From 0fc9f78f8c746a1c4a20cb0aa039a76d7fabc1c1 Mon Sep 17 00:00:00 2001
From: fjosw
Date: Tue, 15 Feb 2022 13:53:46 +0000
Subject: [PATCH] Documentation updated
---
docs/pyerrors/correlators.html | 18 ------------------
1 file changed, 18 deletions(-)
diff --git a/docs/pyerrors/correlators.html b/docs/pyerrors/correlators.html
index ae4eab15..ed3542f9 100644
--- a/docs/pyerrors/correlators.html
+++ b/docs/pyerrors/correlators.html
@@ -306,8 +306,6 @@
self.T = len(self.content)
self.prange = prange
- self.gamma_method()
-
def __getitem__(self, idx):
"""Return the content of timeslice idx"""
if self.content[idx] is None:
@@ -348,8 +346,6 @@
if self.N == 1:
raise Exception("Trying to project a Corr, that already has N=1.")
- self.gamma_method()
-
if vector_l is None:
vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
elif(vector_r is None):
@@ -851,7 +847,6 @@
xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
result = least_squares(xs, ys, function, silent=silent, **kwargs)
- result.gamma_method()
return result
def plateau(self, plateau_range=None, method="fit"):
@@ -882,7 +877,6 @@
return self.fit(const_func, plateau_range)[0]
elif method in ["avg", "average", "mean"]:
returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
- returnvalue.gamma_method()
return returnvalue
else:
@@ -1397,8 +1391,6 @@
self.T = len(self.content)
self.prange = prange
- self.gamma_method()
-
def __getitem__(self, idx):
"""Return the content of timeslice idx"""
if self.content[idx] is None:
@@ -1439,8 +1431,6 @@
if self.N == 1:
raise Exception("Trying to project a Corr, that already has N=1.")
- self.gamma_method()
-
if vector_l is None:
vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
elif(vector_r is None):
@@ -1942,7 +1932,6 @@
xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
result = least_squares(xs, ys, function, silent=silent, **kwargs)
- result.gamma_method()
return result
def plateau(self, plateau_range=None, method="fit"):
@@ -1973,7 +1962,6 @@
return self.fit(const_func, plateau_range)[0]
elif method in ["avg", "average", "mean"]:
returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
- returnvalue.gamma_method()
return returnvalue
else:
@@ -2436,8 +2424,6 @@ matrix at every timeslice. Other dependency (eg. spatial) are not supported.
self.content = [None] * padding[0] + self.content + [None] * padding[1]
self.T = len(self.content)
self.prange = prange
-
- self.gamma_method()
@@ -2520,8 +2506,6 @@ region indentified for this correlator.
if self.N == 1:
raise Exception("Trying to project a Corr, that already has N=1.")
- self.gamma_method()
-
if vector_l is None:
vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
elif(vector_r is None):
@@ -3467,7 +3451,6 @@ guess for the root finder, only relevant for the root variant
xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
result = least_squares(xs, ys, function, silent=silent, **kwargs)
- result.gamma_method()
return result
@@ -3528,7 +3511,6 @@ Decides whether output is printed to the standard output.
return self.fit(const_func, plateau_range)[0]
elif method in ["avg", "average", "mean"]:
returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
- returnvalue.gamma_method()
return returnvalue
else: