pyerrors.correlators

View Source
import warnings
import numpy as np
import autograd.numpy as anp
import matplotlib.pyplot as plt
import scipy.linalg
from .obs import Obs, reweight, correlate, CObs
from .misc import dump_object, _assert_equal_properties
from .fits import least_squares
from .linalg import eigh, inv, cholesky
from .roots import find_root


class Corr:
    """The class for a correlator (time dependent sequence of pe.Obs).

    Everything, this class does, can be achieved using lists or arrays of Obs.
    But it is simply more convenient to have a dedicated object for correlators.
    One often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient
    to iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.

    The correlator can have two types of content: An Obs at every timeslice OR a GEVP
    smearing matrix at every timeslice. Other dependency (eg. spatial) are not supported.

    """

    def __init__(self, data_input, padding=[0, 0], prange=None):
        """ Initialize a Corr object.

        Parameters
        ----------
        data_input : list
            list of Obs or list of arrays of Obs.
        padding : list, optional
            List with two entries where the first labels the padding
            at the front of the correlator and the second the padding
            at the back.
        prange : list, optional
            List containing the first and last timeslice of the plateau
            region indentified for this correlator.
        """

        if not isinstance(data_input, list):
            raise TypeError('Corr__init__ expects a list of timeslices.')

        if all([(isinstance(item, Obs) or isinstance(item, CObs)) for item in data_input]):
            _assert_equal_properties(data_input)
            self.content = [np.asarray([item]) for item in data_input]
            self.N = 1

        elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
            self.content = data_input

            noNull = [a for a in self.content if not (a is None)]  # To check if the matrices are correct for all undefined elements
            self.N = noNull[0].shape[0]
            if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
                raise Exception("Smearing matrices are not NxN")
            if (not all([item.shape == noNull[0].shape for item in noNull])):
                raise Exception("Items in data_input are not of identical shape." + str(noNull))
        else:
            raise Exception("data_input contains item of wrong type")

        self.tag = None

        # An undefined timeslice is represented by the None object
        self.content = [None] * padding[0] + self.content + [None] * padding[1]
        self.T = len(self.content)

        self.prange = prange

        self.gamma_method()

    def __getitem__(self, idx):
        """Return the content of timeslice idx"""
        if self.content[idx] is None:
            return None
        elif len(self.content[idx]) == 1:
            return self.content[idx][0]
        else:
            return self.content[idx]

    @property
    def reweighted(self):
        bool_array = np.array([list(map(lambda x: x.reweighted, o)) for o in [x for x in self.content if x is not None]])
        if np.all(bool_array == 1):
            return True
        elif np.all(bool_array == 0):
            return False
        else:
            raise Exception("Reweighting status of correlator corrupted.")

    def gamma_method(self, **kwargs):
        """Apply the gamma method to the content of the Corr."""
        for item in self.content:
            if not(item is None):
                if self.N == 1:
                    item[0].gamma_method(**kwargs)
                else:
                    for i in range(self.N):
                        for j in range(self.N):
                            item[i, j].gamma_method(**kwargs)

    def projected(self, vector_l=None, vector_r=None, normalize=False):
        """We need to project the Correlator with a Vector to get a single value at each timeslice.

        The method can use one or two vectors.
        If two are specified it returns v1@G@v2 (the order might be very important.)
        By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
        """
        if self.N == 1:
            raise Exception("Trying to project a Corr, that already has N=1.")

        self.gamma_method()

        if vector_l is None:
            vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
        elif(vector_r is None):
            vector_r = vector_l
        if isinstance(vector_l, list) and not isinstance(vector_r, list):
            if len(vector_l) != self.T:
                raise Exception("Length of vector list must be equal to T")
            vector_r = [vector_r] * self.T
        if isinstance(vector_r, list) and not isinstance(vector_l, list):
            if len(vector_r) != self.T:
                raise Exception("Length of vector list must be equal to T")
            vector_l = [vector_l] * self.T

        if not isinstance(vector_l, list):
            if not vector_l.shape == vector_r.shape == (self.N,):
                raise Exception("Vectors are of wrong shape!")
            if normalize:
                vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
            # if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
                # print("Vectors are normalized before projection!")

            newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]

        else:
            # There are no checks here yet. There are so many possible scenarios, where this can go wrong.
            if normalize:
                for t in range(self.T):
                    vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])

            newcontent = [None if (self.content[t] is None or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
        return Corr(newcontent)

    def sum(self):
        return np.sqrt(self.N) * self.projected(np.ones(self.N))

    # For purposes of debugging and verification, one might want to see a single smearing level. smearing will return a Corr at the specified i,j. where both are integers 0<=i,j<N.
    def smearing(self, i, j):
        if self.N == 1:
            raise Exception("Trying to pick smearing from projected Corr")
        newcontent = [None if(item is None) else item[i, j] for item in self.content]
        return Corr(newcontent)

    def plottable(self):
        """Outputs the correlator in a plotable format.

        Outputs three lists containing the timeslice index, the value on each
        timeslice and the error on each timeslice.
        """
        if self.N != 1:
            raise Exception("Can only make Corr[N=1] plottable")  # We could also autoproject to the groundstate or expect vectors, but this is supposed to be a super simple function.
        x_list = [x for x in range(self.T) if not self.content[x] is None]
        y_list = [y[0].value for y in self.content if y is not None]
        y_err_list = [y[0].dvalue for y in self.content if y is not None]

        return x_list, y_list, y_err_list

    def symmetric(self):
        """ Symmetrize the correlator around x0=0."""
        if self.T % 2 != 0:
            raise Exception("Can not symmetrize odd T")

        if np.argmax(np.abs(self.content)) != 0:
            warnings.warn("Correlator does not seem to be symmetric around x0=0.", RuntimeWarning)

        newcontent = [self.content[0]]
        for t in range(1, self.T):
            if (self.content[t] is None) or (self.content[self.T - t] is None):
                newcontent.append(None)
            else:
                newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
        if(all([x is None for x in newcontent])):
            raise Exception("Corr could not be symmetrized: No redundant values")
        return Corr(newcontent, prange=self.prange)

    def anti_symmetric(self):
        """Anti-symmetrize the correlator around x0=0."""
        if self.T % 2 != 0:
            raise Exception("Can not symmetrize odd T")

        if not all([o.is_zero_within_error(3) for o in self.content[0]]):
            warnings.warn("Correlator does not seem to be anti-symmetric around x0=0.", RuntimeWarning)

        newcontent = [self.content[0]]
        for t in range(1, self.T):
            if (self.content[t] is None) or (self.content[self.T - t] is None):
                newcontent.append(None)
            else:
                newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
        if(all([x is None for x in newcontent])):
            raise Exception("Corr could not be symmetrized: No redundant values")
        return Corr(newcontent, prange=self.prange)

    def smearing_symmetric(self):
        """Symmetrizes the matrices and therefore make them positive definite."""
        if self.N > 1:
            transposed = [None if (G is None) else G.T for G in self.content]
            return 0.5 * (Corr(transposed) + self)
        if self.N == 1:
            raise Exception("Trying to symmetrize a smearing matrix, that already has N=1.")

    # There are two ways, the GEVP metod can be called.
    # 1. return_list=False will return a single eigenvector, normalized according to V*C(t_0)*V=1
    # 2. return_list=True  will return a new eigenvector for every timeslice. The time t_s is used to order the vectors according to. arXiv:2004.10472 [hep-lat]
    def GEVP(self, t0, ts, state=0, sorting="Eigenvalue", return_list=False):
        if not return_list:
            if (self.content[t0] is None) or (self.content[ts] is None):
                raise Exception("Corr not defined at t0/ts")
            G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
            for i in range(self.N):
                for j in range(self.N):
                    G0[i, j] = self.content[t0][i, j].value
                    Gt[i, j] = self.content[ts][i, j].value

            sp_vecs = _GEVP_solver(Gt, G0)
            sp_vec = sp_vecs[state]
            return sp_vec
        if return_list:
            all_vecs = []
            for t in range(self.T):
                try:
                    G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
                    for i in range(self.N):
                        for j in range(self.N):
                            G0[i, j] = self.content[t0][i, j].value
                            Gt[i, j] = self.content[t][i, j].value

                    sp_vecs = _GEVP_solver(Gt, G0)
                    if sorting == "Eigenvalue":
                        sp_vec = sp_vecs[state]
                        all_vecs.append(sp_vec)
                    else:
                        all_vecs.append(sp_vecs)
                except Exception:
                    all_vecs.append(None)
            if sorting == "Eigenvector":
                all_vecs = _sort_vectors(all_vecs, ts)
                all_vecs = [a[state] for a in all_vecs]

        return all_vecs

    def Eigenvalue(self, t0, state=1):
        G = self.smearing_symmetric()
        G0 = G.content[t0]
        L = cholesky(G0)
        Li = inv(L)
        LT = L.T
        LTi = inv(LT)
        newcontent = []
        for t in range(self.T):
            if self.content[t] is None:
                newcontent.append(None)
            else:
                Gt = G.content[t]
                M = Li @ Gt @ LTi
                eigenvalues = eigh(M)[0]
                eigenvalue = eigenvalues[-state]
                newcontent.append(eigenvalue)
        return Corr(newcontent)

    def Hankel(self, N, periodic=False):
        """Constructs an NxN Hankel matrix

        C(t) c(t+1) ... c(t+n-1)
        C(t+1) c(t+2) ... c(t+n)
        .................
        C(t+(n-1)) c(t+n) ... c(t+2(n-1))

        Parameters
        ----------
        N : int
            Dimension of the Hankel matrix
        periodic : bool, optional
            determines whether the matrix is extended periodically
        """

        if self.N != 1:
            raise Exception("Multi-operator Prony not implemented!")

        array = np.empty([N, N], dtype="object")
        new_content = []
        for t in range(self.T):
            new_content.append(array.copy())

        def wrap(i):
            if i >= self.T:
                return i - self.T
            return i

        for t in range(self.T):
            for i in range(N):
                for j in range(N):
                    if periodic:
                        new_content[t][i, j] = self.content[wrap(t + i + j)][0]
                    elif (t + i + j) >= self.T:
                        new_content[t] = None
                    else:
                        new_content[t][i, j] = self.content[t + i + j][0]

        return Corr(new_content)

    def roll(self, dt):
        """Periodically shift the correlator by dt timeslices

        Parameters
        ----------
        dt : int
            number of timeslices
        """
        return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))

    def reverse(self):
        """Reverse the time ordering of the Corr"""
        return Corr(self.content[:: -1])

    def correlate(self, partner):
        """Correlate the correlator with another correlator or Obs

        Parameters
        ----------
        partner : Obs or Corr
            partner to correlate the correlator with.
            Can either be an Obs which is correlated with all entries of the
            correlator or a Corr of same length.
        """
        new_content = []
        for x0, t_slice in enumerate(self.content):
            if t_slice is None:
                new_content.append(None)
            else:
                if isinstance(partner, Corr):
                    if partner.content[x0] is None:
                        new_content.append(None)
                    else:
                        new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
                elif isinstance(partner, Obs):  # Should this include CObs?
                    new_content.append(np.array([correlate(o, partner) for o in t_slice]))
                else:
                    raise Exception("Can only correlate with an Obs or a Corr.")

        return Corr(new_content)

    def reweight(self, weight, **kwargs):
        """Reweight the correlator.

        Parameters
        ----------
        weight : Obs
            Reweighting factor. An Observable that has to be defined on a superset of the
            configurations in obs[i].idl for all i.
        all_configs : bool
            if True, the reweighted observables are normalized by the average of
            the reweighting factor on all configurations in weight.idl and not
            on the configurations in obs[i].idl.
        """
        new_content = []
        for t_slice in self.content:
            if t_slice is None:
                new_content.append(None)
            else:
                new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
        return Corr(new_content)

    def T_symmetry(self, partner, parity=+1):
        """Return the time symmetry average of the correlator and its partner

        Parameters
        ----------
        partner : Corr
            Time symmetry partner of the Corr
        partity : int
            Parity quantum number of the correlator, can be +1 or -1
        """
        if not isinstance(partner, Corr):
            raise Exception("T partner has to be a Corr object.")
        if parity not in [+1, -1]:
            raise Exception("Parity has to be +1 or -1.")
        T_partner = parity * partner.reverse()

        t_slices = []
        for x0, t_slice in enumerate((self - T_partner).content):
            if t_slice is not None:
                if not t_slice[0].is_zero_within_error(5):
                    t_slices.append(x0)
        if t_slices:
            warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning)

        return (self + T_partner) / 2

    def deriv(self, symmetric=True):
        """Return the first derivative of the correlator with respect to x0.

        Parameters
        ----------
        symmetric : bool
            decides whether symmetric of simple finite differences are used. Default: True
        """
        if not symmetric:
            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t + 1] - self.content[t])
            if(all([x is None for x in newcontent])):
                raise Exception("Derivative is undefined at all timeslices")
            return Corr(newcontent, padding=[0, 1])
        if symmetric:
            newcontent = []
            for t in range(1, self.T - 1):
                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
            if(all([x is None for x in newcontent])):
                raise Exception('Derivative is undefined at all timeslices')
            return Corr(newcontent, padding=[1, 1])

    def second_deriv(self):
        """Return the second derivative of the correlator with respect to x0."""
        newcontent = []
        for t in range(1, self.T - 1):
            if (self.content[t - 1] is None) or (self.content[t + 1] is None):
                newcontent.append(None)
            else:
                newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
        if(all([x is None for x in newcontent])):
            raise Exception("Derivative is undefined at all timeslices")
        return Corr(newcontent, padding=[1, 1])

    def m_eff(self, variant='log', guess=1.0):
        """Returns the effective mass of the correlator as correlator object

        Parameters
        ----------
        variant : str
            log : uses the standard effective mass log(C(t) / C(t+1))
            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
            See, e.g., arXiv:1205.5380
            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
        guess : float
            guess for the root finder, only relevant for the root variant
        """
        if self.N != 1:
            raise Exception('Correlator must be projected before getting m_eff')
        if variant == 'log':
            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / self.content[t + 1])
            if(all([x is None for x in newcontent])):
                raise Exception('m_eff is undefined at all timeslices')

            return np.log(Corr(newcontent, padding=[0, 1]))

        elif variant in ['periodic', 'cosh', 'sinh']:
            if variant in ['periodic', 'cosh']:
                func = anp.cosh
            else:
                func = anp.sinh

            def root_function(x, d):
                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d

            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                # Fill the two timeslices in the middle of the lattice with their predecessors
                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
                    newcontent.append(newcontent[-1])
                else:
                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
            if(all([x is None for x in newcontent])):
                raise Exception('m_eff is undefined at all timeslices')

            return Corr(newcontent, padding=[0, 1])

        elif variant == 'arccosh':
            newcontent = []
            for t in range(1, self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
            if(all([x is None for x in newcontent])):
                raise Exception("m_eff is undefined at all timeslices")
            return np.arccosh(Corr(newcontent, padding=[1, 1]))

        else:
            raise Exception('Unknown variant.')

    def fit(self, function, fitrange=None, silent=False, **kwargs):
        """Fits function to the data

        Parameters
        ----------
        function : obj
            function to fit to the data. See fits.least_squares for details.
        fitrange : list
            Range in which the function is to be fitted to the data.
            If not specified, self.prange or all timeslices are used.
        silent : bool
            Decides whether output is printed to the standard output.
        """
        if self.N != 1:
            raise Exception("Correlator must be projected before fitting")

        if fitrange is None:
            if self.prange:
                fitrange = self.prange
            else:
                fitrange = [0, self.T - 1]

        xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
        ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
        result = least_squares(xs, ys, function, silent=silent, **kwargs)
        result.gamma_method()
        return result

    def plateau(self, plateau_range=None, method="fit"):
        """ Extract a plateau value from a Corr object

        Parameters
        ----------
        plateau_range : list
            list with two entries, indicating the first and the last timeslice
            of the plateau region.
        method : str
            method to extract the plateau.
                'fit' fits a constant to the plateau region
                'avg', 'average' or 'mean' just average over the given timeslices.
        """
        if not plateau_range:
            if self.prange:
                plateau_range = self.prange
            else:
                raise Exception("no plateau range provided")
        if self.N != 1:
            raise Exception("Correlator must be projected before getting a plateau.")
        if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
            raise Exception("plateau is undefined at all timeslices in plateaurange.")
        if method == "fit":
            def const_func(a, t):
                return a[0]
            return self.fit(const_func, plateau_range)[0]
        elif method in ["avg", "average", "mean"]:
            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
            returnvalue.gamma_method()
            return returnvalue

        else:
            raise Exception("Unsupported plateau method: " + method)

    def set_prange(self, prange):
        """Sets the attribute prange of the Corr object."""
        if not len(prange) == 2:
            raise Exception("prange must be a list or array with two values")
        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
            raise Exception("Start and end point must be integers")
        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
            raise Exception("Start and end point must define a range in the interval 0,T")

        self.prange = prange
        return

    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None):
        """Plots the correlator, uses tag as label if available.

        Parameters
        ----------
        x_range : list
            list of two values, determining the range of the x-axis e.g. [4, 8]
        comp : Corr or list of Corr
            Correlator or list of correlators which are plotted for comparison.
        logscale : bool
            Sets y-axis to logscale
        plateau : Obs
            plateau to be visualized in the figure
        fit_res : Fit_result
            Fit_result object to be visualized
        ylabel : str
            Label for the y-axis
        save : str
            path to file in which the figure should be saved
        """
        if self.N != 1:
            raise Exception("Correlator must be projected before plotting")
        if x_range is None:
            x_range = [0, self.T - 1]

        fig = plt.figure()
        ax1 = fig.add_subplot(111)

        x, y, y_err = self.plottable()
        ax1.errorbar(x, y, y_err, label=self.tag)
        if logscale:
            ax1.set_yscale('log')
        else:
            # we generate ylim instead of using autoscaling.
            if y_range is None:
                try:
                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
                except Exception:
                    pass
            else:
                ax1.set_ylim(y_range)
        if comp:
            if isinstance(comp, Corr) or isinstance(comp, list):
                for corr in comp if isinstance(comp, list) else [comp]:
                    x, y, y_err = corr.plottable()
                    plt.errorbar(x, y, y_err, label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
            else:
                raise Exception('comp must be a correlator or a list of correlators.')

        if plateau:
            if isinstance(plateau, Obs):
                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
            else:
                raise Exception('plateau must be an Obs')
        if self.prange:
            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',')
            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',')

        if fit_res:
            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
            ax1.plot(x_samples,
                     fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples),
                     ls='-', marker=',', lw=2)

        ax1.set_xlabel(r'$x_0 / a$')
        if ylabel:
            ax1.set_ylabel(ylabel)
        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])

        handles, labels = ax1.get_legend_handles_labels()
        if labels:
            ax1.legend()
        plt.draw()

        if save:
            if isinstance(save, str):
                fig.savefig(save)
            else:
                raise Exception("Safe has to be a string.")

        return

    def dump(self, filename, datatype="json.gz", **kwargs):
        """Dumps the Corr into a file of chosen type
        Parameters
        ----------
        filename : str
            Name of the file to be saved.
        datatype : str
            Format of the exported file. Supported formats include
            "json.gz" and "pickle"
        path : str
            specifies a custom path for the file (default '.')
        """
        if datatype == "json.gz":
            from .input.json import dump_to_json
            if 'path' in kwargs:
                file_name = kwargs.get('path') + '/' + filename
            else:
                file_name = filename
            dump_to_json(self, file_name)
        elif datatype == "pickle":
            dump_object(self, filename, **kwargs)
        else:
            raise Exception("Unknown datatype " + str(datatype))

    def print(self, range=[0, None]):
        print(self.__repr__(range))

    def __repr__(self, range=[0, None]):
        content_string = ""

        content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n"  # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here

        if self.tag is not None:
            content_string += "Description: " + self.tag + "\n"
        if self.N != 1:
            return content_string
        # This avoids a crash for N>1. I do not know, what else to do here. I like the list representation for N==1. We could print only one "smearing" or one matrix. Printing everything will just
        # be a wall of numbers.

        if range[1]:
            range[1] += 1
        content_string += 'x0/a\tCorr(x0/a)\n------------------\n'
        for i, sub_corr in enumerate(self.content[range[0]:range[1]]):
            if sub_corr is None:
                content_string += str(i + range[0]) + '\n'
            else:
                content_string += str(i + range[0])
                for element in sub_corr:
                    content_string += '\t' + ' ' * int(element >= 0) + str(element)
                content_string += '\n'
        return content_string

    def __str__(self):
        return self.__repr__()

    # We define the basic operations, that can be performed with correlators.
    # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr.
    # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception.
    # One could try and tell Obs to check if the y in __mul__ is a Corr and

    def __add__(self, y):
        if isinstance(y, Corr):
            if ((self.N != y.N) or (self.T != y.T)):
                raise Exception("Addition of Corrs with different shape")
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None) or (y.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] + y.content[t])
            return Corr(newcontent)

        elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] + y)
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError("Corr + wrong type")

    def __mul__(self, y):
        if isinstance(y, Corr):
            if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
                raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None) or (y.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] * y.content[t])
            return Corr(newcontent)

        elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] * y)
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError("Corr * wrong type")

    def __truediv__(self, y):
        if isinstance(y, Corr):
            if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
                raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None) or (y.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / y.content[t])
            # Here we set the entire timeslice to undefined, if one of the smearings has encountered an division by zero.
            # While this might throw away perfectly good values in other smearings, we will never have to check, if all values in our matrix are defined
            for t in range(self.T):
                if newcontent[t] is None:
                    continue
                if np.isnan(np.sum(newcontent[t]).value):
                    newcontent[t] = None

            if all([item is None for item in newcontent]):
                raise Exception("Division returns completely undefined correlator")
            return Corr(newcontent)

        elif isinstance(y, Obs) or isinstance(y, CObs):
            if isinstance(y, Obs):
                if y.value == 0:
                    raise Exception('Division by zero will return undefined correlator')
            if isinstance(y, CObs):
                if y.is_zero():
                    raise Exception('Division by zero will return undefined correlator')

            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / y)
            return Corr(newcontent, prange=self.prange)

        elif isinstance(y, int) or isinstance(y, float):
            if y == 0:
                raise Exception('Division by zero will return undefined correlator')
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / y)
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError('Corr / wrong type')

    def __neg__(self):
        newcontent = [None if (item is None) else -1. * item for item in self.content]
        return Corr(newcontent, prange=self.prange)

    def __sub__(self, y):
        return self + (-y)

    def __pow__(self, y):
        if isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
            newcontent = [None if (item is None) else item**y for item in self.content]
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError('Type of exponent not supported')

    def __abs__(self):
        newcontent = [None if (item is None) else np.abs(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)

    # The numpy functions:
    def sqrt(self):
        return self**0.5

    def log(self):
        newcontent = [None if (item is None) else np.log(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)

    def exp(self):
        newcontent = [None if (item is None) else np.exp(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)

    def _apply_func_to_corr(self, func):
        newcontent = [None if (item is None) else func(item) for item in self.content]
        for t in range(self.T):
            if newcontent[t] is None:
                continue
            if np.isnan(np.sum(newcontent[t]).value):
                newcontent[t] = None
        if all([item is None for item in newcontent]):
            raise Exception('Operation returns undefined correlator')
        return Corr(newcontent)

    def sin(self):
        return self._apply_func_to_corr(np.sin)

    def cos(self):
        return self._apply_func_to_corr(np.cos)

    def tan(self):
        return self._apply_func_to_corr(np.tan)

    def sinh(self):
        return self._apply_func_to_corr(np.sinh)

    def cosh(self):
        return self._apply_func_to_corr(np.cosh)

    def tanh(self):
        return self._apply_func_to_corr(np.tanh)

    def arcsin(self):
        return self._apply_func_to_corr(np.arcsin)

    def arccos(self):
        return self._apply_func_to_corr(np.arccos)

    def arctan(self):
        return self._apply_func_to_corr(np.arctan)

    def arcsinh(self):
        return self._apply_func_to_corr(np.arcsinh)

    def arccosh(self):
        return self._apply_func_to_corr(np.arccosh)

    def arctanh(self):
        return self._apply_func_to_corr(np.arctanh)

    # Right hand side operations (require tweak in main module to work)
    def __radd__(self, y):
        return self + y

    def __rsub__(self, y):
        return -self + y

    def __rmul__(self, y):
        return self * y

    def __rtruediv__(self, y):
        return (self / y) ** (-1)

    @property
    def real(self):
        def return_real(obs_OR_cobs):
            if isinstance(obs_OR_cobs, CObs):
                return obs_OR_cobs.real
            else:
                return obs_OR_cobs

        return self._apply_func_to_corr(return_real)

    @property
    def imag(self):
        def return_imag(obs_OR_cobs):
            if isinstance(obs_OR_cobs, CObs):
                return obs_OR_cobs.imag
            else:
                return obs_OR_cobs * 0  # So it stays the right type

        return self._apply_func_to_corr(return_imag)


def _sort_vectors(vec_set, ts):
    """Helper function used to find a set of Eigenvectors consistent over all timeslices"""
    reference_sorting = np.array(vec_set[ts])
    N = reference_sorting.shape[0]
    sorted_vec_set = []
    for t in range(len(vec_set)):
        if vec_set[t] is None:
            sorted_vec_set.append(None)
        elif not t == ts:
            perms = permutation([i for i in range(N)])
            best_score = 0
            for perm in perms:
                current_score = 1
                for k in range(N):
                    new_sorting = reference_sorting.copy()
                    new_sorting[perm[k], :] = vec_set[t][k]
                    current_score *= abs(np.linalg.det(new_sorting))
                if current_score > best_score:
                    best_score = current_score
                    best_perm = perm
            sorted_vec_set.append([vec_set[t][k] for k in best_perm])
        else:
            sorted_vec_set.append(vec_set[t])

    return sorted_vec_set


def permutation(lst):  # Shamelessly copied
    if len(lst) == 1:
        return [lst]
    ll = []
    for i in range(len(lst)):
        m = lst[i]
        remLst = lst[:i] + lst[i + 1:]
        # Generating all permutations where m is first
        for p in permutation(remLst):
            ll.append([m] + p)
    return ll


def _GEVP_solver(Gt, G0):  # Just so normalization an sorting does not need to be repeated. Here we could later put in some checks
    sp_val, sp_vecs = scipy.linalg.eig(Gt, G0)
    sp_vecs = [sp_vecs[:, np.argsort(sp_val)[-i]] for i in range(1, sp_vecs.shape[0] + 1)]
    sp_vecs = [v / np.sqrt((v.T @ G0 @ v)) for v in sp_vecs]
    return sp_vecs
#   class Corr:
View Source
class Corr:
    """The class for a correlator (time dependent sequence of pe.Obs).

    Everything, this class does, can be achieved using lists or arrays of Obs.
    But it is simply more convenient to have a dedicated object for correlators.
    One often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient
    to iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.

    The correlator can have two types of content: An Obs at every timeslice OR a GEVP
    smearing matrix at every timeslice. Other dependency (eg. spatial) are not supported.

    """

    def __init__(self, data_input, padding=[0, 0], prange=None):
        """ Initialize a Corr object.

        Parameters
        ----------
        data_input : list
            list of Obs or list of arrays of Obs.
        padding : list, optional
            List with two entries where the first labels the padding
            at the front of the correlator and the second the padding
            at the back.
        prange : list, optional
            List containing the first and last timeslice of the plateau
            region indentified for this correlator.
        """

        if not isinstance(data_input, list):
            raise TypeError('Corr__init__ expects a list of timeslices.')

        if all([(isinstance(item, Obs) or isinstance(item, CObs)) for item in data_input]):
            _assert_equal_properties(data_input)
            self.content = [np.asarray([item]) for item in data_input]
            self.N = 1

        elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
            self.content = data_input

            noNull = [a for a in self.content if not (a is None)]  # To check if the matrices are correct for all undefined elements
            self.N = noNull[0].shape[0]
            if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
                raise Exception("Smearing matrices are not NxN")
            if (not all([item.shape == noNull[0].shape for item in noNull])):
                raise Exception("Items in data_input are not of identical shape." + str(noNull))
        else:
            raise Exception("data_input contains item of wrong type")

        self.tag = None

        # An undefined timeslice is represented by the None object
        self.content = [None] * padding[0] + self.content + [None] * padding[1]
        self.T = len(self.content)

        self.prange = prange

        self.gamma_method()

    def __getitem__(self, idx):
        """Return the content of timeslice idx"""
        if self.content[idx] is None:
            return None
        elif len(self.content[idx]) == 1:
            return self.content[idx][0]
        else:
            return self.content[idx]

    @property
    def reweighted(self):
        bool_array = np.array([list(map(lambda x: x.reweighted, o)) for o in [x for x in self.content if x is not None]])
        if np.all(bool_array == 1):
            return True
        elif np.all(bool_array == 0):
            return False
        else:
            raise Exception("Reweighting status of correlator corrupted.")

    def gamma_method(self, **kwargs):
        """Apply the gamma method to the content of the Corr."""
        for item in self.content:
            if not(item is None):
                if self.N == 1:
                    item[0].gamma_method(**kwargs)
                else:
                    for i in range(self.N):
                        for j in range(self.N):
                            item[i, j].gamma_method(**kwargs)

    def projected(self, vector_l=None, vector_r=None, normalize=False):
        """We need to project the Correlator with a Vector to get a single value at each timeslice.

        The method can use one or two vectors.
        If two are specified it returns v1@G@v2 (the order might be very important.)
        By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
        """
        if self.N == 1:
            raise Exception("Trying to project a Corr, that already has N=1.")

        self.gamma_method()

        if vector_l is None:
            vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
        elif(vector_r is None):
            vector_r = vector_l
        if isinstance(vector_l, list) and not isinstance(vector_r, list):
            if len(vector_l) != self.T:
                raise Exception("Length of vector list must be equal to T")
            vector_r = [vector_r] * self.T
        if isinstance(vector_r, list) and not isinstance(vector_l, list):
            if len(vector_r) != self.T:
                raise Exception("Length of vector list must be equal to T")
            vector_l = [vector_l] * self.T

        if not isinstance(vector_l, list):
            if not vector_l.shape == vector_r.shape == (self.N,):
                raise Exception("Vectors are of wrong shape!")
            if normalize:
                vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
            # if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
                # print("Vectors are normalized before projection!")

            newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]

        else:
            # There are no checks here yet. There are so many possible scenarios, where this can go wrong.
            if normalize:
                for t in range(self.T):
                    vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])

            newcontent = [None if (self.content[t] is None or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
        return Corr(newcontent)

    def sum(self):
        return np.sqrt(self.N) * self.projected(np.ones(self.N))

    # For purposes of debugging and verification, one might want to see a single smearing level. smearing will return a Corr at the specified i,j. where both are integers 0<=i,j<N.
    def smearing(self, i, j):
        if self.N == 1:
            raise Exception("Trying to pick smearing from projected Corr")
        newcontent = [None if(item is None) else item[i, j] for item in self.content]
        return Corr(newcontent)

    def plottable(self):
        """Outputs the correlator in a plotable format.

        Outputs three lists containing the timeslice index, the value on each
        timeslice and the error on each timeslice.
        """
        if self.N != 1:
            raise Exception("Can only make Corr[N=1] plottable")  # We could also autoproject to the groundstate or expect vectors, but this is supposed to be a super simple function.
        x_list = [x for x in range(self.T) if not self.content[x] is None]
        y_list = [y[0].value for y in self.content if y is not None]
        y_err_list = [y[0].dvalue for y in self.content if y is not None]

        return x_list, y_list, y_err_list

    def symmetric(self):
        """ Symmetrize the correlator around x0=0."""
        if self.T % 2 != 0:
            raise Exception("Can not symmetrize odd T")

        if np.argmax(np.abs(self.content)) != 0:
            warnings.warn("Correlator does not seem to be symmetric around x0=0.", RuntimeWarning)

        newcontent = [self.content[0]]
        for t in range(1, self.T):
            if (self.content[t] is None) or (self.content[self.T - t] is None):
                newcontent.append(None)
            else:
                newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
        if(all([x is None for x in newcontent])):
            raise Exception("Corr could not be symmetrized: No redundant values")
        return Corr(newcontent, prange=self.prange)

    def anti_symmetric(self):
        """Anti-symmetrize the correlator around x0=0."""
        if self.T % 2 != 0:
            raise Exception("Can not symmetrize odd T")

        if not all([o.is_zero_within_error(3) for o in self.content[0]]):
            warnings.warn("Correlator does not seem to be anti-symmetric around x0=0.", RuntimeWarning)

        newcontent = [self.content[0]]
        for t in range(1, self.T):
            if (self.content[t] is None) or (self.content[self.T - t] is None):
                newcontent.append(None)
            else:
                newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
        if(all([x is None for x in newcontent])):
            raise Exception("Corr could not be symmetrized: No redundant values")
        return Corr(newcontent, prange=self.prange)

    def smearing_symmetric(self):
        """Symmetrizes the matrices and therefore make them positive definite."""
        if self.N > 1:
            transposed = [None if (G is None) else G.T for G in self.content]
            return 0.5 * (Corr(transposed) + self)
        if self.N == 1:
            raise Exception("Trying to symmetrize a smearing matrix, that already has N=1.")

    # There are two ways, the GEVP metod can be called.
    # 1. return_list=False will return a single eigenvector, normalized according to V*C(t_0)*V=1
    # 2. return_list=True  will return a new eigenvector for every timeslice. The time t_s is used to order the vectors according to. arXiv:2004.10472 [hep-lat]
    def GEVP(self, t0, ts, state=0, sorting="Eigenvalue", return_list=False):
        if not return_list:
            if (self.content[t0] is None) or (self.content[ts] is None):
                raise Exception("Corr not defined at t0/ts")
            G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
            for i in range(self.N):
                for j in range(self.N):
                    G0[i, j] = self.content[t0][i, j].value
                    Gt[i, j] = self.content[ts][i, j].value

            sp_vecs = _GEVP_solver(Gt, G0)
            sp_vec = sp_vecs[state]
            return sp_vec
        if return_list:
            all_vecs = []
            for t in range(self.T):
                try:
                    G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
                    for i in range(self.N):
                        for j in range(self.N):
                            G0[i, j] = self.content[t0][i, j].value
                            Gt[i, j] = self.content[t][i, j].value

                    sp_vecs = _GEVP_solver(Gt, G0)
                    if sorting == "Eigenvalue":
                        sp_vec = sp_vecs[state]
                        all_vecs.append(sp_vec)
                    else:
                        all_vecs.append(sp_vecs)
                except Exception:
                    all_vecs.append(None)
            if sorting == "Eigenvector":
                all_vecs = _sort_vectors(all_vecs, ts)
                all_vecs = [a[state] for a in all_vecs]

        return all_vecs

    def Eigenvalue(self, t0, state=1):
        G = self.smearing_symmetric()
        G0 = G.content[t0]
        L = cholesky(G0)
        Li = inv(L)
        LT = L.T
        LTi = inv(LT)
        newcontent = []
        for t in range(self.T):
            if self.content[t] is None:
                newcontent.append(None)
            else:
                Gt = G.content[t]
                M = Li @ Gt @ LTi
                eigenvalues = eigh(M)[0]
                eigenvalue = eigenvalues[-state]
                newcontent.append(eigenvalue)
        return Corr(newcontent)

    def Hankel(self, N, periodic=False):
        """Constructs an NxN Hankel matrix

        C(t) c(t+1) ... c(t+n-1)
        C(t+1) c(t+2) ... c(t+n)
        .................
        C(t+(n-1)) c(t+n) ... c(t+2(n-1))

        Parameters
        ----------
        N : int
            Dimension of the Hankel matrix
        periodic : bool, optional
            determines whether the matrix is extended periodically
        """

        if self.N != 1:
            raise Exception("Multi-operator Prony not implemented!")

        array = np.empty([N, N], dtype="object")
        new_content = []
        for t in range(self.T):
            new_content.append(array.copy())

        def wrap(i):
            if i >= self.T:
                return i - self.T
            return i

        for t in range(self.T):
            for i in range(N):
                for j in range(N):
                    if periodic:
                        new_content[t][i, j] = self.content[wrap(t + i + j)][0]
                    elif (t + i + j) >= self.T:
                        new_content[t] = None
                    else:
                        new_content[t][i, j] = self.content[t + i + j][0]

        return Corr(new_content)

    def roll(self, dt):
        """Periodically shift the correlator by dt timeslices

        Parameters
        ----------
        dt : int
            number of timeslices
        """
        return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))

    def reverse(self):
        """Reverse the time ordering of the Corr"""
        return Corr(self.content[:: -1])

    def correlate(self, partner):
        """Correlate the correlator with another correlator or Obs

        Parameters
        ----------
        partner : Obs or Corr
            partner to correlate the correlator with.
            Can either be an Obs which is correlated with all entries of the
            correlator or a Corr of same length.
        """
        new_content = []
        for x0, t_slice in enumerate(self.content):
            if t_slice is None:
                new_content.append(None)
            else:
                if isinstance(partner, Corr):
                    if partner.content[x0] is None:
                        new_content.append(None)
                    else:
                        new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
                elif isinstance(partner, Obs):  # Should this include CObs?
                    new_content.append(np.array([correlate(o, partner) for o in t_slice]))
                else:
                    raise Exception("Can only correlate with an Obs or a Corr.")

        return Corr(new_content)

    def reweight(self, weight, **kwargs):
        """Reweight the correlator.

        Parameters
        ----------
        weight : Obs
            Reweighting factor. An Observable that has to be defined on a superset of the
            configurations in obs[i].idl for all i.
        all_configs : bool
            if True, the reweighted observables are normalized by the average of
            the reweighting factor on all configurations in weight.idl and not
            on the configurations in obs[i].idl.
        """
        new_content = []
        for t_slice in self.content:
            if t_slice is None:
                new_content.append(None)
            else:
                new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
        return Corr(new_content)

    def T_symmetry(self, partner, parity=+1):
        """Return the time symmetry average of the correlator and its partner

        Parameters
        ----------
        partner : Corr
            Time symmetry partner of the Corr
        partity : int
            Parity quantum number of the correlator, can be +1 or -1
        """
        if not isinstance(partner, Corr):
            raise Exception("T partner has to be a Corr object.")
        if parity not in [+1, -1]:
            raise Exception("Parity has to be +1 or -1.")
        T_partner = parity * partner.reverse()

        t_slices = []
        for x0, t_slice in enumerate((self - T_partner).content):
            if t_slice is not None:
                if not t_slice[0].is_zero_within_error(5):
                    t_slices.append(x0)
        if t_slices:
            warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning)

        return (self + T_partner) / 2

    def deriv(self, symmetric=True):
        """Return the first derivative of the correlator with respect to x0.

        Parameters
        ----------
        symmetric : bool
            decides whether symmetric of simple finite differences are used. Default: True
        """
        if not symmetric:
            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t + 1] - self.content[t])
            if(all([x is None for x in newcontent])):
                raise Exception("Derivative is undefined at all timeslices")
            return Corr(newcontent, padding=[0, 1])
        if symmetric:
            newcontent = []
            for t in range(1, self.T - 1):
                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
            if(all([x is None for x in newcontent])):
                raise Exception('Derivative is undefined at all timeslices')
            return Corr(newcontent, padding=[1, 1])

    def second_deriv(self):
        """Return the second derivative of the correlator with respect to x0."""
        newcontent = []
        for t in range(1, self.T - 1):
            if (self.content[t - 1] is None) or (self.content[t + 1] is None):
                newcontent.append(None)
            else:
                newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
        if(all([x is None for x in newcontent])):
            raise Exception("Derivative is undefined at all timeslices")
        return Corr(newcontent, padding=[1, 1])

    def m_eff(self, variant='log', guess=1.0):
        """Returns the effective mass of the correlator as correlator object

        Parameters
        ----------
        variant : str
            log : uses the standard effective mass log(C(t) / C(t+1))
            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
            See, e.g., arXiv:1205.5380
            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
        guess : float
            guess for the root finder, only relevant for the root variant
        """
        if self.N != 1:
            raise Exception('Correlator must be projected before getting m_eff')
        if variant == 'log':
            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / self.content[t + 1])
            if(all([x is None for x in newcontent])):
                raise Exception('m_eff is undefined at all timeslices')

            return np.log(Corr(newcontent, padding=[0, 1]))

        elif variant in ['periodic', 'cosh', 'sinh']:
            if variant in ['periodic', 'cosh']:
                func = anp.cosh
            else:
                func = anp.sinh

            def root_function(x, d):
                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d

            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                # Fill the two timeslices in the middle of the lattice with their predecessors
                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
                    newcontent.append(newcontent[-1])
                else:
                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
            if(all([x is None for x in newcontent])):
                raise Exception('m_eff is undefined at all timeslices')

            return Corr(newcontent, padding=[0, 1])

        elif variant == 'arccosh':
            newcontent = []
            for t in range(1, self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
            if(all([x is None for x in newcontent])):
                raise Exception("m_eff is undefined at all timeslices")
            return np.arccosh(Corr(newcontent, padding=[1, 1]))

        else:
            raise Exception('Unknown variant.')

    def fit(self, function, fitrange=None, silent=False, **kwargs):
        """Fits function to the data

        Parameters
        ----------
        function : obj
            function to fit to the data. See fits.least_squares for details.
        fitrange : list
            Range in which the function is to be fitted to the data.
            If not specified, self.prange or all timeslices are used.
        silent : bool
            Decides whether output is printed to the standard output.
        """
        if self.N != 1:
            raise Exception("Correlator must be projected before fitting")

        if fitrange is None:
            if self.prange:
                fitrange = self.prange
            else:
                fitrange = [0, self.T - 1]

        xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
        ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
        result = least_squares(xs, ys, function, silent=silent, **kwargs)
        result.gamma_method()
        return result

    def plateau(self, plateau_range=None, method="fit"):
        """ Extract a plateau value from a Corr object

        Parameters
        ----------
        plateau_range : list
            list with two entries, indicating the first and the last timeslice
            of the plateau region.
        method : str
            method to extract the plateau.
                'fit' fits a constant to the plateau region
                'avg', 'average' or 'mean' just average over the given timeslices.
        """
        if not plateau_range:
            if self.prange:
                plateau_range = self.prange
            else:
                raise Exception("no plateau range provided")
        if self.N != 1:
            raise Exception("Correlator must be projected before getting a plateau.")
        if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
            raise Exception("plateau is undefined at all timeslices in plateaurange.")
        if method == "fit":
            def const_func(a, t):
                return a[0]
            return self.fit(const_func, plateau_range)[0]
        elif method in ["avg", "average", "mean"]:
            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
            returnvalue.gamma_method()
            return returnvalue

        else:
            raise Exception("Unsupported plateau method: " + method)

    def set_prange(self, prange):
        """Sets the attribute prange of the Corr object."""
        if not len(prange) == 2:
            raise Exception("prange must be a list or array with two values")
        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
            raise Exception("Start and end point must be integers")
        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
            raise Exception("Start and end point must define a range in the interval 0,T")

        self.prange = prange
        return

    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None):
        """Plots the correlator, uses tag as label if available.

        Parameters
        ----------
        x_range : list
            list of two values, determining the range of the x-axis e.g. [4, 8]
        comp : Corr or list of Corr
            Correlator or list of correlators which are plotted for comparison.
        logscale : bool
            Sets y-axis to logscale
        plateau : Obs
            plateau to be visualized in the figure
        fit_res : Fit_result
            Fit_result object to be visualized
        ylabel : str
            Label for the y-axis
        save : str
            path to file in which the figure should be saved
        """
        if self.N != 1:
            raise Exception("Correlator must be projected before plotting")
        if x_range is None:
            x_range = [0, self.T - 1]

        fig = plt.figure()
        ax1 = fig.add_subplot(111)

        x, y, y_err = self.plottable()
        ax1.errorbar(x, y, y_err, label=self.tag)
        if logscale:
            ax1.set_yscale('log')
        else:
            # we generate ylim instead of using autoscaling.
            if y_range is None:
                try:
                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
                except Exception:
                    pass
            else:
                ax1.set_ylim(y_range)
        if comp:
            if isinstance(comp, Corr) or isinstance(comp, list):
                for corr in comp if isinstance(comp, list) else [comp]:
                    x, y, y_err = corr.plottable()
                    plt.errorbar(x, y, y_err, label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
            else:
                raise Exception('comp must be a correlator or a list of correlators.')

        if plateau:
            if isinstance(plateau, Obs):
                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
            else:
                raise Exception('plateau must be an Obs')
        if self.prange:
            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',')
            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',')

        if fit_res:
            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
            ax1.plot(x_samples,
                     fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples),
                     ls='-', marker=',', lw=2)

        ax1.set_xlabel(r'$x_0 / a$')
        if ylabel:
            ax1.set_ylabel(ylabel)
        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])

        handles, labels = ax1.get_legend_handles_labels()
        if labels:
            ax1.legend()
        plt.draw()

        if save:
            if isinstance(save, str):
                fig.savefig(save)
            else:
                raise Exception("Safe has to be a string.")

        return

    def dump(self, filename, datatype="json.gz", **kwargs):
        """Dumps the Corr into a file of chosen type
        Parameters
        ----------
        filename : str
            Name of the file to be saved.
        datatype : str
            Format of the exported file. Supported formats include
            "json.gz" and "pickle"
        path : str
            specifies a custom path for the file (default '.')
        """
        if datatype == "json.gz":
            from .input.json import dump_to_json
            if 'path' in kwargs:
                file_name = kwargs.get('path') + '/' + filename
            else:
                file_name = filename
            dump_to_json(self, file_name)
        elif datatype == "pickle":
            dump_object(self, filename, **kwargs)
        else:
            raise Exception("Unknown datatype " + str(datatype))

    def print(self, range=[0, None]):
        print(self.__repr__(range))

    def __repr__(self, range=[0, None]):
        content_string = ""

        content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n"  # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here

        if self.tag is not None:
            content_string += "Description: " + self.tag + "\n"
        if self.N != 1:
            return content_string
        # This avoids a crash for N>1. I do not know, what else to do here. I like the list representation for N==1. We could print only one "smearing" or one matrix. Printing everything will just
        # be a wall of numbers.

        if range[1]:
            range[1] += 1
        content_string += 'x0/a\tCorr(x0/a)\n------------------\n'
        for i, sub_corr in enumerate(self.content[range[0]:range[1]]):
            if sub_corr is None:
                content_string += str(i + range[0]) + '\n'
            else:
                content_string += str(i + range[0])
                for element in sub_corr:
                    content_string += '\t' + ' ' * int(element >= 0) + str(element)
                content_string += '\n'
        return content_string

    def __str__(self):
        return self.__repr__()

    # We define the basic operations, that can be performed with correlators.
    # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr.
    # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception.
    # One could try and tell Obs to check if the y in __mul__ is a Corr and

    def __add__(self, y):
        if isinstance(y, Corr):
            if ((self.N != y.N) or (self.T != y.T)):
                raise Exception("Addition of Corrs with different shape")
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None) or (y.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] + y.content[t])
            return Corr(newcontent)

        elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] + y)
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError("Corr + wrong type")

    def __mul__(self, y):
        if isinstance(y, Corr):
            if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
                raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None) or (y.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] * y.content[t])
            return Corr(newcontent)

        elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] * y)
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError("Corr * wrong type")

    def __truediv__(self, y):
        if isinstance(y, Corr):
            if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
                raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None) or (y.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / y.content[t])
            # Here we set the entire timeslice to undefined, if one of the smearings has encountered an division by zero.
            # While this might throw away perfectly good values in other smearings, we will never have to check, if all values in our matrix are defined
            for t in range(self.T):
                if newcontent[t] is None:
                    continue
                if np.isnan(np.sum(newcontent[t]).value):
                    newcontent[t] = None

            if all([item is None for item in newcontent]):
                raise Exception("Division returns completely undefined correlator")
            return Corr(newcontent)

        elif isinstance(y, Obs) or isinstance(y, CObs):
            if isinstance(y, Obs):
                if y.value == 0:
                    raise Exception('Division by zero will return undefined correlator')
            if isinstance(y, CObs):
                if y.is_zero():
                    raise Exception('Division by zero will return undefined correlator')

            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / y)
            return Corr(newcontent, prange=self.prange)

        elif isinstance(y, int) or isinstance(y, float):
            if y == 0:
                raise Exception('Division by zero will return undefined correlator')
            newcontent = []
            for t in range(self.T):
                if (self.content[t] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / y)
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError('Corr / wrong type')

    def __neg__(self):
        newcontent = [None if (item is None) else -1. * item for item in self.content]
        return Corr(newcontent, prange=self.prange)

    def __sub__(self, y):
        return self + (-y)

    def __pow__(self, y):
        if isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
            newcontent = [None if (item is None) else item**y for item in self.content]
            return Corr(newcontent, prange=self.prange)
        else:
            raise TypeError('Type of exponent not supported')

    def __abs__(self):
        newcontent = [None if (item is None) else np.abs(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)

    # The numpy functions:
    def sqrt(self):
        return self**0.5

    def log(self):
        newcontent = [None if (item is None) else np.log(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)

    def exp(self):
        newcontent = [None if (item is None) else np.exp(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)

    def _apply_func_to_corr(self, func):
        newcontent = [None if (item is None) else func(item) for item in self.content]
        for t in range(self.T):
            if newcontent[t] is None:
                continue
            if np.isnan(np.sum(newcontent[t]).value):
                newcontent[t] = None
        if all([item is None for item in newcontent]):
            raise Exception('Operation returns undefined correlator')
        return Corr(newcontent)

    def sin(self):
        return self._apply_func_to_corr(np.sin)

    def cos(self):
        return self._apply_func_to_corr(np.cos)

    def tan(self):
        return self._apply_func_to_corr(np.tan)

    def sinh(self):
        return self._apply_func_to_corr(np.sinh)

    def cosh(self):
        return self._apply_func_to_corr(np.cosh)

    def tanh(self):
        return self._apply_func_to_corr(np.tanh)

    def arcsin(self):
        return self._apply_func_to_corr(np.arcsin)

    def arccos(self):
        return self._apply_func_to_corr(np.arccos)

    def arctan(self):
        return self._apply_func_to_corr(np.arctan)

    def arcsinh(self):
        return self._apply_func_to_corr(np.arcsinh)

    def arccosh(self):
        return self._apply_func_to_corr(np.arccosh)

    def arctanh(self):
        return self._apply_func_to_corr(np.arctanh)

    # Right hand side operations (require tweak in main module to work)
    def __radd__(self, y):
        return self + y

    def __rsub__(self, y):
        return -self + y

    def __rmul__(self, y):
        return self * y

    def __rtruediv__(self, y):
        return (self / y) ** (-1)

    @property
    def real(self):
        def return_real(obs_OR_cobs):
            if isinstance(obs_OR_cobs, CObs):
                return obs_OR_cobs.real
            else:
                return obs_OR_cobs

        return self._apply_func_to_corr(return_real)

    @property
    def imag(self):
        def return_imag(obs_OR_cobs):
            if isinstance(obs_OR_cobs, CObs):
                return obs_OR_cobs.imag
            else:
                return obs_OR_cobs * 0  # So it stays the right type

        return self._apply_func_to_corr(return_imag)

The class for a correlator (time dependent sequence of pe.Obs).

Everything, this class does, can be achieved using lists or arrays of Obs. But it is simply more convenient to have a dedicated object for correlators. One often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient to iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.

The correlator can have two types of content: An Obs at every timeslice OR a GEVP smearing matrix at every timeslice. Other dependency (eg. spatial) are not supported.

#   Corr(data_input, padding=[0, 0], prange=None)
View Source
    def __init__(self, data_input, padding=[0, 0], prange=None):
        """ Initialize a Corr object.

        Parameters
        ----------
        data_input : list
            list of Obs or list of arrays of Obs.
        padding : list, optional
            List with two entries where the first labels the padding
            at the front of the correlator and the second the padding
            at the back.
        prange : list, optional
            List containing the first and last timeslice of the plateau
            region indentified for this correlator.
        """

        if not isinstance(data_input, list):
            raise TypeError('Corr__init__ expects a list of timeslices.')

        if all([(isinstance(item, Obs) or isinstance(item, CObs)) for item in data_input]):
            _assert_equal_properties(data_input)
            self.content = [np.asarray([item]) for item in data_input]
            self.N = 1

        elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
            self.content = data_input

            noNull = [a for a in self.content if not (a is None)]  # To check if the matrices are correct for all undefined elements
            self.N = noNull[0].shape[0]
            if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
                raise Exception("Smearing matrices are not NxN")
            if (not all([item.shape == noNull[0].shape for item in noNull])):
                raise Exception("Items in data_input are not of identical shape." + str(noNull))
        else:
            raise Exception("data_input contains item of wrong type")

        self.tag = None

        # An undefined timeslice is represented by the None object
        self.content = [None] * padding[0] + self.content + [None] * padding[1]
        self.T = len(self.content)

        self.prange = prange

        self.gamma_method()

Initialize a Corr object.

Parameters
  • data_input (list): list of Obs or list of arrays of Obs.
  • padding (list, optional): List with two entries where the first labels the padding at the front of the correlator and the second the padding at the back.
  • prange (list, optional): List containing the first and last timeslice of the plateau region indentified for this correlator.
#   reweighted
#   def gamma_method(self, **kwargs):
View Source
    def gamma_method(self, **kwargs):
        """Apply the gamma method to the content of the Corr."""
        for item in self.content:
            if not(item is None):
                if self.N == 1:
                    item[0].gamma_method(**kwargs)
                else:
                    for i in range(self.N):
                        for j in range(self.N):
                            item[i, j].gamma_method(**kwargs)

Apply the gamma method to the content of the Corr.

#   def projected(self, vector_l=None, vector_r=None, normalize=False):
View Source
    def projected(self, vector_l=None, vector_r=None, normalize=False):
        """We need to project the Correlator with a Vector to get a single value at each timeslice.

        The method can use one or two vectors.
        If two are specified it returns v1@G@v2 (the order might be very important.)
        By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
        """
        if self.N == 1:
            raise Exception("Trying to project a Corr, that already has N=1.")

        self.gamma_method()

        if vector_l is None:
            vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
        elif(vector_r is None):
            vector_r = vector_l
        if isinstance(vector_l, list) and not isinstance(vector_r, list):
            if len(vector_l) != self.T:
                raise Exception("Length of vector list must be equal to T")
            vector_r = [vector_r] * self.T
        if isinstance(vector_r, list) and not isinstance(vector_l, list):
            if len(vector_r) != self.T:
                raise Exception("Length of vector list must be equal to T")
            vector_l = [vector_l] * self.T

        if not isinstance(vector_l, list):
            if not vector_l.shape == vector_r.shape == (self.N,):
                raise Exception("Vectors are of wrong shape!")
            if normalize:
                vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
            # if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
                # print("Vectors are normalized before projection!")

            newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]

        else:
            # There are no checks here yet. There are so many possible scenarios, where this can go wrong.
            if normalize:
                for t in range(self.T):
                    vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])

            newcontent = [None if (self.content[t] is None or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
        return Corr(newcontent)

We need to project the Correlator with a Vector to get a single value at each timeslice.

The method can use one or two vectors. If two are specified it returns v1@G@v2 (the order might be very important.) By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

#   def sum(self):
View Source
    def sum(self):
        return np.sqrt(self.N) * self.projected(np.ones(self.N))
#   def smearing(self, i, j):
View Source
    def smearing(self, i, j):
        if self.N == 1:
            raise Exception("Trying to pick smearing from projected Corr")
        newcontent = [None if(item is None) else item[i, j] for item in self.content]
        return Corr(newcontent)
#   def plottable(self):
View Source
    def plottable(self):
        """Outputs the correlator in a plotable format.

        Outputs three lists containing the timeslice index, the value on each
        timeslice and the error on each timeslice.
        """
        if self.N != 1:
            raise Exception("Can only make Corr[N=1] plottable")  # We could also autoproject to the groundstate or expect vectors, but this is supposed to be a super simple function.
        x_list = [x for x in range(self.T) if not self.content[x] is None]
        y_list = [y[0].value for y in self.content if y is not None]
        y_err_list = [y[0].dvalue for y in self.content if y is not None]

        return x_list, y_list, y_err_list

Outputs the correlator in a plotable format.

Outputs three lists containing the timeslice index, the value on each timeslice and the error on each timeslice.

#   def symmetric(self):
View Source
    def symmetric(self):
        """ Symmetrize the correlator around x0=0."""
        if self.T % 2 != 0:
            raise Exception("Can not symmetrize odd T")

        if np.argmax(np.abs(self.content)) != 0:
            warnings.warn("Correlator does not seem to be symmetric around x0=0.", RuntimeWarning)

        newcontent = [self.content[0]]
        for t in range(1, self.T):
            if (self.content[t] is None) or (self.content[self.T - t] is None):
                newcontent.append(None)
            else:
                newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
        if(all([x is None for x in newcontent])):
            raise Exception("Corr could not be symmetrized: No redundant values")
        return Corr(newcontent, prange=self.prange)

Symmetrize the correlator around x0=0.

#   def anti_symmetric(self):
View Source
    def anti_symmetric(self):
        """Anti-symmetrize the correlator around x0=0."""
        if self.T % 2 != 0:
            raise Exception("Can not symmetrize odd T")

        if not all([o.is_zero_within_error(3) for o in self.content[0]]):
            warnings.warn("Correlator does not seem to be anti-symmetric around x0=0.", RuntimeWarning)

        newcontent = [self.content[0]]
        for t in range(1, self.T):
            if (self.content[t] is None) or (self.content[self.T - t] is None):
                newcontent.append(None)
            else:
                newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
        if(all([x is None for x in newcontent])):
            raise Exception("Corr could not be symmetrized: No redundant values")
        return Corr(newcontent, prange=self.prange)

Anti-symmetrize the correlator around x0=0.

#   def smearing_symmetric(self):
View Source
    def smearing_symmetric(self):
        """Symmetrizes the matrices and therefore make them positive definite."""
        if self.N > 1:
            transposed = [None if (G is None) else G.T for G in self.content]
            return 0.5 * (Corr(transposed) + self)
        if self.N == 1:
            raise Exception("Trying to symmetrize a smearing matrix, that already has N=1.")

Symmetrizes the matrices and therefore make them positive definite.

#   def GEVP(self, t0, ts, state=0, sorting='Eigenvalue', return_list=False):
View Source
    def GEVP(self, t0, ts, state=0, sorting="Eigenvalue", return_list=False):
        if not return_list:
            if (self.content[t0] is None) or (self.content[ts] is None):
                raise Exception("Corr not defined at t0/ts")
            G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
            for i in range(self.N):
                for j in range(self.N):
                    G0[i, j] = self.content[t0][i, j].value
                    Gt[i, j] = self.content[ts][i, j].value

            sp_vecs = _GEVP_solver(Gt, G0)
            sp_vec = sp_vecs[state]
            return sp_vec
        if return_list:
            all_vecs = []
            for t in range(self.T):
                try:
                    G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
                    for i in range(self.N):
                        for j in range(self.N):
                            G0[i, j] = self.content[t0][i, j].value
                            Gt[i, j] = self.content[t][i, j].value

                    sp_vecs = _GEVP_solver(Gt, G0)
                    if sorting == "Eigenvalue":
                        sp_vec = sp_vecs[state]
                        all_vecs.append(sp_vec)
                    else:
                        all_vecs.append(sp_vecs)
                except Exception:
                    all_vecs.append(None)
            if sorting == "Eigenvector":
                all_vecs = _sort_vectors(all_vecs, ts)
                all_vecs = [a[state] for a in all_vecs]

        return all_vecs
#   def Eigenvalue(self, t0, state=1):
View Source
    def Eigenvalue(self, t0, state=1):
        G = self.smearing_symmetric()
        G0 = G.content[t0]
        L = cholesky(G0)
        Li = inv(L)
        LT = L.T
        LTi = inv(LT)
        newcontent = []
        for t in range(self.T):
            if self.content[t] is None:
                newcontent.append(None)
            else:
                Gt = G.content[t]
                M = Li @ Gt @ LTi
                eigenvalues = eigh(M)[0]
                eigenvalue = eigenvalues[-state]
                newcontent.append(eigenvalue)
        return Corr(newcontent)
#   def Hankel(self, N, periodic=False):
View Source
    def Hankel(self, N, periodic=False):
        """Constructs an NxN Hankel matrix

        C(t) c(t+1) ... c(t+n-1)
        C(t+1) c(t+2) ... c(t+n)
        .................
        C(t+(n-1)) c(t+n) ... c(t+2(n-1))

        Parameters
        ----------
        N : int
            Dimension of the Hankel matrix
        periodic : bool, optional
            determines whether the matrix is extended periodically
        """

        if self.N != 1:
            raise Exception("Multi-operator Prony not implemented!")

        array = np.empty([N, N], dtype="object")
        new_content = []
        for t in range(self.T):
            new_content.append(array.copy())

        def wrap(i):
            if i >= self.T:
                return i - self.T
            return i

        for t in range(self.T):
            for i in range(N):
                for j in range(N):
                    if periodic:
                        new_content[t][i, j] = self.content[wrap(t + i + j)][0]
                    elif (t + i + j) >= self.T:
                        new_content[t] = None
                    else:
                        new_content[t][i, j] = self.content[t + i + j][0]

        return Corr(new_content)

Constructs an NxN Hankel matrix

C(t) c(t+1) ... c(t+n-1) C(t+1) c(t+2) ... c(t+n) ................. C(t+(n-1)) c(t+n) ... c(t+2(n-1))

Parameters
  • N (int): Dimension of the Hankel matrix
  • periodic (bool, optional): determines whether the matrix is extended periodically
#   def roll(self, dt):
View Source
    def roll(self, dt):
        """Periodically shift the correlator by dt timeslices

        Parameters
        ----------
        dt : int
            number of timeslices
        """
        return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))

Periodically shift the correlator by dt timeslices

Parameters
  • dt (int): number of timeslices
#   def reverse(self):
View Source
    def reverse(self):
        """Reverse the time ordering of the Corr"""
        return Corr(self.content[:: -1])

Reverse the time ordering of the Corr

#   def correlate(self, partner):
View Source
    def correlate(self, partner):
        """Correlate the correlator with another correlator or Obs

        Parameters
        ----------
        partner : Obs or Corr
            partner to correlate the correlator with.
            Can either be an Obs which is correlated with all entries of the
            correlator or a Corr of same length.
        """
        new_content = []
        for x0, t_slice in enumerate(self.content):
            if t_slice is None:
                new_content.append(None)
            else:
                if isinstance(partner, Corr):
                    if partner.content[x0] is None:
                        new_content.append(None)
                    else:
                        new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
                elif isinstance(partner, Obs):  # Should this include CObs?
                    new_content.append(np.array([correlate(o, partner) for o in t_slice]))
                else:
                    raise Exception("Can only correlate with an Obs or a Corr.")

        return Corr(new_content)

Correlate the correlator with another correlator or Obs

Parameters
  • partner (Obs or Corr): partner to correlate the correlator with. Can either be an Obs which is correlated with all entries of the correlator or a Corr of same length.
#   def reweight(self, weight, **kwargs):
View Source
    def reweight(self, weight, **kwargs):
        """Reweight the correlator.

        Parameters
        ----------
        weight : Obs
            Reweighting factor. An Observable that has to be defined on a superset of the
            configurations in obs[i].idl for all i.
        all_configs : bool
            if True, the reweighted observables are normalized by the average of
            the reweighting factor on all configurations in weight.idl and not
            on the configurations in obs[i].idl.
        """
        new_content = []
        for t_slice in self.content:
            if t_slice is None:
                new_content.append(None)
            else:
                new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
        return Corr(new_content)

Reweight the correlator.

Parameters
  • weight (Obs): Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i.
  • all_configs (bool): if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not on the configurations in obs[i].idl.
#   def T_symmetry(self, partner, parity=1):
View Source
    def T_symmetry(self, partner, parity=+1):
        """Return the time symmetry average of the correlator and its partner

        Parameters
        ----------
        partner : Corr
            Time symmetry partner of the Corr
        partity : int
            Parity quantum number of the correlator, can be +1 or -1
        """
        if not isinstance(partner, Corr):
            raise Exception("T partner has to be a Corr object.")
        if parity not in [+1, -1]:
            raise Exception("Parity has to be +1 or -1.")
        T_partner = parity * partner.reverse()

        t_slices = []
        for x0, t_slice in enumerate((self - T_partner).content):
            if t_slice is not None:
                if not t_slice[0].is_zero_within_error(5):
                    t_slices.append(x0)
        if t_slices:
            warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning)

        return (self + T_partner) / 2

Return the time symmetry average of the correlator and its partner

Parameters
  • partner (Corr): Time symmetry partner of the Corr
  • partity (int): Parity quantum number of the correlator, can be +1 or -1
#   def deriv(self, symmetric=True):
View Source
    def deriv(self, symmetric=True):
        """Return the first derivative of the correlator with respect to x0.

        Parameters
        ----------
        symmetric : bool
            decides whether symmetric of simple finite differences are used. Default: True
        """
        if not symmetric:
            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t + 1] - self.content[t])
            if(all([x is None for x in newcontent])):
                raise Exception("Derivative is undefined at all timeslices")
            return Corr(newcontent, padding=[0, 1])
        if symmetric:
            newcontent = []
            for t in range(1, self.T - 1):
                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
            if(all([x is None for x in newcontent])):
                raise Exception('Derivative is undefined at all timeslices')
            return Corr(newcontent, padding=[1, 1])

Return the first derivative of the correlator with respect to x0.

Parameters
  • symmetric (bool): decides whether symmetric of simple finite differences are used. Default: True
#   def second_deriv(self):
View Source
    def second_deriv(self):
        """Return the second derivative of the correlator with respect to x0."""
        newcontent = []
        for t in range(1, self.T - 1):
            if (self.content[t - 1] is None) or (self.content[t + 1] is None):
                newcontent.append(None)
            else:
                newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
        if(all([x is None for x in newcontent])):
            raise Exception("Derivative is undefined at all timeslices")
        return Corr(newcontent, padding=[1, 1])

Return the second derivative of the correlator with respect to x0.

#   def m_eff(self, variant='log', guess=1.0):
View Source
    def m_eff(self, variant='log', guess=1.0):
        """Returns the effective mass of the correlator as correlator object

        Parameters
        ----------
        variant : str
            log : uses the standard effective mass log(C(t) / C(t+1))
            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
            See, e.g., arXiv:1205.5380
            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
        guess : float
            guess for the root finder, only relevant for the root variant
        """
        if self.N != 1:
            raise Exception('Correlator must be projected before getting m_eff')
        if variant == 'log':
            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append(self.content[t] / self.content[t + 1])
            if(all([x is None for x in newcontent])):
                raise Exception('m_eff is undefined at all timeslices')

            return np.log(Corr(newcontent, padding=[0, 1]))

        elif variant in ['periodic', 'cosh', 'sinh']:
            if variant in ['periodic', 'cosh']:
                func = anp.cosh
            else:
                func = anp.sinh

            def root_function(x, d):
                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d

            newcontent = []
            for t in range(self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None):
                    newcontent.append(None)
                # Fill the two timeslices in the middle of the lattice with their predecessors
                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
                    newcontent.append(newcontent[-1])
                else:
                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
            if(all([x is None for x in newcontent])):
                raise Exception('m_eff is undefined at all timeslices')

            return Corr(newcontent, padding=[0, 1])

        elif variant == 'arccosh':
            newcontent = []
            for t in range(1, self.T - 1):
                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
                    newcontent.append(None)
                else:
                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
            if(all([x is None for x in newcontent])):
                raise Exception("m_eff is undefined at all timeslices")
            return np.arccosh(Corr(newcontent, padding=[1, 1]))

        else:
            raise Exception('Unknown variant.')

Returns the effective mass of the correlator as correlator object

Parameters
  • variant (str): log : uses the standard effective mass log(C(t) / C(t+1)) cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. See, e.g., arXiv:1205.5380 arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
  • guess (float): guess for the root finder, only relevant for the root variant
#   def fit(self, function, fitrange=None, silent=False, **kwargs):
View Source
    def fit(self, function, fitrange=None, silent=False, **kwargs):
        """Fits function to the data

        Parameters
        ----------
        function : obj
            function to fit to the data. See fits.least_squares for details.
        fitrange : list
            Range in which the function is to be fitted to the data.
            If not specified, self.prange or all timeslices are used.
        silent : bool
            Decides whether output is printed to the standard output.
        """
        if self.N != 1:
            raise Exception("Correlator must be projected before fitting")

        if fitrange is None:
            if self.prange:
                fitrange = self.prange
            else:
                fitrange = [0, self.T - 1]

        xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
        ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
        result = least_squares(xs, ys, function, silent=silent, **kwargs)
        result.gamma_method()
        return result

Fits function to the data

Parameters
  • function (obj): function to fit to the data. See fits.least_squares for details.
  • fitrange (list): Range in which the function is to be fitted to the data. If not specified, self.prange or all timeslices are used.
  • silent (bool): Decides whether output is printed to the standard output.
#   def plateau(self, plateau_range=None, method='fit'):
View Source
    def plateau(self, plateau_range=None, method="fit"):
        """ Extract a plateau value from a Corr object

        Parameters
        ----------
        plateau_range : list
            list with two entries, indicating the first and the last timeslice
            of the plateau region.
        method : str
            method to extract the plateau.
                'fit' fits a constant to the plateau region
                'avg', 'average' or 'mean' just average over the given timeslices.
        """
        if not plateau_range:
            if self.prange:
                plateau_range = self.prange
            else:
                raise Exception("no plateau range provided")
        if self.N != 1:
            raise Exception("Correlator must be projected before getting a plateau.")
        if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
            raise Exception("plateau is undefined at all timeslices in plateaurange.")
        if method == "fit":
            def const_func(a, t):
                return a[0]
            return self.fit(const_func, plateau_range)[0]
        elif method in ["avg", "average", "mean"]:
            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
            returnvalue.gamma_method()
            return returnvalue

        else:
            raise Exception("Unsupported plateau method: " + method)

Extract a plateau value from a Corr object

Parameters
  • plateau_range (list): list with two entries, indicating the first and the last timeslice of the plateau region.
  • method (str): method to extract the plateau. 'fit' fits a constant to the plateau region 'avg', 'average' or 'mean' just average over the given timeslices.
#   def set_prange(self, prange):
View Source
    def set_prange(self, prange):
        """Sets the attribute prange of the Corr object."""
        if not len(prange) == 2:
            raise Exception("prange must be a list or array with two values")
        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
            raise Exception("Start and end point must be integers")
        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
            raise Exception("Start and end point must define a range in the interval 0,T")

        self.prange = prange
        return

Sets the attribute prange of the Corr object.

#   def show( self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None ):
View Source
    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None):
        """Plots the correlator, uses tag as label if available.

        Parameters
        ----------
        x_range : list
            list of two values, determining the range of the x-axis e.g. [4, 8]
        comp : Corr or list of Corr
            Correlator or list of correlators which are plotted for comparison.
        logscale : bool
            Sets y-axis to logscale
        plateau : Obs
            plateau to be visualized in the figure
        fit_res : Fit_result
            Fit_result object to be visualized
        ylabel : str
            Label for the y-axis
        save : str
            path to file in which the figure should be saved
        """
        if self.N != 1:
            raise Exception("Correlator must be projected before plotting")
        if x_range is None:
            x_range = [0, self.T - 1]

        fig = plt.figure()
        ax1 = fig.add_subplot(111)

        x, y, y_err = self.plottable()
        ax1.errorbar(x, y, y_err, label=self.tag)
        if logscale:
            ax1.set_yscale('log')
        else:
            # we generate ylim instead of using autoscaling.
            if y_range is None:
                try:
                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
                except Exception:
                    pass
            else:
                ax1.set_ylim(y_range)
        if comp:
            if isinstance(comp, Corr) or isinstance(comp, list):
                for corr in comp if isinstance(comp, list) else [comp]:
                    x, y, y_err = corr.plottable()
                    plt.errorbar(x, y, y_err, label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
            else:
                raise Exception('comp must be a correlator or a list of correlators.')

        if plateau:
            if isinstance(plateau, Obs):
                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
            else:
                raise Exception('plateau must be an Obs')
        if self.prange:
            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',')
            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',')

        if fit_res:
            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
            ax1.plot(x_samples,
                     fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples),
                     ls='-', marker=',', lw=2)

        ax1.set_xlabel(r'$x_0 / a$')
        if ylabel:
            ax1.set_ylabel(ylabel)
        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])

        handles, labels = ax1.get_legend_handles_labels()
        if labels:
            ax1.legend()
        plt.draw()

        if save:
            if isinstance(save, str):
                fig.savefig(save)
            else:
                raise Exception("Safe has to be a string.")

        return

Plots the correlator, uses tag as label if available.

Parameters
  • x_range (list): list of two values, determining the range of the x-axis e.g. [4, 8]
  • comp (Corr or list of Corr): Correlator or list of correlators which are plotted for comparison.
  • logscale (bool): Sets y-axis to logscale
  • plateau (Obs): plateau to be visualized in the figure
  • fit_res (Fit_result): Fit_result object to be visualized
  • ylabel (str): Label for the y-axis
  • save (str): path to file in which the figure should be saved
#   def dump(self, filename, datatype='json.gz', **kwargs):
View Source
    def dump(self, filename, datatype="json.gz", **kwargs):
        """Dumps the Corr into a file of chosen type
        Parameters
        ----------
        filename : str
            Name of the file to be saved.
        datatype : str
            Format of the exported file. Supported formats include
            "json.gz" and "pickle"
        path : str
            specifies a custom path for the file (default '.')
        """
        if datatype == "json.gz":
            from .input.json import dump_to_json
            if 'path' in kwargs:
                file_name = kwargs.get('path') + '/' + filename
            else:
                file_name = filename
            dump_to_json(self, file_name)
        elif datatype == "pickle":
            dump_object(self, filename, **kwargs)
        else:
            raise Exception("Unknown datatype " + str(datatype))

Dumps the Corr into a file of chosen type

Parameters
  • filename (str): Name of the file to be saved.
  • datatype (str): Format of the exported file. Supported formats include "json.gz" and "pickle"
  • path (str): specifies a custom path for the file (default '.')
#   def print(self, range=[0, None]):
View Source
    def print(self, range=[0, None]):
        print(self.__repr__(range))
#   def sqrt(self):
View Source
    def sqrt(self):
        return self**0.5
#   def log(self):
View Source
    def log(self):
        newcontent = [None if (item is None) else np.log(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)
#   def exp(self):
View Source
    def exp(self):
        newcontent = [None if (item is None) else np.exp(item) for item in self.content]
        return Corr(newcontent, prange=self.prange)
#   def sin(self):
View Source
    def sin(self):
        return self._apply_func_to_corr(np.sin)
#   def cos(self):
View Source
    def cos(self):
        return self._apply_func_to_corr(np.cos)
#   def tan(self):
View Source
    def tan(self):
        return self._apply_func_to_corr(np.tan)
#   def sinh(self):
View Source
    def sinh(self):
        return self._apply_func_to_corr(np.sinh)
#   def cosh(self):
View Source
    def cosh(self):
        return self._apply_func_to_corr(np.cosh)
#   def tanh(self):
View Source
    def tanh(self):
        return self._apply_func_to_corr(np.tanh)
#   def arcsin(self):
View Source
    def arcsin(self):
        return self._apply_func_to_corr(np.arcsin)
#   def arccos(self):
View Source
    def arccos(self):
        return self._apply_func_to_corr(np.arccos)
#   def arctan(self):
View Source
    def arctan(self):
        return self._apply_func_to_corr(np.arctan)
#   def arcsinh(self):
View Source
    def arcsinh(self):
        return self._apply_func_to_corr(np.arcsinh)
#   def arccosh(self):
View Source
    def arccosh(self):
        return self._apply_func_to_corr(np.arccosh)
#   def arctanh(self):
View Source
    def arctanh(self):
        return self._apply_func_to_corr(np.arctanh)
#   real
#   imag
#   def permutation(lst):
View Source
def permutation(lst):  # Shamelessly copied
    if len(lst) == 1:
        return [lst]
    ll = []
    for i in range(len(lst)):
        m = lst[i]
        remLst = lst[:i] + lst[i + 1:]
        # Generating all permutations where m is first
        for p in permutation(remLst):
            ll.append([m] + p)
    return ll