        \n\n

        Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "

        Symmetrize the correlator around x0=0.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "

        Anti-symmetrize the correlator around x0=0.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing_symmetric": {"fullname": "pyerrors.correlators.Corr.smearing_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing_symmetric", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "

        \n", "parameters": ["self", "t0", "ts", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "

        \n", "parameters": ["self", "t0", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "

        Periodically shift the correlator by dt timeslices

        \n\n
        Parameters
        \n\n
          \n
        • dt (int):\nnumber of timeslices
        • \n
        \n", "parameters": ["self", "dt"], "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "

        Reverse the time ordering of the Corr

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "

        Correlate the correlator with another correlator or Obs

        \n\n
        Parameters
        \n\n
          \n
        • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
        • \n
        \n", "parameters": ["self", "partner"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "

        Reweight the correlator.

        \n\n
        Parameters
        \n\n
          \n
        • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
        • \n
        • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
        • \n
        \n", "parameters": ["self", "weight", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "

        Return the time symmetry average of the correlator and its partner

        \n\n
        Parameters
        \n\n
          \n
        • partner (Corr):\nTime symmetry partner of the Corr
        • \n
        • partity (int):\nParity quantum number of the correlator, can be +1 or -1
        • \n
        \n", "parameters": ["self", "partner", "parity"], "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "

        Return the first derivative of the correlator with respect to x0.

        \n\n
        Parameters
        \n\n
          \n
        • symmetric (bool):\ndecides whether symmetric of simple finite differences are used. Default: True
        • \n
        \n", "parameters": ["self", "symmetric"], "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "

        Return the second derivative of the correlator with respect to x0.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "

        Returns the effective mass of the correlator as correlator object

        \n\n
        Parameters
        \n\n
          \n
        • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)
        • \n
        • guess (float):\nguess for the root finder, only relevant for the root variant
        • \n
        \n", "parameters": ["self", "variant", "guess"], "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "

        Fits function to the data

        \n\n
        Parameters
        \n\n
          \n
        • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
        • \n
        • fitrange (list):\nRange in which the function is to be fitted to the data.\nIf not specified, self.prange or all timeslices are used.
        • \n
        • silent (bool):\nDecides whether output is printed to the standard output.
        • \n
        \n", "parameters": ["self", "function", "fitrange", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "

        Extract a plateau value from a Corr object

        \n\n
        Parameters
        \n\n
          \n
        • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
        • \n
        • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
        • \n
        \n", "parameters": ["self", "plateau_range", "method"], "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "

        Sets the attribute prange of the Corr object.

        \n", "parameters": ["self", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "

        Plots the correlator, uses tag as label if available.

        \n\n
        Parameters
        \n\n
          \n
        • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
        • \n
        • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.
        • \n
        • logscale (bool):\nSets y-axis to logscale
        • \n
        • plateau (Obs):\nplateau to be visualized in the figure
        • \n
        • fit_res (Fit_result):\nFit_result object to be visualized
        • \n
        • ylabel (str):\nLabel for the y-axis
        • \n
        • save (str):\npath to file in which the figure should be saved
        • \n
        \n", "parameters": ["self", "x_range", "comp", "y_range", "logscale", "plateau", "fit_res", "ylabel", "save"], "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "

        Dumps the Corr into a pickle file

        \n\n
        Parameters
        \n\n
          \n
        • filename (str):\nName of the file
        • \n
        \n", "parameters": ["self", "filename"], "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "

        \n", "parameters": ["self", "range"], "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "type": "class", "doc": "

        \n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "type": "function", "doc": "

        Initialize Covobs object.

        \n\n
        Parameters
        \n\n
          \n
        • mean (float):\nMean value of the new Obs
        • \n
        • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
        • \n
        • name (str):\nidentifier for the covariance matrix
        • \n
        • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
        • \n
        • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
        • \n
        \n", "parameters": ["self", "mean", "cov", "name", "pos", "grad"], "funcdef": "def"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "type": "function", "doc": "

        Return the variance (= square of the error) of the Covobs

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "

        Returns gamma matrix in Grid labeling.

        \n", "parameters": ["gamma_tag"], "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "

        Represents fit results.

        \n\n
        Attributes
        \n\n
          \n
        • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
        • \n
        \n"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "

        Apply the gamma method to all fit parameters

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "

        Performs a non-linear fit to y = func(x).

        \n\n
        Parameters
        \n\n
          \n
        • x (list):\nlist of floats.
        • \n
        • y (list):\nlist of Obs.
        • \n
        • func (object):\nfit function, has to be of the form

          \n\n
          def func(a, x):\n   y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n   return y\n
          \n\n

          For multiple x values func can be of the form

          \n\n
          def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
          \n\n

          It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work

        • \n
        • priors (list, optional):\npriors has to be a list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
        • \n
        • silent (bool, optional):\nIf true all output to the console is omitted (default False).
        • \n
        • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\n non-linear fits with many parameters.
        • \n
        • method (str):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
        • \n
        • resplot (bool):\nIf true, a plot which displays fit, data and residuals is generated (default False).
        • \n
        • qqplot (bool):\nIf true, a quantile-quantile plot of the fit result is generated (default False).
        • \n
        • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
        • \n
        • correlated_fit (bool):\nIf true, use the full correlation matrix in the definition of the chisquare\n(only works for prior==None and when no method is given, at the moment).
        • \n
        • const_par (list, optional):\nList of N Obs that are used to constrain the last N fit parameters of func.
        • \n
        \n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "

        Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

        \n\n
        Parameters
        \n\n
          \n
        • x (list):\nlist of Obs, or a tuple of lists of Obs
        • \n
        • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
        • \n
        • func (object):\nfunc has to be of the form

          \n\n
          def func(a, x):\n   y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n   return y\n
          \n\n

          For multiple x values func can be of the form

          \n\n
          def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
          \n\n

          It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

        • \n
        • silent (bool, optional):\nIf true all output to the console is omitted (default False).
        • \n
        • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
        • \n
        • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
        • \n
        • const_par (list, optional):\nList of N Obs that are used to constrain the last N fit parameters of func.
        • \n
        • Based on the orthogonal distance regression module of scipy
        • \n
        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.prior_fit": {"fullname": "pyerrors.fits.prior_fit", "modulename": "pyerrors.fits", "qualname": "prior_fit", "type": "function", "doc": "

        \n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.standard_fit": {"fullname": "pyerrors.fits.standard_fit", "modulename": "pyerrors.fits", "qualname": "standard_fit", "type": "function", "doc": "

        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.odr_fit": {"fullname": "pyerrors.fits.odr_fit", "modulename": "pyerrors.fits", "qualname": "odr_fit", "type": "function", "doc": "

        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "

        Performs a linear fit to y = n + m * x and returns two Obs n, m.

        \n\n

        y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.

        \n", "parameters": ["x", "y", "kwargs"], "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "

        Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.

        \n", "parameters": ["x", "o_y", "func", "p"], "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "

        Generates a plot which compares the fit to the data and displays the corresponding residuals

        \n", "parameters": ["x", "y", "func", "fit_res"], "funcdef": "def"}, "pyerrors.fits.covariance_matrix": {"fullname": "pyerrors.fits.covariance_matrix", "modulename": "pyerrors.fits", "qualname": "covariance_matrix", "type": "function", "doc": "

        Returns the covariance matrix of y.

        \n", "parameters": ["y"], "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "

        Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.

        \n", "parameters": ["x", "func", "beta"], "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "

        Performs a Kolmogorov\u2013Smirnov test for the Q-values of all fit object.

        \n\n

        If no list is given all Obs in memory are used.

        \n\n

        Disclaimer: The determination of the individual Q-values as well as this function have not been tested yet.

        \n", "parameters": ["obs"], "funcdef": "def"}, "pyerrors.fits.fit_general": {"fullname": "pyerrors.fits.fit_general", "modulename": "pyerrors.fits", "qualname": "fit_general", "type": "function", "doc": "

        Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

        \n\n

        Plausibility of the results should be checked. To control the numerical differentiation\nthe kwargs of numdifftools.step_generators.MaxStepGenerator can be used.

        \n\n

        func has to be of the form

        \n\n

        def func(a, x):\n y = a[0] + a[1] * x + a[2] * np.sinh(x)\n return y

        \n\n

        y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.

        \n\n
        Keyword arguments
        \n\n

        silent -- If true all output to the console is omitted (default False).\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear fits\n with many parameters.

        \n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "

        Extract generic MCMC data from a bdio file

        \n\n

        read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        \n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "

        Write Obs to a bdio file according to ADerrors conventions

        \n\n

        read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        \n", "parameters": ["obs_list", "file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "

        Extract mesons data from a bdio file and return it as a dictionary

        \n\n

        The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

        \n\n

        read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        • stop -- stops reading at given configuration number (default None)
        • \n
        • alternative_ensemble_name -- Manually overwrite ensemble name
        • \n
        \n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "

        Extract dSdm data from a bdio file and return it as a dictionary

        \n\n

        The dictionary can be accessed with a tuple consisting of (type, kappa)

        \n\n

        read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

        \n\n

        all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

        \n\n
        Parameters
        \n\n
          \n
        • file_path -- path to the bdio file
        • \n
        • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
        • \n
        • stop -- stops reading at given configuration number (default None)
        • \n
        \n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "

        Read hadrons meson hdf5 file and extract the meson labeled 'meson'

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
        • \n
        • tree (str):\nLabel of the upmost directory in the hdf5 file, default 'meson'\nfor outputs of the Meson module. Can be altered to read input\nfrom other modules with similar structures.
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "meson", "tree", "idl"], "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "type": "class", "doc": "

        ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

        \n\n

        An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

        \n\n

        Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

        \n\n

        For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

        \n\n
        Parameters
        \n\n
          \n
        • (for the __new__ method; see Notes below)
        • \n
        • shape (tuple of ints):\nShape of created array.
        • \n
        • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
        • \n
        • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
        • \n
        • offset (int, optional):\nOffset of array data in buffer.
        • \n
        • strides (tuple of ints, optional):\nStrides of data in memory.
        • \n
        • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
        • \n
        \n\n
        Attributes
        \n\n
          \n
        • T (ndarray):\nTranspose of the array.
        • \n
        • data (buffer):\nThe array's elements, in memory.
        • \n
        • dtype (dtype object):\nDescribes the format of the elements in the array.
        • \n
        • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
        • \n
        • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
        • \n
        • imag (ndarray):\nImaginary part of the array.
        • \n
        • real (ndarray):\nReal part of the array.
        • \n
        • size (int):\nNumber of elements in the array.
        • \n
        • itemsize (int):\nThe memory use of each array element in bytes.
        • \n
        • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
        • \n
        • ndim (int):\nThe array's number of dimensions.
        • \n
        • shape (tuple of ints):\nShape of the array.
        • \n
        • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
        • \n
        • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
        • \n
        • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
        • \n
        \n\n
        See Also
        \n\n

        array: Construct an array.
        \nzeros: Create an array, each element of which is zero.
        \nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
        \ndtype: Create a data-type.
        \nnumpy.typing.NDArray: A :term:generic <generic type> version\nof ndarray.

        \n\n
        Notes
        \n\n

        There are two modes of creating an array using __new__:

        \n\n
          \n
        1. If buffer is None, then only shape, dtype, and order\nare used.
        2. \n
        3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
        4. \n
        \n\n

        No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

        \n\n
        Examples
        \n\n

        These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

        \n\n

        First mode, buffer is None:

        \n\n
        >>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
        \n\n

        Second mode:

        \n\n
        >>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
        \n"}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"fullname": "pyerrors.input.hadrons.Npr_matrix.__init__", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "

        \n", "parameters": [], "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": "

        Gamma_5 hermitean conjugate

        \n\n

        Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

        \n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "

        Read hadrons ExternalLeg hdf5 file and output an array of CObs

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "idl"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "

        Read hadrons Bilinear hdf5 file and output an array of CObs

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "idl"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "type": "function", "doc": "

        Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the files to read
        • \n
        • filestem (str):\nnamestem of the files to read
        • \n
        • ens_id (str):\nname of the ensemble, required for internal bookkeeping
        • \n
        • idl (range):\nIf specified only configurations in the given range are read in.
        • \n
        • vertices (list):\nVertex functions to be extracted.
        • \n
        \n", "parameters": ["path", "filestem", "ens_id", "idl", "vertices"], "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "type": "function", "doc": "

        Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

        \n\n
        Parameters
        \n\n
          \n
        • ol (list):\nList of objects that will be exported. At the moments, these objects can be\neither of: Obs, list, numpy.ndarray.\nAll Obs inside a structure have to be defined on the same set of configurations.
        • \n
        • description (str):\nOptional string that describes the contents of the json file.
        • \n
        • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
        • \n
        \n", "parameters": ["ol", "description", "indent"], "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "type": "function", "doc": "

        Export a list of Obs or structures containing Obs to a .json(.gz) file

        \n\n
        Parameters
        \n\n
          \n
        • ol (list):\nList of objects that will be exported. At the moments, these objects can be\neither of: Obs, list, numpy.ndarray.\nAll Obs inside a structure have to be defined on the same set of configurations.
        • \n
        • fname (str):\nFilename of the output file.
        • \n
        • description (str):\nOptional string that describes the contents of the json file.
        • \n
        • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
        • \n
        • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
        • \n
        \n", "parameters": ["ol", "fname", "description", "indent", "gz"], "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "type": "function", "doc": "

        Import a list of Obs or structures containing Obs from a .json.gz file.

        \n\n

        The following structures are supported: Obs, list, numpy.ndarray\nIf the list contains only one element, it is unpacked from the list.

        \n\n
        Parameters
        \n\n
          \n
        • fname (str):\nFilename of the input file.
        • \n
        • verbose (bool):\nPrint additional information that was written to the file.
        • \n
        • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
        • \n
        • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
        • \n
        \n", "parameters": ["fname", "verbose", "gz", "full_output"], "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "

        Read pbp format from given folder structure. Returns a list of length nrw

        \n\n
        Keyword arguments
        \n\n

        r_start -- list which contains the first config to be read for each replicum\nr_stop -- list which contains the last config to be read for each replicum

        \n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "

        Read rwms format from given folder structure. Returns a list of length nrw

        \n\n
        Parameters
        \n\n
          \n
        • version (str):\nversion of openQCD, default 2.0
        • \n
        • r_start (list):\nlist which contains the first config to be read for each replicum
        • \n
        • r_stop (list):\nlist which contains the last config to be read for each replicum
        • \n
        • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
        • \n
        \n", "parameters": ["path", "prefix", "version", "names", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "

        Extract t0 from given .ms.dat files. Returns t0 as Obs.

        \n\n

        It is assumed that all boundary effects have sufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - 0.3 is fitted with a linear function\nfrom which the exact root is extracted.\nOnly works with openQCD v 1.2.

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\nPath to .ms.dat files
        • \n
        • prefix (str):\nEnsemble prefix
        • \n
        • dtr_read (int):\nDetermines how many trajectories should be skipped when reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
        • \n
        • xmin (int):\nFirst timeslice where the boundary effects have sufficiently decayed.
        • \n
        • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
        • \n
        • fit_range (int):\nNumber of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
        • \n
        • r_start (list):\nlist which contains the first config to be read for each replicum.
        • \n
        • r_stop (list):\nlist which contains the last config to be read for each replicum.
        • \n
        • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
        • \n
        \n", "parameters": ["path", "prefix", "dtr_read", "xmin", "spatial_extent", "fit_range", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "

        Read sfcf C format from given folder structure.

        \n\n
        Parameters
        \n\n
          \n
        • im -- if True, read imaginary instead of real part of the correlation function.
        • \n
        • single -- if True, read a boundary-to-boundary correlation function with a single value
        • \n
        • b2b -- if True, read a time-dependent boundary-to-boundary correlation function
        • \n
        • names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
        • \n
        \n", "parameters": ["path", "prefix", "name", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_c": {"fullname": "pyerrors.input.sfcf.read_sfcf_c", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_c", "type": "function", "doc": "

        Read sfcf c format from given folder structure.

        \n\n
        Parameters
        \n\n
          \n
        • quarks -- Label of the quarks used in the sfcf input file
        • \n
        • noffset -- Offset of the source (only relevant when wavefunctions are used)
        • \n
        • wf -- ID of wave function
        • \n
        • wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
        • \n
        • im -- if True, read imaginary instead of real part of the correlation function.
        • \n
        • b2b -- if True, read a time-dependent boundary-to-boundary correlation function
        • \n
        • names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
        • \n
        • ens_name (str):\nreplaces the name of the ensemble
        • \n
        \n", "parameters": ["path", "prefix", "name", "quarks", "noffset", "wf", "wf2", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_qtop": {"fullname": "pyerrors.input.sfcf.read_qtop", "modulename": "pyerrors.input.sfcf", "qualname": "read_qtop", "type": "function", "doc": "

        Read qtop format from given folder structure.

        \n\n
        Parameters
        \n\n
          \n
        • target -- specifies the topological sector to be reweighted to (default 0)
        • \n
        • full -- if true read the charge instead of the reweighting factor.
        • \n
        \n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.linalg.derived_array": {"fullname": "pyerrors.linalg.derived_array", "modulename": "pyerrors.linalg", "qualname": "derived_array", "type": "function", "doc": "

        Construct a derived Obs for a matrix valued function according to func(data, **kwargs) using automatic differentiation.

        \n\n
        Parameters
        \n\n
          \n
        • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
        • \n
        • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
        • \n
        • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
        • \n
        \n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "

        Matrix multiply all operands.

