mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-07-01 17:29:27 +02:00
better docstrings (#144)
* first example of returns statement in docstring * added a some return statements for pandas API * last return statements in pandas input * added returns to bdio docstrings * few returns statements added to docstring * finished docstrings for hadrons submodule * also finished docstrings for json submodule * finished misc submodule * added returns in docstrings in openqQCD * made some cosmetic chanes to dostrings * added return nad return statement in docstring * linting * Improved docstrings of mpm, fits, roots, misc to have return statements returns added for misc.py returns added for mpm.py reutrns added for fits.py * linting... * Some polishing of docstrings
This commit is contained in:
parent
b9cdebd442
commit
26447d658c
14 changed files with 276 additions and 6 deletions
|
@ -129,6 +129,11 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
If True, a quantile-quantile plot of the fit result is generated (default False).
|
||||
num_grad : bool
|
||||
Use numerical differentation instead of automatic differentiation to perform the error propagation (default False).
|
||||
|
||||
Returns
|
||||
-------
|
||||
output : Fit_result
|
||||
Parameters and information on the fitted result.
|
||||
'''
|
||||
if priors is not None:
|
||||
return _prior_fit(x, y, func, priors, silent=silent, **kwargs)
|
||||
|
@ -180,7 +185,12 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
|
|||
|
||||
Notes
|
||||
-----
|
||||
Based on the orthogonal distance regression module of scipy
|
||||
Based on the orthogonal distance regression module of scipy.
|
||||
|
||||
Returns
|
||||
-------
|
||||
output : Fit_result
|
||||
Parameters and information on the fitted result.
|
||||
'''
|
||||
|
||||
output = Fit_result()
|
||||
|
@ -668,6 +678,11 @@ def fit_lin(x, y, **kwargs):
|
|||
a list of Obs, where the dvalues of the Obs are used as xerror for the fit.
|
||||
y : list
|
||||
List of Obs, the dvalues of the Obs are used as yerror for the fit.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fit_parameters : list[Obs]
|
||||
LIist of fitted observables.
|
||||
"""
|
||||
|
||||
def f(a, x):
|
||||
|
@ -687,6 +702,10 @@ def fit_lin(x, y, **kwargs):
|
|||
def qqplot(x, o_y, func, p):
|
||||
"""Generates a quantile-quantile plot of the fit result which can be used to
|
||||
check if the residuals of the fit are gaussian distributed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
|
||||
residuals = []
|
||||
|
@ -711,7 +730,12 @@ def qqplot(x, o_y, func, p):
|
|||
|
||||
|
||||
def residual_plot(x, y, func, fit_res):
|
||||
""" Generates a plot which compares the fit to the data and displays the corresponding residuals"""
|
||||
"""Generates a plot which compares the fit to the data and displays the corresponding residuals
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
sorted_x = sorted(x)
|
||||
xstart = sorted_x[0] - 0.5 * (sorted_x[1] - sorted_x[0])
|
||||
xstop = sorted_x[-1] + 0.5 * (sorted_x[-1] - sorted_x[-2])
|
||||
|
@ -741,7 +765,13 @@ def residual_plot(x, y, func, fit_res):
|
|||
|
||||
|
||||
def error_band(x, func, beta):
|
||||
"""Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""
|
||||
"""Calculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.
|
||||
|
||||
Returns
|
||||
-------
|
||||
err : np.array(Obs)
|
||||
Error band for an array of sample values x
|
||||
"""
|
||||
cov = covariance(beta)
|
||||
if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps):
|
||||
warnings.warn("Covariance matrix is not symmetric within floating point precision", RuntimeWarning)
|
||||
|
@ -765,6 +795,10 @@ def ks_test(objects=None):
|
|||
----------
|
||||
objects : list
|
||||
List of fit results to include in the analysis (optional).
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
|
||||
if objects is None:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue