From 0656fe942ffcc3e2694b59d29425d10c90a8cc44 Mon Sep 17 00:00:00 2001 From: fjosw Date: Fri, 26 Nov 2021 12:29:29 +0000 Subject: [PATCH] Documentation updated --- docs/pyerrors/fits.html | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/docs/pyerrors/fits.html b/docs/pyerrors/fits.html index 4e33e2d0..b950c818 100644 --- a/docs/pyerrors/fits.html +++ b/docs/pyerrors/fits.html @@ -417,7 +417,8 @@ result = [] for i in range(n_parms): - result.append(derived_observable(lambda x, **kwargs: x[0], [pseudo_Obs(out.beta[i], 0.0, y[0].names[0], y[0].shape[y[0].names[0]])] + list(x.ravel()) + list(y), man_grad=[0] + list(deriv_x[i]) + list(deriv_y[i]))) + result.append(derived_observable(lambda x, **kwargs: x[0], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i]))) + result[-1]._value = out.beta[i] output.fit_parameters = result + const_par @@ -534,7 +535,8 @@ result = [] for i in range(n_parms): - result.append(derived_observable(lambda x, **kwargs: x[0], [pseudo_Obs(params[i], 0.0, y[0].names[0], y[0].shape[y[0].names[0]])] + list(y) + list(loc_priors), man_grad=[0] + list(deriv[i]))) + result.append(derived_observable(lambda x, **kwargs: x[0], list(y) + list(loc_priors), man_grad=list(deriv[i]))) + result[-1]._value = params[i] output.fit_parameters = result output.chisquare = chisqfunc(np.asarray(params)) @@ -728,7 +730,8 @@ result = [] for i in range(n_parms): - result.append(derived_observable(lambda x, **kwargs: x[0], [pseudo_Obs(fit_result.x[i], 0.0, y[0].names[0], y[0].shape[y[0].names[0]])] + list(y), man_grad=[0] + list(deriv[i]))) + result.append(derived_observable(lambda x, **kwargs: x[0], list(y), man_grad=list(deriv[i]))) + result[-1]._value = fit_result.x[i] output.fit_parameters = result + const_par @@ -1451,7 +1454,8 @@ List of N Obs that are used to constrain the last N fit parameters of func. result = [] for i in range(n_parms): - result.append(derived_observable(lambda x, **kwargs: x[0], [pseudo_Obs(out.beta[i], 0.0, y[0].names[0], y[0].shape[y[0].names[0]])] + list(x.ravel()) + list(y), man_grad=[0] + list(deriv_x[i]) + list(deriv_y[i]))) + result.append(derived_observable(lambda x, **kwargs: x[0], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i]))) + result[-1]._value = out.beta[i] output.fit_parameters = result + const_par