        \n\n
        Parameters
        \n\n
          \n
        • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
        • \n
        • This implementation is faster compared to standard multiplication via the @ operator.
        • \n
        \n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "type": "function", "doc": "

        Matrix multiply both operands making use of the jackknife approximation.

        \n\n
        Parameters
        \n\n
          \n
        • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
        • \n
        • For large matrices this is considerably faster compared to matmul.
        • \n
        \n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "type": "function", "doc": "

        Wrapper for numpy.einsum

        \n\n
        Parameters
        \n\n
          \n
        • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
        • \n
        • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
        • \n
        \n", "parameters": ["subscripts", "operands"], "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "

        Inverse of Obs or CObs valued matrices.

        \n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "

        Cholesky decomposition of Obs or CObs valued matrices.

        \n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.scalar_mat_op": {"fullname": "pyerrors.linalg.scalar_mat_op", "modulename": "pyerrors.linalg", "qualname": "scalar_mat_op", "type": "function", "doc": "

        Computes the matrix to scalar operation op to a given matrix of Obs.

        \n", "parameters": ["op", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "

        Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "

        Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "

        Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "

        Computes the singular value decomposition of a matrix of Obs.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.slogdet": {"fullname": "pyerrors.linalg.slogdet", "modulename": "pyerrors.linalg", "qualname": "slogdet", "type": "function", "doc": "

        Computes the determinant of a matrix of Obs via np.linalg.slogdet.

        \n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.grad_eig": {"fullname": "pyerrors.linalg.grad_eig", "modulename": "pyerrors.linalg", "qualname": "grad_eig", "type": "function", "doc": "

        Gradient of a general square (complex valued) matrix

        \n", "parameters": ["ans", "x"], "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "type": "function", "doc": "

        Dump object into pickle file.

        \n\n
        Parameters
        \n\n
          \n
        • obj (object):\nobject to be saved in the pickle file
        • \n
        • name (str):\nname of the file
        • \n
        • path (str):\nspecifies a custom path for the file (default '.')
        • \n
        \n", "parameters": ["obj", "name", "kwargs"], "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "type": "function", "doc": "

        Load object from pickle file.

        \n\n
        Parameters
        \n\n
          \n
        • path (str):\npath to the file
        • \n
        \n", "parameters": ["path"], "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "

        Generate observables with given covariance and autocorrelation times.

        \n\n
        Parameters
        \n\n
          \n
        • means (list):\nlist containing the mean value of each observable.
        • \n
        • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
        • \n
        • name (str):\nensemble name for the data to be geneated.
        • \n
        • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
        • \n
        • samples (int):\nnumber of samples to be generated for each observable.
        • \n
        \n", "parameters": ["means", "cov", "name", "tau", "samples"], "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "

        Matrix pencil method to extract k energy levels from data

        \n\n

        Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

        \n\n
        Parameters
        \n\n
          \n
        • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
        • \n
        • k (int):\nNumber of states to extract (default 1).
        • \n
        • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
        • \n
        \n", "parameters": ["corrs", "k", "p", "kwargs"], "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "

        Class for a general observable.

        \n\n

        Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

        \n\n
        Attributes
        \n\n
          \n
        • S_global (float):\nStandard value for S (default 2.0)
        • \n
        • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
        • \n
        • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
        • \n
        • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
        • \n
        • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
        • \n
        • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
        • \n
        \n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "

        Initialize Obs object.

        \n\n
        Parameters
        \n\n
          \n
        • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
        • \n
        • names (list):\nlist of strings labeling the individual samples
        • \n
        • idl (list, optional):\nlist of ranges or lists on which the samples are defined
        • \n
        • means (list, optional):\nlist of mean values for the case that the mean values were\nalready subtracted from the samples
        • \n
        \n", "parameters": ["self", "samples", "names", "idl", "means", "covobs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "

        Estimate the error and related properties of the Obs.

        \n\n
        Parameters
        \n\n
          \n
        • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
        • \n
        • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
        • \n
        • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
        • \n
        • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
        • \n
        \n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "

        Output detailed properties of the Obs.

        \n\n
        Parameters
        \n\n
          \n
        • ens_content (bool):\nprint details about the ensembles and replica if true.
        • \n
        \n", "parameters": ["self", "ens_content"], "funcdef": "def"}, "pyerrors.obs.Obs.print": {"fullname": "pyerrors.obs.Obs.print", "modulename": "pyerrors.obs", "qualname": "Obs.print", "type": "function", "doc": "

        \n", "parameters": ["self", "level"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "

        Checks whether the observable is zero within 'sigma' standard errors.

        \n\n
        Parameters
        \n\n
          \n
        • sigma (int):\nNumber of standard errors used for the check.
        • \n
        • Works only properly when the gamma method was run.
        • \n
        \n", "parameters": ["self", "sigma"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "

        Checks whether the observable is zero within a given tolerance.

        \n\n
        Parameters
        \n\n
          \n
        • rtol (float):\nRelative tolerance (for details see numpy documentation).
        • \n
        • atol (float):\nAbsolute tolerance (for details see numpy documentation).
        • \n
        \n", "parameters": ["self", "rtol", "atol"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "

        Plot integrated autocorrelation time for each ensemble.

        \n\n
        Parameters
        \n\n
          \n
        • save (str):\nsaves the figure to a file named 'save' if.
        • \n
        \n", "parameters": ["self", "save"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "

        Plot normalized autocorrelation function time for each ensemble.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "

        Plot replica distribution for each ensemble with more than one replicum.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "

        Plot derived Monte Carlo history for each ensemble

        \n\n
        Parameters
        \n\n
          \n
        • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
        • \n
        \n", "parameters": ["self", "expand"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "

        Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "

        Dump the Obs to a pickle file 'name'.

        \n\n
        Parameters
        \n\n
          \n
        • name (str):\nname of the file to be saved.
        • \n
        • path (str):\nspecifies a custom path for the file (default '.')
        • \n
        \n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "type": "function", "doc": "

        Export jackknife samples from the Obs

        \n\n
        Returns
        \n\n
          \n
        • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
        • \n
        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinc": {"fullname": "pyerrors.obs.Obs.sinc", "modulename": "pyerrors.obs", "qualname": "Obs.sinc", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "

        Class for a complex valued observable.

        \n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "

        \n", "parameters": ["self", "real", "imag"], "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "

        \n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "

        Executes the gamma_method for the real and the imaginary part.

        \n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "

        Checks whether both real and imaginary part are zero within machine precision.

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "

        \n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "

        Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

        \n\n
        Parameters
        \n\n
          \n
        • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
        • \n
        • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
        • \n
        • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
        • \n
        • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
        • \n
        \n\n
        Notes
        \n\n

        For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

        \n\n

        new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

        \n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "

        Reweight a list of observables.

        \n\n
        Parameters
        \n\n
          \n
        • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
        • \n
        • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
        • \n
        • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
        • \n
        \n", "parameters": ["weight", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "

        Correlate two observables.

        \n\n
        Parameters
        \n\n
          \n
        • obs_a (Obs):\nFirst observable
        • \n
        • obs_b (Obs):\nSecond observable
        • \n
        • Keep in mind to only correlate primary observables which have not been reweighted
        • \n
        • yet. The reweighting has to be applied after correlating the observables.
        • \n
        • Currently only works if ensembles are identical. This is not really necessary.
        • \n
        \n", "parameters": ["obs_a", "obs_b"], "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "

        Calculates the covariance of two observables.

        \n\n

        covariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.

        \n\n

        If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

        \n\n
        Parameters
        \n\n
          \n
        • obs1 (Obs):\nFirst Obs
        • \n
        • obs2 (Obs):\nSecond Obs
        • \n
        • correlation (bool):\nif true the correlation instead of the covariance is\nreturned (default False)
        • \n
        \n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance2": {"fullname": "pyerrors.obs.covariance2", "modulename": "pyerrors.obs", "qualname": "covariance2", "type": "function", "doc": "

        Alternative implementation of the covariance of two observables.

        \n\n

        covariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.

        \n\n

        If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

        \n\n
        Keyword arguments
        \n\n

        correlation -- if true the correlation instead of the covariance is\n returned (default False)

        \n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance3": {"fullname": "pyerrors.obs.covariance3", "modulename": "pyerrors.obs", "qualname": "covariance3", "type": "function", "doc": "

        Another alternative implementation of the covariance of two observables.

        \n\n

        covariance2(obs, obs) is equal to obs.dvalue ** 2\nCurrently only works if ensembles are identical.\nThe gamma method has to be applied first to both observables.

        \n\n

        If abs(covariance2(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

        \n\n
        Keyword arguments
        \n\n

        correlation -- if true the correlation instead of the covariance is\n returned (default False)\nplot -- if true, the integrated autocorrelation time for each ensemble is\n plotted.

        \n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.pseudo_Obs": {"fullname": "pyerrors.obs.pseudo_Obs", "modulename": "pyerrors.obs", "qualname": "pseudo_Obs", "type": "function", "doc": "

        Generate a pseudo Obs with given value, dvalue and name

        \n\n
        Parameters
        \n\n
          \n
        • value (float):\ncentral value of the Obs to be generated.
        • \n
        • dvalue (float):\nerror of the Obs to be generated.
        • \n
        • name (str):\nname of the ensemble for which the Obs is to be generated.
        • \n
        • samples (int):\nnumber of samples for the Obs (default 1000).
        • \n
        \n", "parameters": ["value", "dvalue", "name", "samples"], "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "type": "function", "doc": "

        Imports jackknife samples and returns an Obs

        \n\n
        Parameters
        \n\n
          \n
        • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
        • \n
        • name (str):\nname of the ensemble the samples are defined on.
        • \n
        \n", "parameters": ["jacks", "name", "idl"], "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "

        Combine all observables in list_of_obs into one new observable

        \n\n
        Parameters
        \n\n
          \n
        • list_of_obs (list):\nlist of the Obs object to be combined
        • \n
        • It is not possible to combine obs which are based on the same replicum
        • \n
        \n", "parameters": ["list_of_obs"], "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "type": "function", "doc": "

        Create an Obs based on mean(s) and a covariance matrix

        \n\n
        Parameters
        \n\n
          \n
        • mean (list of floats or float):\nN mean value(s) of the new Obs
        • \n
        • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
        • \n
        • name (str):\nidentifier for the covariance matrix
        • \n
        • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
        • \n
        \n", "parameters": ["means", "cov", "name", "grad"], "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "qualname": "", "type": "module", "doc": "

        \n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "

        Finds the root of the function func(x, d) where d is an Obs.

        \n\n
        Parameters
        \n\n
          \n
        • d (Obs):\nObs passed to the function.
        • \n
        • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:\npython\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
        • \n
        • guess (float):\nInitial guess for the minimization.
        • \n
        \n\n
        Returns
        \n\n
          \n
        • Obs: Obs valued root of the function.
        • \n
        \n", "parameters": ["d", "func", "guess", "kwargs"], "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "qualname": "", "type": "module", "doc": "

        \n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "doc": 1044}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "doc": 51}, "pyerrors.correlators.Corr.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sum": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.smearing": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.smearing_symmetric": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "doc": 19}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "doc": 28}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.correlators.Corr.m_eff": {"qualname": 2, "fullname": 4, "doc": 68}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "doc": 32}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "doc": 34}, "pyerrors.correlators.Corr.set_prange": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "doc": 56}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "doc": 9}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.covobs.Covobs.__init__": {"qualname": 2, "fullname": 4, "doc": 45}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.dirac.Grid_gamma": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.fits.Fit_result": {"qualname": 1, "fullname": 3, "doc": 13}, "pyerrors.fits.Fit_result.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.fits.least_squares": {"qualname": 1, "fullname": 3, "doc": 203}, "pyerrors.fits.total_least_squares": {"qualname": 1, "fullname": 3, "doc": 133}, "pyerrors.fits.prior_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.standard_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.odr_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.fit_lin": {"qualname": 1, "fullname": 3, "doc": 33}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.fits.residual_plot": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.fits.covariance_matrix": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.fits.error_band": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.fits.ks_test": {"qualname": 1, "fullname": 3, "doc": 20}, "pyerrors.fits.fit_general": {"qualname": 1, "fullname": 3, "doc": 79}, "pyerrors.input": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 1, "fullname": 4, "doc": 47}, "pyerrors.input.bdio.read_mesons": {"qualname": 1, "fullname": 4, "doc": 68}, "pyerrors.input.bdio.read_dSdm": {"qualname": 1, "fullname": 4, "doc": 61}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 1, "fullname": 4, "doc": 66}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 1, "fullname": 4, "doc": 425}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"qualname": 2, "fullname": 5, "doc": 0}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 2, "fullname": 5, "doc": 12}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 1, "fullname": 4, "doc": 33}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 1, "fullname": 4, "doc": 33}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 1, "fullname": 4, "doc": 38}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.json.create_json_string": {"qualname": 1, "fullname": 4, "doc": 51}, "pyerrors.input.json.dump_to_json": {"qualname": 1, "fullname": 4, "doc": 64}, "pyerrors.input.json.load_json": {"qualname": 1, "fullname": 4, "doc": 57}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.misc.read_pbp": {"qualname": 1, "fullname": 4, "doc": 28}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.openQCD.read_rwms": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.openQCD.extract_t0": {"qualname": 1, "fullname": 4, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 1, "fullname": 4, "doc": 41}, "pyerrors.input.sfcf.read_sfcf_c": {"qualname": 1, "fullname": 4, "doc": 63}, "pyerrors.input.sfcf.read_qtop": {"qualname": 1, "fullname": 4, "doc": 21}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.linalg.derived_array": {"qualname": 1, "fullname": 3, "doc": 56}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "doc": 23}, "pyerrors.linalg.jack_matmul": {"qualname": 1, "fullname": 3, "doc": 27}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "doc": 24}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.scalar_mat_op": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "doc": 11}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.slogdet": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.grad_eig": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.misc.dump_object": {"qualname": 1, "fullname": 3, "doc": 22}, "pyerrors.misc.load_object": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.misc.gen_correlated_data": {"qualname": 1, "fullname": 3, "doc": 43}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 1, "fullname": 3, "doc": 75}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "doc": 107}, "pyerrors.obs.Obs.__init__": {"qualname": 2, "fullname": 4, "doc": 40}, "pyerrors.obs.Obs.S_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.filter_eps": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.r_values": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cov_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.mc_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_content": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 66}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.obs.Obs.is_zero": {"qualname": 2, "fullname": 4, "doc": 24}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 14}, "pyerrors.obs.Obs.plot_rho": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 2, "fullname": 4, "doc": 8}, "pyerrors.obs.Obs.plot_history": {"qualname": 2, "fullname": 4, "doc": 19}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 2, "fullname": 4, "doc": 54}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinc": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_drho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_rho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_merged": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.CObs.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.obs.CObs.is_zero": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.derived_observable": {"qualname": 1, "fullname": 3, "doc": 93}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "doc": 38}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "doc": 52}, "pyerrors.obs.covariance2": {"qualname": 1, "fullname": 3, "doc": 45}, "pyerrors.obs.covariance3": {"qualname": 1, "fullname": 3, "doc": 58}, "pyerrors.obs.pseudo_Obs": {"qualname": 1, "fullname": 3, "doc": 32}, "pyerrors.obs.import_jackknife": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.merge_obs": {"qualname": 1, "fullname": 3, "doc": 19}, "pyerrors.obs.cov_Obs": {"qualname": 1, "fullname": 3, "doc": 42}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.roots.find_root": {"qualname": 1, "fullname": 3, "doc": 49}, "pyerrors.version": {"qualname": 0, "fullname": 2, "doc": 0}}, "length": 201, "save": true}, "index": {"qualname": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.cov_names": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 66}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 201}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 44}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.cov_names": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 17, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 14}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.print": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinc": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 85}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 27}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}}, "df": 12, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 2}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}}, "df": 12, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "2": {"0": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "(": {"4": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {}, "df": 0, "(": {"2": {"3": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "6": {"7": {"4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "(": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "8": {"1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 1, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 4.898979485566356}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 60}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 13}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "=": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 10, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 10}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}, "p": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 8}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 21, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 9}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 10}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 18}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 3, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 11}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 22, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.covariance2": {"tf": 2}, "pyerrors.obs.covariance3": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 7, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 5}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1, "+": {"1": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 20}, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 7, "(": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}}, "df": 2, "_": {"0": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "y": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"1": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 6}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 7, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}, "=": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 4}, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 23}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1, "=": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance3": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "b": {"2": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 15}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3}}, "df": 1, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8, "_": {"5": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 3}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 2}}, "df": 11}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 25}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "z": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 18, "'": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "(": {"docs": {}, "df": 0, "[": {"2": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "[": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 5}}, "z": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 3}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}}, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 1}}, "[": {"0": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.linalg.derived_array": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 29, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 8}}}, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 12}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 21, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}, "x": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 9}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 16}}}}, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "a": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 5, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 14}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 3, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "x": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 25, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 5}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 9}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 6}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "=": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 21}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "=": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 4}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1.7320508075688772}}, "df": 1}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 5}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 18}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 15}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 19, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 10, "(": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}, "x": {"0": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 10, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 11, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}, "_": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 8}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.obs.Obs": {"tf": 2}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 8}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}}, "df": 12, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 11}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 2}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 25}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 5}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 3}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 8}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "b": {"docs": {"pyerrors": {"tf": 6.48074069840786}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 46, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}}}}, "s": {"1": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}, "2": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 7}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 15}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "_": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 9, "c": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 12}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "(": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}, "v": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 32, "e": {"docs": {}, "df": 0, "(": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "c": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.6457513110645907}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer", "stopWordFilter", "stemmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.